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The Cahn-Hilliard equation (CHE) is widely used in modeling two-phase fluid flows, and it is critical to
solve this equation accurately to track the interface between the two phases. In this paper, a high-order lattice
Boltzmann equation model is developed for the CHE via the fourth-order Chapman-Enskog expansion. A
truncation error analysis is performed, and the leading error term proportional to the Peclet number is identified.
The results are further confirmed by the Maxwell iteration. With the inclusion of a correction term for eliminating
the main error term, the proposed model is able to recover the CHE up to third order. The proposed model is tested
by several benchmark problems. The results show that the present model is capable of tracking the interface with
improved accuracy and stability in comparison with the second-order one.
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I. INTRODUCTION

Two-phase flows with complex interfacial dynamics appear
in many fields of science and engineering applications. It is
important to develop effective and accurate numerical meth-
ods for simulating such flows. In the designing of numerical
methods, it is critical to describe the motion of fluid interface
accurately. Generally, the existing numerical methods for
multiphase flows can be divided into two categories, i.e., sharp
interface methods [1,2] and diffuse interface methods [3–7].
In a sharp interface method, the fluid interface is treated as
a sharp discontinuity with zero thickness that separates the
two fluids. The hydrodynamics of each fluid is described by
the individual governing equations, which can be solved by
some standard numerical techniques. In such methods, the
interface just serves as a moving boundary with compatible
conditions through which the effects of interfacial properties
on the flow are incorporated. Therefore, it is critical to capture
accurately the change and motion of the interface in sharp-
interface methods. In a diffuse interface method, the interface
is replaced by a transition region of small but finite width,
across which density, viscosity, and other physical quantities
of the two-phase fluids vary smoothly. The hydrodynamics
of the whole system is described by a single set of govern-
ing equations [Navier-Stokes (NS) equations] with a body
force term accounting for the interfacial force, which can be
modeled based on surface tension (continuum surface force
model) or fluid free-energy (phase-field model). In the latter
case, the motion and topological change of the interface can
be described by the evolution of an order parameter governed
by a phase-field equation, such as the Cahn-Hilliard equation
(CHE) [3,8,9] or the Allen-Cahn equation (ACE) [10–12].
Compared with sharp interface methods, diffuse interface
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methods have some advantages in simulating interface move-
ment and deformation on fixed grids [5,13]. For example,
diffuse interface methods enable us to compute the interface
without explicitly tracking it, and we can resolve interface
curvature with higher accuracy.

Numerical methods based on diffuse interface methods
have attracted much interest in recent years. Among these, the
lattice Boltzmann equation (LBE) method has gained much
success due to its simplicity and efficiency [14–20]. In such
LBE models, two sets of distribution functions are used. One
is employed to solve the phase-field equation (CHE or ACE)
and the other is used to solve the hydrodynamic equations.
The LBE for the Navier-Stokes equations is standard, but the
LBE for the phase-field equation is nontrivial. To recover
the phase-field equation correctly, some models have been
developed for both CHE and ACE. The first attempt to devise
a LBE describing the evolution of a phase-field variable is due
to He et al. [21], who reproduced an equation similar to the
CHE but with some explicit differences. Later, Zheng et al. [7]
proposed a modified version with a spatial difference term of
the distribution function such that the CHE can be recovered
exactly. Following the same strategy, Zu et al. [22] replaced
the distribution function with the equilibrium one in the spatial
difference term to improve the numerical stability. Recently,
Liang et al. [18] introduced a time-derivative term in the their
LBE model to ensure that the CHE can be recovered correctly.
In addition to recovering the CHE, some LBE models for the
Allen-Cahn equation have also been developed to track the
interface between two different fluids [23–26]. For instance,
Geier et al. [23] developed a central-moment LBE model for
the ACE; Fakhari et al. [25] employed a finite-difference LBE
model for the ACE to facilitate the use of nonuniform grids;
and recently a LBE model with a time-derivative source term
was proposed to recover the ACE exactly [26].

