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Observation of nonscalar and logarithmic correlations in two- and three-dimensional percolation
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In bulk percolation, we exhibit operators that insert N clusters with any given symmetry under the symmetric
group SN . At the critical threshold, this leads to predictions that certain combinations of two-point correlation
functions depend logarithmically on distance, without the usual power law. The behavior under rotations of
certain amplitudes of correlators is also determined exactly. All these results hold in any dimension, 2 � d � 6.
Moreover, in d = 2 the critical exponents and universal logarithmic prefactors are obtained exactly. We test
these predictions against extensive simulations of critical bond percolation in d = 2 and 3, for all correlators up
to N = 4 (d = 2) and N = 3 (d = 3), finding excellent agreement. In d = 3 we further obtain precise numerical
estimates for critical exponents and logarithmic prefactors.
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Following Onsager’s solution of the square-lattice Ising
model [1], exact knowledge about two-dimensional (2D)
statistical models is ever-growing. The algebraic use of
symmetries—lattice duality [2], Yang-Baxter integrability
[3,4], and local conformal invariance [5,6]—have propelled
this impressive drive. The models solved encompass all of
theoretical physics—from polymers [7], via cold atoms [8]
and electron gases [9], to out-of-equilibrium transport in
1+1D [10,11]—and are matched by handsome experimental
realizations [12–16].

The three-dimensional (3D) case has largely resisted sim-
ilar efforts, due to the finiteness of the conformal group. The
Zamolodchikov model [17,18] provides one of the scarce
exceptions. Thanks to another algebraic structure [17,18] its
partition function can be computed [19,20]. Unfortunately, it
seems less experimentally relevant than its 2D cousins, and
its more physical properties (correlation functions, critical
exponents) remain elusive. Evidence of conformal symmetry
was found in various models like the 3D Ising model [21] or
percolation [22].

More recently, the study of conformal field theories (CFTs)
in d > 2 has been thrusted into the limelight by the confor-
mal bootstrap program. Using constraints of unitarity, this
approach has led to new insights and improved the precision
of critical exponents for local operators in the 3D Ising
model [23]. Nonunitary extensions have given access to a few
scaling dimensions in 3D (e.g., in the Yang-Lee model [24]
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or percolation [25]), but sometimes on the condition that an
exponent was determined independently, either perturbatively
[25] or numerically.

This Rapid Communication presents some exact results for
bond percolation in both 2D and 3D, obtained by a different
method. Percolation is a venerable physical model [26] with a
host of practical applications [27], causing sustained interest
[28]. At the critical threshold, it enjoys scale and conformal
invariance, so one expects correlation functions to decay as
power laws. However, the model is also nonunitary, due to
its nonlocal observables, defined in terms of cluster connec-
tivities [29]. Within the framework of logarithmic conformal
field theory (LCFT), these nonlocal lattice observables are
described by limits of local fields that may not be merely
rescaled by dilatations, but linked among themselves in Jor-
dan cell-like structures. Therefore, their correlators may also
harbor logarithmic factors [30–32] reflecting the nondiago-
nalizability of the dilatation operator. The LCFT approach to
d > 2 is complementary to the bootstrap in many respects: it
focuses on nonlocal observables rather than local ones, and
targets exact structural properties rather than bounds on the
numerical values of exponents. To complete its predictions,
one needs in particular to determine the scaling dimensions of
the nonlocal observables by an independent means.

The nonlocal observables and the logarithmic correlators
can be understood by treating percolation as the Q → 1 limit
of the Q-state Potts model [33,34]. Our approach hinges on
a careful analysis [34,35] of its additional discrete SQ per-
mutation symmetry, present in any dimension d . References
[35,36] classified the SQ irreducible operators, related them
to cluster observables, and unravelled the corresponding loga-
rithmic contents. The set of predictions was greatly enhanced
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in [37] by extending the initial treatment [35,36] of scalar op-
erators (i.e., that transform trivially under rotations) to include
also nonscalar operators that realize general representations of
SQ. We stress that these works and this Rapid Communication
apply to bulk theories, which is more challenging [38–40] than
its boundary counterpart [41,42].