However, all of the above LBE models for the CHE or
ACE are based on a second-order Chapman-Enskog analysis
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[7,18,22,26]. All higher-order terms than the second-order
term that may be important near the interface are neglected.
To the best of our knowledge, no theoretical analysis of
the influence of these error terms is available for the CHE.
However, some efforts have been made by a high-order
Chapman-Enskog expansion to remove some high-order error
terms partially in terms of the advection-diffusion equation
and Navier-Stokes equations [27–33]. In this paper, we shall
perform a truncation error analysis of the LBE model using
the fourth-order Chapman-Enskog expansion. It turns out
that the truncation error should not be completely neglected
through the dimensionless analysis. To improve the accuracy
of the LBE model, a correction term is proposed to remove
the leading error. In addition, the results are further confirmed
by the Maxwell iteration method that need not explicitly
introduce multiple-scale variables [34,35].

The rest of this paper is organized as follows. In Sec. II, a
truncation error analysis is presented for the LBE model for
the CHE via the higher-order Chapman-Enskog expansion,
from which the moments of the source terms are determined.
In Sec. III, some numerical simulations are carried out to
validate the proposed model, and some comparisons with
previous LBE models are made. A brief summary is presented
in Sec. IV.

II. PHASE-FIELD LATTICE BOLTZMANN METHOD

A. Cahn-Hilliard equation

In phase-field theory for a two-phase system (denoted by
A and B, respectively), an order parameter φ(x, t ) is used to
identify different fluid phases, e.g., φA denotes the bulk phase
A and φB denotes the bulk phase B. The order parameter is
closely related to the free energy of the system. For an isother-
mal binary fluid system, the free energy can be expressed as

F (φ) =
∫

V

[
f (φ) + κ

2
|∇φ|2

]
dV, (1)

where f (φ) is the bulk free-energy density, κ is a constant
related to surface tension, and V is the control volume. In
general, the bulk free-energy density can be modeled as a
double-well potential for pseudo–van der Waals fluids [4,36],

f (φ) = β(φ − φA)2(φ − φB)2, (2)

The two parameters κ and β related to the interfacial thickness
W and the surface tension σ are given by [4,36]

β = 12σ

W |φA − φB|4 , κ = 3σW

2|φA − φB|2 . (3)

From the free energy of the system, one can define the
chemical potential μ as follows

μ ≡ δF

δφ
= ∂ f

∂φ
− κ∇2φ. (4)

At equilibrium, the chemical potential is constant. In partic-
ular, for a planar interface the equilibrium distribution of the

order parameter can be expressed as

φ(z) = φA + φB

2
+ φA − φB

2
tanh

(
2z

W

)
, (5)

where z is the coordinate normal to the interface. The dynam-
ics of the order parameter can be described by the CHE [8,37],

∂φ

∂t
+ ∇ · (φu) = ∇ · (M∇μ), (6)

where M is the mobility and u is the fluid velocity governed by
the incompressible Navier-Stokes equations [4,6,13,38,39],

∇ · u = 0, (7a)

ρ(∂t u + u · ∇u) = −∇p + ∇ · 	 + Fs, or (7b)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · 	 + Fs

+ dρ

dφ
u∇ · (M∇μ), (7c)

where ρ is the density, p is the pressure, 	 = ρν(∇u + ∇uT )
is the viscous stress tensor with ν being the kinematic vis-
cosity, and Fs = −φ∇μ is the surface tension force. The fluid
density is determined by the order parameter

ρ = φ − φB

φA − φB
(ρA − ρB) + ρB. (8)

B. The LBE model for the Cahn-Hilliard equation

The LBE for the CHE with a single-time relaxation approx-
imation is expressed as [16,18,40]

gi(x + ciδt, t + δt ) − gi(x, t )

= −gi(x, t ) − geq
i (x, t )