In this Rapid Communication, we define nonlocal observ-
ables based on two-point functions of these operators. Their
logarithmic structure is observed both in 2D and 3D, showing
that exact predictions [37] hold for any d . The critical expo-
nents and universal logarithmic prefactors (indecomposability
parameters) are determined exactly in 2D and numerically in
3D. Moreover, the periodicity under rotations of correlator
amplitudes is obtained exactly in 2D and 3D, and confirmed
numerically. Our exact results add to the growing knowledge
of higher-d percolation [28].

a. Percolation and the Q → 1 Potts model. The parti-
tion function Z of the Q-state Potts model with interactions
−Kδσi,σ j along edges, (i j) ∈ E , can be rewritten as the ran-
dom cluster model [29,33]

Z =
∑

A⊆E

Qk(A)v|A|. (1)

Here v = eK − 1, |A| is the number of edges in the subset A,
and k(A) is the number of connected components (clusters)
in the graph obtained by deleting lattice edges not in A.
Note that (1) makes sense for Q ∈ R and gives access to
nonlocal correlators of cluster connectivities. The limit Q →
1 describes bond percolation.

The original interactions suppose Q ∈ N and have an SQ

symmetry. The classification of SQ irreducible observables
can nonetheless be analytically continued to Q ∈ R, and leads
to exact results on cluster correlators [35–37]. Below we study
the probabilities that N clusters propagate from one neighbor-
hood to another at the percolation threshold. We mainly use
the bond percolation on the square and the simple-cubic (SC)
lattice at their percolation thresholds pc(square) = 1/2 [43]
and pc(SC) = 0.248 811 85(10) [44–46]. To further check the
universality of the critical exponents and particularly of the
logarithmic prefactors, we also consider the triangular and
the body-centered-cubic (BCC) lattice, with pc(triangular) =
2 sin(π/18) [47] and pc(BCC) = 0.180 287 62(20) [44,46].

b. Observables. Let Vi ≡ (i1, i2, . . . , iN ) denote N mu-
tually disconnected lattice sites in a small neighborhood.
We usually take their positions to be aligned, rim+1 =rim +
δ, with m=1, 2, . . . , N − 1. For |δ| = 1 they are nearest
neighbors on square and cubic lattices. Let another site set
V j ≡ ( j1, j2, . . . , jN ) be distant from Vi by r = r j − ri, with
r = |r| � 1. We consider configurations in which N distinct
percolation clusters propagate from Vi to V j , i.e., each cluster
connects a site in Vi to another site in V j . There are N! such
configurations, symbolically represented as ( ) and ( ) for

N = 2, ( ), ( ), ( ), ( ), ( ), and ( ) for N = 3, etc.
Appropriate linear combinations of the corresponding

probabilities (P( ) , P( ) , etc.) give access to the operator

content of the underlying field theory [35,37]. More precisely,
these combinations correspond, in the continuum limit, to
the two-point function of an operator. This correspondence

relies on the local SN symmetry between the N spins of
Vi (or V j), and the SQ of the Potts model. Note that SQ is
subtly nontrivial, since percolation is not Q = 1 but rather
Q → 1. The definitions of observables acting on N = 2 and
N = 3 spins are recalled below. Each of them corresponds,
technically, to a pair of Young diagrams for SN and SQ [37].

Consider first observables describing the propagation of
N = 2 clusters. There are two different combinations, cor-
responding to the symmetric and antisymmetric Young dia-
grams of S2,

P2s = P( ) + P( ) P2a = P( ) − P( ) ,

corresponding in the continuum limit to the two-point func-
tions of two operators O2s and O2a. Below, we also use the
term observable to describe a two-point function. The scaling
dimensions of these operators in 2D CFTs are known [37] and
O2s (O2a) transforms trivially (nontrivially) under rotations.

For N = 3 clusters, the relevant combinations are

P3s = P( ) + P( ) + P( ) + P( ) + P( ) + P( )
P3m = 2P( ) + P( ) + P( ) − P( ) − P( ) − 2P( )
P3a = P( ) − P( ) − P( ) + P( ) + P( ) − P( ) ,

where PN◦ (with subscript ◦ = s, m, a) refers to the
symmetric, mixed, and antisymmetric Young diagram of S3.
For N = 4, we have P4s, P4m1, P4m2, P4m3, and P4a, since S4

admits five Young diagrams [see the Supplemental Material
(SM) for details [48]]. All these observables are two-point
functions, and their definitions are independent of the Q value.
They are expected to decay algebraically at criticality, as
r−2�, with (a priori) distinct, symmetry-dependent scaling
dimensions.

c. Critical exponents in 2D. In 2D, the exponents can be
computed exactly using algebraic methods and CFT results.
They are expressed in terms of conformal weights hr,s in the
so-called Kac parametrization

hr,s = [r(x + 1) − sx]2 − 1

4x(x + 1)
, (2)

where x determines Q by
√

Q = 2 cos π
x+1 (so x = 2 for

percolation), and (r, s) are Kac labels.
The exponents of the above observables were already

studied in [37], but in the geometry of an infinite cylinder,
suitable for transfer matrix (TM) computations. In that case,
Vi (V j) reside at the lower (upper) rim of the cylinder. Since
moreover clusters cannot cross, certain configurations cannot
be realized on the cylinder. In this Rapid Communication we
perform Monte Carlo (MC) computations in a physically more
relevant geometry of the plane. This alleviates these restric-
tions, leading in some cases to changes in the exponents.

On the cylinder, the symmetry SN is effectively re-
stricted to its subgroup of cyclic permutations CN . The scal-
ing dimension related to the one-dimensional representation
exp(i2π p/N ) of CN was found to be [37]

�p,N = hp/N,N + h−p/N,N , (3)

where p is an integer between 	−N/2
 and 	N/2
 determined
as follows: For the Young diagram of a given operator, find all
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FIG. 1. Log-log plot of P2◦ and P3◦ versus distance r in 2D
(square) and 3D (SC), for different system sizes L. Subscripts
◦ = s, m, a refer to symmetric, mixed, and antisymmetric correla-
tors. Straight lines with slope s come from the least-squares fits. For
clarity, P3s (P3m) have been multiplied by a factor 5 (2).

its corresponding standard Young tableaux and compute for
each of them its index I (= sum of descents). The p in (3) is
then the value of I mod N leading to the smallest �p,N (most
relevant contribution).

Consider first the N = 2 observables. The scaling dimen-
sions of O2s and O2a are �2s = 2h0,2 = 5/4 and �2a =
h1/2,2 + h−1/2,2 = 23/16. The leading behavior of the proba-
bilities are then P2s ∝ r−2�2s and P2a ∝ r−2�2a . These predic-
tions were checked by TM on the cylinder [37], and they are
confirmed by our MC computations in the plane (upper-left
panel of Fig. 1 and Table I). More precisely, the least-squares
fits give (�2s,�2a ) = (1.2503 ± 0.0006, 1.438 ± 0.004) for
the square lattice and (1.2504 ± 0.0006, 1.445 ± 0.010) for
the triangular lattice.

The N = 3 case is more interesting, since the restriction
from S3 to C3 does not necessarily hold in the geometry rele-
vant for MC. In particular, both ( ) and ( ) can generically
be realized in the plane, while on the cylinder one of them
cannot. To be in the generic situation, the points in Vi and V j

must be sufficiently spaced, and we henceforth assume this is
the case. In this case, the restriction from SN to CN —a key

TABLE I. Least-squares fitting results for N-cluster exponents
� in 2D and 3D. The rows “Theo.” are for the exact values from the
d = 2 LCFT, as calculated from (2) and (3) with index (p, N ).