τg
+ δtSi(x, t ), (9)

where gi(x, ci, t ) is the distribution function associated with
discrete velocity ci at position x and time t , δt is the time
step, τg is the nondimensional relaxation time, geq

i is the
equilibrium distribution function, and Si(x, t ) is a source term
to be determined later to ensure that the CHE is recovered cor-
rectly. In this study, we only consider two-dimensional prob-
lems, and the two-dimensional nine velocity (D2Q9) model
is employed, in which the discrete velocities are given by
c0 = (0, 0)c, c1 = −c3 = (1, 0)c, c2 = −c4 = (0, 1)c, c5 =
−c7 = (1, 1)c, and c6 = −c8 = (−1, 1)c, with c = δx/δt be-
ing the lattice speed (δx being the lattice spacing). To match
the CHE correctly, the moments of the equilibrium distribu-
tion function should satisfy [18,25,40–42]∑

i

geq
i = φ,

∑
i

cig
eq
i = φu,

∑
i

cicig
eq
i = c2

s ημI + C̄,

(10)

where η is an adjustable parameter related to the mobility, cs is
the sound speed defined by cs = c/

√
3, and C̄ is a function of

velocity. In [18,22,25,41], C̄ = 0 is used. In [16,19,40,42,43],
C̄ = φuu is used. Here, the former is employed and the fol-
lowing equilibrium distribution function satisfying the above
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moments is used [18]:

geq
i =

{
φ + (ω0 − 1)ημ, i = 0,

ωiημ + ωiφ
ci·u
c2

s
, i �= 0,

(11)

where ωi is the weight coefficient defined by
ω0 = 4/9, ω1−4 =1/9, and ω5−8 =1/36 in the D2Q9 model.

The source term Si can be expressed as follows [44]:

Si = ω̄iC0 + ωi
ci · B

c2
s

, (12)

where C0 and B are undetermined parameters to recover the
CHE with high-order accuracy, ω̄i are weight coefficients, and
there are some constraints on ω̄i,∑

ω̄i = 0,
∑

ω̄ici = 0,
∑

ω̄icici = c2
s I. (13)

Then, the zeroth through second moments of Si are

∑
i

Si = 0,
∑

i

ciSi = B,
∑

i

ciciSi = c2
sC0I. (14)

Finally, the order parameter is computed from the distribu-
tion function as follows (see Appendix A):

φ =
∑

gi. (15)

C. High-order analysis with the Chapman-Enskog expansion

In the framework of Chapman-Enskog analysis, the distri-
bution function is expanded in a power series of a small pa-
rameter ε, which is of order of the Knudsen number (the ratio
between the mean free path and a characteristic macroscopic
length). It is noted that the value of the Knudsen number is
small in the bulk phase while it may not be small near the
interface. Thus, some high-order terms may not be completely
neglected. The series expansion is expressed as

gi = g(0)
i + εg(1)

i + ε2g(2)
i + ε3g(3)

i + ε4g(4)
i + · · · , (16)

where g(1)
i , g(2)

i , g(3)
i , and g(4)

i represent the first through
fourth approximation to the distribution function, respectively,
and so on. Since the balance equation links space and time
derivatives, these derivatives are also expressed in terms of
multiple-scale variables ε [28,45]. Retaining the terms up to
O(ε4), we have

∇ = ε∇1, ∂t = ε∂t1 + ε2∂t2 + ε3∂t3 + ε4∂t4 ,

Si = εS(1)
i + ε2S(2)

i + ε3S(3)
i + ε4S(4)

i ,

C0 = εC(1)
0 + ε2C(2)

0 + ε3C(3)
0 + ε4C(4)

0 ,

B = εB(1) + ε2B(2) + ε3B(3) + ε4B(4). (17)

The meaning of the symbols ∂t1 , ∂t2 , ∂t3 , and ∂t4 is that the recovered equations define ∂t· in terms of the spatial gradients of the
moments and the definition of the distribution [46]. Generally speaking, ∂t1 is considered as the convective timescale and ∂t2 is
the diffusion timescale. However, for the higher-order timescale, there is no well-defined physical name yet. Based on Eqs. (10),
(15), (16), and (20), we can obtain ∑

i

g(n)
i = 0, n > 0. (18)

Applying the Taylor expansion to Eq. (9) leads to

δtDigi + δt2

2
D2

i gi + δt3

6
D3

i gi + δt4

24
D4

i gi + · · · = −gi − geq
i

τg
+ δtSi, (19)

where Di = ∂t + ci · ∇. Substituting Eqs. (16) and (17) into Eq. (19) and dividing through by δt , the following equations at
different orders of ε can be obtained:

ε0: g(0)
i = geq

i , (20)

ε1: D1ig
(0)
i = − 1

τ1
g(1)

i + S(1)
i , (21)

ε2: ∂t2 g(0)
i + D1ig

(1)
i + δt

2
D2

1ig
(0) = − 1

τ1
g(2)

i + S(2)
i , (22)

ε3: ∂t3 g(0)
i + ∂t2 g(1)

i + D1ig
(2)
i + δt

2
∂t2 D1ig

(0)
i + δt

2
D1i∂t2 g(0) + δt

2
D2

1ig
(1)
i + δt2

6
D3

1ig
(0)
i = − 1

τ1
g(3)

i + S(3)
i , (23)

ε4: ∂t4 g(0)
i + ∂t3 g(1)

i + ∂t2 g(2)
i + D1ig

(3)
i + δt

2
D2

1ig
(2)
i + δt

2
∂t2 D1ig

(1)
i + δt

2
D1i∂t2 g(1)

i + δt

2
∂2

t2 g(0)
i

+δt

2
∂t3 D1ig

(0)
i + δt

2
D1i∂t3 g(0)

i + δt2

6
D3

1ig
(1)
i + δt2

6
D2

1i∂t2 g(0)
i + δt2

6
∂t2 D2

1ig
(0)
i

+δt2

6
D1i∂t2 D1ig

(0)
i + δt3

24
D4

1ig
(0)
i = − 1

τ1
g(4)

i + S(4)
i , (24)

where D1i = ∂t1 + ci · ∇1 and τ1 = τgδt .
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For the sake of simplicity, we briefly denote the moments of the equilibrium distribution function geq as

π (1)
m =

∑
i

geq
i cmi, π (2)

mn =
∑

i

geq
i cmicni,

π
(3)
mnl =

∑
i

geq
i cmicnicli, π

(4)
mnlθ =

∑
i

geq
i cmicniclicθ i, (25)

where the subscripts m, n, l, θ denote Cartesian coordinates, and a summation over these repeated subscripted indices is assumed.
With Eqs. (14), (18), and (25), taking the zeroth-order moment of Eqs. (21), (22), and (23) gives

∂t1φ = −∇1 · (φu) + TE1, (26a)

∂t2φ = M∇2
1μ + TE2, (26b)

∂t3φ = TE3, (26c)

∂t4φ = TE4, (26d)

with the truncation errors (TEs) being

TE1 = ∂m
(
φum − π (1)

m

)
, (27)

TE2 = ∂mn
(
τ2π

(2)
mn − Mμδmn

) + τ2∂t1∂mπ (1)
m − τ1∂mB(1)

m , (28)

TE3 = τ2
(
∂t2t1φ + ∂t2∂mπ (1)

m + ∂t1t2φ + ∂t2∂mπ (1)
m

) + τ3
(
2∂2

t1∂mπ (1)
m + 3∂t1∂mnπ

(2)
mn + ∂mnlπ

(3)
mnl

)
+τ1τ2

(
c2

s ∂mnC
(1)
0 δmn + 2∂t1∂mB(1)

m

) − τ1∂mB(2)
m , (29)

TE4 = τ4
(
∂4

t1φ + 4∂3
t1∂mπ (1)

m + 6∂2
t1∂mnπ

(2)
mn + 4∂t1∂mnlπ

(3)
mnl + ∂mnlθπ

(4)
mnlθ

) + τ2∂
2
t2φ

+τ3
(
∂t2∂t1∂mπ (1)

m + ∂t2∂mnπ
(2)
mn

) + τ3
(
∂2

t1∂t2φ + 2∂t1t2∂mπ (1)
m + ∂t2∂mnπ

(2)
mn

)
+τ3

(
∂t1t2t1φ + ∂t1t2∂mπ (1)

m + ∂t2t1∂mπ (1)
m + ∂mn∂t2π

(2)
mn

) + τ2
(
∂t1t3φ + ∂m∂t3π

(1)
m

)
+τ1τ2

(
2∂t1∂mB(2)