2D �2s �2a �3s �3m �3a

1.2503(6) 1.438(4) 2.93(4) 2.986(14) 3.75(20)
Theo. 5/4 23/16 35/12 3 11/3
(p, N ) (0,2) (1,2) (0,3) (1,3) (3,3)

2D �4s �4m1 �4m2 �4m3 �4a

5.24(3) 5.25(10) 5.40(10) 5.60(20) 7.00(30)
Theo. 21/4 339/64 87/16 363/64 111/16
(p, N ) (0,4) (1,4) (2,4) (3,4) (6,4)

3D �2s �2a �3s �3m �3a

1.857(2) 2.262(10) 3.605(8) 3.93(4) 5.2(2)
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FIG. 2. Rotational dependence of P2sr2�2s and P2ar2�2a . The
results are obtained from extrapolation first to L → ∞ and then to
r → ∞. For both ways of rotations shown in the insets, the sym-
metric correlation P2s is independent of rotation angle θ , while the
asymmetric one P2a is proportional to cos(2θ + π ) or cos(θ + π ).

argument in deriving (3)—does not occur. But remarkably,
(3) still appears to provide the correct scaling dimension,
provided p is chosen differently (see below).

The case of the symmetric operator O3s presents no such
subtleties. Its corresponding Young diagram has one index
I = 0, and setting p = 0 in (3) we find �3s = 2h0,3 = 35/12.
This coincides with the well-known six-leg watermelon op-
erator [49] and agrees well with the MC results for P3s

[upper-right panel of Fig. (1) and and Table I]. Similarly, for
O3m we find p = 1, and �3m = h1/3,3 + h−1/3,3 = 3 agrees
with the numerics for P3m. The interesting case concerns
O3a, for which I = 3. On the cylinder, one finds the same
scaling dimension as for O3s, namely, �0,3 = 35/12, since
p = I mod N = 0. However, our MC results in the plane
unambiguously agree with �3,3 = 11/3. We hypothesize that
exact results in the plane are obtained by setting p = I
(without mod N). This is confirmed by an exhaustive study
of the five N = 4 exponents (see SM [48] and Table I).

d. Critical exponents in 3D. The definitions of the ob-
servables are independent of d . The corresponding operators
are only quasiprimary in 3D, but the various probabilities
P should still scale with distinct scaling dimensions, due to
their different symmetry content. This is confirmed by our
MC results (bottom panels of Fig. 1 and Table I). Nonlocal
observables of this type do not appear to have been previously
studied in 3D.

e. Conformal spin. Observables that are not fully symmetric
transform nontrivially under local rotations. We first illustrate
this in 2D, where the conformal spin of operators corre-
sponding to (3) is |hp/N,N − h−p/N,N | = p. Thus, the N = 2
operators O2s and O2a have spin 0 and 1, respectively.

This can be checked in MC simulations, using techniques
similar to [37]. We perform a rotation of Vi around V j , while
keeping the local orientation of each site in the neighborhoods
fixed. The upper-left panel of Fig. 2 shows the renormalized
amplitude of the observables as a function of the angle. It is
clear that in the large-r limit the two-point function of O2s

is invariant under rotations, whereas the two-point function
of O2a fits perfectly with ∝cos(2θ + π ). Another way to
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FIG. 3. Rotational dependence of P3sr2�3s , P3mr2�3m , and
P3ar2�3a . The rotation schemes are given in the insets. The simulation
parameters are (L, r) = (8192, 12) in 2D and (512,9) in 3D. To have
a better view, the P3m data are rescaled by a factor of 0.22 in 3D.

investigate the spin is to keep Vi around V j fixed, but do a
local rotation of the relative position δ in one of them. In CFT,
this corresponds to a simple conformal change of the metric
around one point. The results match now ∝cos(θ + π ) for the
spin-1 case (top-right panel Fig. 2). The factor 2 difference of
the periods is understood (see [37] for details).