m + c2
s ∂mnC

(2)
0 δmn + ∂t2∂mB(1)

m + ∂m∂t2 B(1)
m

) − τ1∂mB(3)
m

+τ1τ3
(
3∂m∂2

t1 B(1)
m + 3c2

s ∂t1∂mnC
(1)
0 δmn + 3c2

s ∂
2
m∂nB(1)

n

)
, (30)

and the abbreviated coefficient being

τ2 = (
τg − 1

2

)
δt,

τ3 = (−τ 2
g + τg − 1

6

)
δt2,

τ4 = (
τ 3

g − 3
2τ 2

g − 7
12τg + 1

24

)
δt3. (31)

Note that the t2 derivative of Eq. (26a) reads ∂t2∂t1φ = −∂t2∂m(φum) while the t1 derivative of Eq. (26b) reads ∂t1∂t2φ = M∂t1∂
2
mμ,

which means that the cross time derivatives are not commutative [45].
For the traditional LBE models for the CHE with second order in ε, TE1 and TE2 must be removed, which gives

π (1)
m = φum, B(1)

m = τ2

τ1

[
∂n

(
c2

2η − M

τ2

)
μδmn + ∂t1π

(1)
m

]
. (32)

The mobility is commonly defined as M = c2
s ητ, then we get

B(1)
m = τ2

τ1
∂t1 (φum). (33)

Note that if C̄ = φuu is retained in Eq. (10), from Eq. (28) we have B(1)
m = τ2/τ1φ[∂t1 (um) + un∂num], which is consistent with

the source term in Ref. [19]. In the calculation, the t1 derivative can be approximated by the time derivative, and the source term
is defined as

Si = ω̄iC0 + τ2

τ1

ωici · ∂t (φu)

c2
s

, (34)

where the additional introduced multiple-scale time derivative terms, such as ∂t2 (φu), ∂t3 (φu), and ∂t4 (φu), have no influence on
the second-order accuracy of the recovered equation. Note that the second moment of the source term is not required to recover
the above second-order CHE. In this work, our aim is to eliminate the main truncation error in TE3 + TE4 via carefully designing
the correction term to obtain a LBE model for the CHE with improved accuracy.

Inserting Eq. (10) into Eq. (29) and using Eq. (34), TE3 can be rewritten as

TE3 = c2
s η

(
τ 2

2 + 3τ3
)
∂t1∂

2
mμ + 3c2

s τ3∂
2
m∂n(φun) + c2

s τ1τ2∂
2
mC(1)

0 + (
2τ 2

2 + 2τ3
)
∂2

t1∂m(φum). (35)
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Similarly, TE4 can be rewritten as

TE4 = (
3τ4 + 5τ2τ3 + 2τ 3

2

)
∂3

t1∂m(φum) + c2
s (12τ4 + 6τ2τ3)∂t1∂

2
m∂n(φun) + 3c4

s τ4η∂2
m∂2

n μ

+ (
2τ 2

2 + 2τ3
)(

∂t1t2 + ∂t2t1

)
∂m(φum) + c2

s η
(
6τ4 + 4τ3τ2 + τ 3

2

)
∂2

t1∂
2
mμ + c2

s η
(
τ 2

2 + 3τ3
)
∂t2∂

2
mμ

+ c2
s

(
3τ1τ3 + τ1τ

2
2

)
∂t1∂

2
mC(1)

0 + c2
s τ1τ2∂

2
mC(2)

0 . (36)

Combining the balance equations at different orders of ε, Eq. (26) together with Eqs. (34), (35), (36), and (17), we can obtain
the fourth-order macroscopic equation from the LBE model,

∂tφ + ∇ · (φu) = M∇2μ + TE, (37)

with

TE = TE1 + TE2 + TE3 + TE4

= c2
s η

(
3τ3 + τ 2

2

)
∂t∇2μ + c2

s η
(
6τ4 + 4τ3τ2 + τ 3

2

)
∂2

t ∇2μ + 3c2
s ητ4�

2μ + 3c2
s τ3�∇ · (φu)