In 3D, we cannot compute the conformal spin from (3), but
on general grounds we expect it to be independent of d . This
is confirmed by the bottom panels of Fig. 2 that show the same
two protocols as above, but now in 3D.

The N = 3 observables can be investigated in the same
way. In 2D, the prediction is that O3s has spin 0, while
O3m has spin 1, and O3a has spin 3 in the plane and spin
0 on the cylinder. For numerical and practical reasons, we
only investigated the first of the above protocols (the second
being much more challenging for N = 3, given the constraints
of the square lattice). The results are shown in Fig. 3. The
spins of O3s and O3m are seen to be 0 and 1, respectively
[we find P3m ∝ cos(2θ + π )], in agreement with the 2D CFT
predictions. The prediction for O3a is spin 3, but instead of a
“pure” function of the form cos(2sθ ) with s = 3, P3a is seen
to be a mixed sum

P3a ∝ cos(2θ ) + A1 cos(4θ ) + A2 cos(6θ ),

where A1 and A2 are nonuniversal amplitudes. In general, we
expect the angular dependence of the two-point function of
a spin-s operator to be a sum of the form

∑s
k=1 bk cos(2kθ ),

where the bk are nonuniversal. For all three observables, we
obtain the same spin in 3D as in 2D, as expected.

f. Logarithmic features. An important breakthrough of [35]
was to prove the possibility of studying LCFTs through a
limiting procedure. In this class of theories—which includes
percolation—there exist operators whose two-point functions
are not purely a power law. In 2D, they have a logarithmic
dependence of the form

〈O�(0)O�(r)〉 = −2b ln r

r2�
, (4)

where � is the scaling dimension and b is called an inde-
composability parameter. The operator O� has a logarith-
mic partner, hence it cannot be normalized independently.
The indecomposability parameter is believed to be universal
and exact results are known for its value in many cases
[31,38,39,41].

1

2

3

4

5

6

4 16 64 256

(Square)

(SC)

(Triangular)

(BCC)

s : 2
√

3/π s : 2
√

3/π

s : 1.49 s : 1.49

1

2

3

4

5

6

4 16 64 256

(Square)

(SC)

(Triangular)

(BCC)

s : 2
√

3/π s : 2
√

3/π

s : 1.49 s : 1.49

1

2

3

4

5

2 4 8 16 32 64

(Square)

(SC)

(Triangular)

(BCC)

s : 2
√

3/π s : 2
√

3/π

s : 1.49 s : 1.49

4 8 16 32 64

1

2

3

4

5

(Square)

(SC)

(Triangular)

(BCC)

s : 2
√

3/π s : 2
√

3/π

s : 1.49 s : 1.49

2048
4096
8192

(2D, F )

(3D, F )

2048
4096
8192

(2D, F )

(3D, F )

r

64
128
256

(2D, F )

(3D, F )

r

64
128
256

(2D, F )

(3D, F )

FIG. 4. Semilogarithmic plot of the logarithmic correlation F (r)
for different 2D and 3D lattices. The slopes of the straight lines
are universal (independent of lattice type), and their values are
respectively δ(2D) = 2

√
3/π and δ(3D) = 1.49(3).

For a LCFT to result as a limit of ordinary CFTs, the
scaling dimensions of two operators must collide in the limit.
This is exactly what happens for percolation in any dimen-
sions: the scaling dimensions of the local energy operator ε

and of the symmetric two-cluster operator O2s collide when
Q → 1. This is accompanied by a divergence in the two-point
function of O2s, which can be removed by mixing the two
operators into a Jordan cell. The parameter b is proportional
to the quantity

δ = 2 × lim
Q→1

�2 − �ε

Q − 1
. (5)

This universal number characterizes both the LCFT at Q = 1
and the limit of CFTs when Q → 1.

It is possible to go further and isolate the logarithmic factor
in (4). For N = 2, let P0 ≡ P( ) be the probability each of

the four specified points belongs to a different percolation
cluster; let P1 be the probability that the points belong to three
different clusters, one of which propagates from one site in Vi

to another site in V j , viz., P1 ≡ P( ) + P( ) + P( ) + P( ) .

Note that P( ) increases with r and converges to (P�=)2 for

r → ∞, where P�= is the probability that the two points in
Vi belong to different percolation clusters. The main result of
[35] is that the composite observable

F (r) = P0(r) + P1(r) − (P�=)2

P2s(r)
∼ δ ln(r) (6)

diverges as a pure logarithm. Crucially, the predictions (5) and
(6), as well as �2 = �ε exactly at Q = 1, hold in both 2D and
3D. In 2D we know also �2(Q) = 2h2,1 and �ε(Q) = 2h0,2

so δ = 2
√

3/π ≈ 1.10266 . . . .
In the numerics we take each of Vi and V j to contain a pair

of nearest-neighbor sites for the square, SC, and BCC lattices
and of next-nearest-neighbor sites for the triangular lattice.
From the least-squares fit of the data in Fig. 4, we obtain
δ(square) = 1.12(3) and δ(triangular) = 1.11(2), improving
the numerics in [35], and very close to the exact result. The
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3D logarithmic scaling in (6) is confirmed very clearly in
the right panel of Fig. 4, and we find δ(SC) = 1.53(3) and
δ(BCC) = 1.49(3). Of course, �2(Q) and �ε(Q) are not
known analytically in 3D. We can nonetheless give a rough
estimate of δ from (5) by using the numerical values �2 ≈
2.243(2) and �ε ≈ 1.413(1) for the 3D Ising model (Q = 2)
[50,51]. This gives δ ≈ 2[�2(Q = 2) − �ε(Q = 2)] = 1.66.
The agreement with the estimated values of δ(3D) is sur-
prisingly good, showing that �2(Q) and �ε(Q) have little
curvature (as in 2D).

Figure 4 clearly demonstrates the universality of the loga-
rithmic prefactors in both 2D and 3D.

g. Numerical details. Our simulations use toroidal bound-
ary conditions, and linear system sizes vary from L = 8
to 8192 in 2D and 512 in 3D. It is especially challenging
that the correlators decay very rapidly with r, in particular
for N = 3 and 4. For instance, P3a decays with exponent
2�3a(3D) ≈ 10.4, so P3a � 10−14 already for r ≈ 24 (see
Fig. 1). Thus, reliable data are only available for a small range
of r and L, calling for careful finite-size analysis. Since most
CPU time is spent measuring, independent simulations are
performed for each N . In total, we used ≈2 × 106 CPU core
hours.

Data for N = 2, 3 (on square and SC lattices) are partly
shown in Fig. 1, and fitted to O(r)|L = r−2�O (a + b1r−1 +
b2r−2) by the least-squares criterion. For fixed L, we im-

pose cutoffs, rmin � r � rmax, on the data admitted in the
fit, and we study the effect on the residual χ2 of varying
rmin and rmax. Results are then extrapolated to L → ∞. To
avoid simultaneous finite-r and finite-L corrections, we also
simulate r = αL, with 0 < α < 1 constant. Those data are fit-
ted by O(L) = (αL)−2�O (a + b1L−1 + b2L−2). Final results
are reported in Table I, where the quoted error bars include
systematic uncertainties.

h. Discussion and outlook. To summarize, we gave exact
predictions about the geometry of percolation clusters in 2D
and 3D, with numerical checks. In 3D we gave estimates
for new exponents, and theoretical predictions [35] of the
logarithmic structure were verified. We found that the rota-
tional behavior of correlators is similar in 3D and 2D, with
spin s = p in both cases. While our analysis was confined to
percolation, it proves the avail of studying LCFT as a limit of
ordinary CFT. Being one of the few methods to study LCFT
in higher dimensions, we believe it opens the possibility to
derive exact results in 3D for a wider range of models, such
as the cluster formulation of the Ising model or self-avoiding
walks.
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