+ (
2τ3 + 2τ 2

2

)
∂2

t ∇ · (φu) + (
3τ4 + 5τ2τ3 + 2τ 3

2

)
∂3

t ∇ · (φu) + c2
s (12τ4 + 6τ2τ3)∂t�∇ · (φu)

+ c2
s

(
3τ1τ3 + τ1τ

2
2

)
∂t∇2C0 + c2

s τ1τ2∇2C0 + O(ε5). (38)

To identify the leading error terms, it is useful to nondimensionalize the above equation with [47]

L̄ = x
L∗

, Ū = u

U∗
, t̄ = t

L∗
U∗

, μ̄ = μ

|φA − φB|2β , (39)

where U∗ and L∗ are the characteristic velocity and length, respectively. Dropping the overbar for the sake of simplicity, the
resulting equation can now be rewritten as

∂tφ + ∇ · (φu) = 1

Pe
[∇2μ + TE], (40)

with

TE = τ 2
2 + 3τ3

τ 2
2

Kn Ma∂t∇2μ + 6τ4 + 4τ2τ3 + τ 3
2

τ 3
2

(KnMa)2∂2
t ∇2μ + 3τ4

τ 3
2

Kn2�∇2μ

+ 3τ3

τ 2
2

Pe Kn2∇2∇ · (φu) + 2τ 2
2 + 2τ3

τ 2
2

Pe(KnMa)2∂2
t ∇ · (φu)

+ 3τ4 + 5τ2τ3 + 2τ 3
2

τ 3
2

Pe(KnMa)3∂3
t ∇ · (φu) + 12τ4 + 6τ2τ3

τ 3
2

Pe(Kn3Ma)∂t∇2∇ · (φu)

+ 3τ1τ3 + τ1τ
2
2

τ 3
2

PeKn3Ma∂t∇2C0 + τ1

τ2
PeKn2∇2C0, (41)

where Pe = U∗L∗/(|φA − φB|2βM ) is the numerical Peclet
number, Kn = csτ2/L∗ is the Knudsen number, Ma = U/cs

is the Mach number, and Cn = W/L∗ is the Cahn number.
As Pe � 1, Ma � 1, and Kn < 1 [48], the term PeKn2∇2∇ ·
(φu) is the main error affecting the numerical results. To
eliminate this term, we can define the C0 from Eq. (41) as

C0 = − 3τ3

τ1τ2
∇ · (φu). (42)

As a result, the final source term is given by

Si = −ω̄
3τ3

τ1τ2
u · ∇φ + τ2

τ1
ωi

ci · ∂t (φu)

c2
s

. (43)

To verify the above results derived from the CE analysis
with multiple-scales expansion, we have also applied the
Maxwell iteration to Eq. (9) to analyze the high-order error
terms (see Appendix B for details). As the Maxwell iteration
needs not explicitly introduce multiple-timescale parameters,
the procedure of the derivation is much more straightforward

and logically clearer [34,35]. The same leading error term
can be obtained, although the coefficients of some high-order
terms are different for both approaches. In addition, a higher
order LBE method for the CHE may also be obtained through
performing the higher-order Chapman-Enskog expansion or
the Maxwell iteration. However, from the dimensionless anal-
ysis above, it is found that the higher-order terms will be
of the order O(KnMa, Kn2), which have little effect on the
numerical results.

Remark I. The modified terms can be removed by setting
τ3 = 0, leading to a special relaxation time τg = 1/2 + √

3/6.
Then, the present model reduces to the model of Liang et al.
[18]. For other relaxation times, the correction term plays an
important influence on the interface.

Remark II. As all of the error terms are proportional to Kn,
the value of the Knudsen number should be very small via
adjusting the relaxation time to improve the accuracy of the
numerical results. However, the coefficients of all the error
terms are also controlled by (τg − 1/2), which gives rise to
viscosity-type-dependent truncation errors. Hence, the value
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of the relaxation time should be within a reasonable range to
maintain the accuracy and stability of the LBE model.

Remark III. The form of the correction term is not unique.
Without C0, the leading error term can also be eliminated
by defining the B(2). From Eq. (29), the source term can be
defined by

Si = ωici

c2
s

·
[
τ2

τ1
∂t (φu) + 3c2

s τ3

τ1
∇∇ · (φu)

]
. (44)

Clearly, this formula will consume more computational re-
sources due to computing the second derivative. For simplic-
ity, we take Eq. (43) as a demonstration.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, several tests will be performed to validate
the accuracy and stability of the proposed LBE model with
the source term defined by Eq. (43) and the equilibrium
distribution defined by Eq. (11). In Eq. (43), ω̄i = ωi for i > 0
and ω̄0 = ω0 − 1. A comparison between the present method
and the previous second-order ones for CHE proposed by
Liang et al. [18] (labeled as LSG-LBE) and Zu and He [22]
(labeled as ZH-LBE) is made. Although the LBE model for
the CHE proposed by Liang et al. is a multiple-relaxation-
time version, we only use the single-relaxation-time version
of their model for a fair comparison. In addition, we take
φA = −φB = 1 unless otherwise stated. The spatial gradients
and Laplace operators are discretized with the isotropy central
schemes [15,49]. In what follows, the dimensionless number
Pe = U0W /(|φA − φB|2Mβ ) is used.

TABLE I. Relative errors of the interface with different relax-
ation times for the diagonal translation of a circular interface at
Pe = 2000.

‖E (φ)‖max ‖E (φ)‖2

τg ZH-LBE LSG-LBE Present ZH-LBE LSG-LBE Present

0.6 2.1526 2.1403 2.0134 2.2062 2.2068 2.0453
0.7 1.2058 1.2222 0.2301 0.4044 0.4051 0.0411
0.8 0.3285 0.3248 0.1767 0.0804 0.0797 0.0357
0.9 0.5688 0.5678 0.2098 0.1965 0.1961 0.0494
1.0 0.6269 0.2278 0.2475 0.0591
1.2 0.7283 0.8598 0.2908 0.3282 0.5847 0.0693

A. Diagonal translation of a circular interface

We consider a circular droplet motion under a constant
velocity u = (U0,U0). Initially, a circular droplet with radius
R = L0/5 is placed at the center of a periodic domain of size
L0 × L0. After one period T = L0/U0, the final shape should
coincide with the initial shape. In simulations, the parameters
are set as Pe = 2000, W = 0.02L0, L0 = 200, U0 = 0.02,
σ = 0.01. To quantitatively measure the accuracy among dif-
ferent methods, the L2 -norm relative error is calculated by

‖E (φ)‖2 =
√∑

x |φ(x, nT ) − φ(x, 0)|2∑
x |φ(x, 0)|2 , (45)

and the relative maximum error is calculated by

‖E (φ)‖max = max|φ(x, nT ) − φ(x, 0)|
|φA − φB| , (46)

)c()b()a(

)f()e()d(

FIG. 1. The order parameter contour (φ = 0) of a circular bubble under a diagonal flow at τg = 0.7 (upper row) and τg = 1.2 (lower row).
(a,d) ZH-LBE; (b,e) LSG-LBE; (c,f) the present method. Solid: t = 0; dashed: t = 10 T.
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TABLE II. Relative errors of the interface with different Pe for
the diagonal translation of a circular interface.

‖E (φ)‖max ‖E (φ)‖2

Pe ZH-LBE LSG-LBE Present ZH-LBE LSG-LBE Present

5 0.6456 0.1569 0.1200 0.0308
50 0.7008 0.6995 0.1313 0.1791 0.1785 0.0178
500 0.6156 0.6146 0.1954 0.1806 0.1801 0.0358
2000 0.5688 0.5678 0.2098 0.1965 0.1961 0.0494

where φ(x, 0) is the initial solution at position x, φ(x, nT ) is
the numerical result at period nT , and n is set to 10 in this
simulation.

First, we test the relative errors of all the aforementioned
methods with different relaxation times, and the results are
shown in Table I. It can be found that the relative errors of all
methods take the smallest values at τg = 0.8, which is very
close to the solution of τ3 = 0. However, for all values of
the relaxation time, the present method can give the smallest
error, which suggests the correction term can significantly
improve the numerical accuracy. When τg is close to 0.5,
numerical truncation errors have been severely amplified and
cause inaccurate numerical results, which is consistent with
the previous theoretical analysis. Then, the initial profile of
the interface and its final shape with τg = 0.7 and 1.2 are
shown in Fig. 1. It is clearly seen that the final positions and
shapes of the disk predicted by both the ZH-LBE method
and the LSG-LBE method deviate significantly from the exact
solution while those obtained by the present method agree
well with the exact solutions. Finally, we calculate the relative
errors of all methods with different Pe and fixed τg = 0.9,
as shown in Table II. It can be observed that the relative
errors calculated by the present model are minimal for each
Pe. In particular, numerical instability occurs for the ZH-LBE
method when Pe = 5 while the present method can still work
well, which demonstrates the improved stability of the present
method.

B. Zalesak’s disk rotation

The problem of Zalesak’s disk is also widely used to test
the capacity of numerical methods in tracking interface. As
shown in Fig. 2, a circular disk with a slot is placed at the
center of a periodic domain of size L0 × L0. The disk radius

TABLE III. Relative errors E (φ) of the interface after one period
for the problem of Zalesak’s disk rotation.

‖E (φ)‖max ‖E (φ)‖2

Pe ZH-LBE LSG-LBE Present ZH-LBE LSG-LBE Present

5 1.0121 1.0118 0.2734 0.1777
50 0.9247 0.9248 0.4837 0.2419 0.2420 0.0658
500 0.7878 0.7878 0.2018 0.1955 0.1955 0.0476
2000 0.7692 0.7692 0.2097 0.2037 0.2037 0.0496

and the slot width are set to be 0.4L0 and 0.08L0 in lattice
units, respectively. When the velocity u = (u, v) is imposed
on the computation domain (0 � x � L0, 0 � y � L0),

u = −U0π

(
y

L0
− 0.5

)
, v = U0π

(
x

L0
− 0.5

)
, (47)

the disk will begin to rotate and keep its shape in the whole
process. In the simulations, the parameters are set as L0 = 200,
W = 0.02L0, σ = 0.01, Pe = 500, U0 = 0.02, and τg = 0.95.
Figure 2 shows the initial shape of the disk together with
the shape at T = 10L0/U0. It is clear that both the ZH-
LBE method and the LSG-LBE method produce a distinct
deformation at the slot while the current method still captures
the interface of two phases accurately. To further give a
quantitative comparison among these methods, the relative
errors are calculated. It is noted that the edges of the slot of
the disk are a sharp interface during initialization, which will
lead to undifferentiated error values. To avoid this, the results
of the finite-difference method for the above case are taken as
the reference solutions, and the finite difference is introduced
in the next subsection. The relative error values are shown in
Table III. Again, numerical errors of the present method are
minimal among all methods for each Pe.

C. Vortex deformation

We further test the capacity of the present models to cap-
ture interfacial change using a time-reversal problem [50,51].
In this test, a circular interface with radius R = 0.15L0 is
placed at (0.5L0, 0.75L0) in a periodic L0 × L0 domain. A
time-dependent velocity field is given by the stream function
[51,52],

�(x, y, t ) = U0

π
sin2

(
πx

L0

)
sin2

(
πy

L0

)
cos

(
πt

T

)
, (48)

FIG. 2. Shapes of Zalesak’s disk at t = 0 (solid) and t = T (dashed). From left to right, the results are predicted by ZH-LBE, LSG-LBE,
and the present method, respectively.
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(a)

(b)

FIG. 3. The reconstructed interface φ = 0 at t = 0 (solid) and t = T (dashed line) for the single vortex field with (a) n = 2 and (b) n = 4.
From left to right, the results are obtained by the ZH-LBE method, the LSG-LBE method, and the present method, respectively.

where T = nL0/U0, with n being an integer. Advected by the
above velocity field, the initial circle is first stretched up to
t = T/2, when the deformation is at a maximum, and then the
velocity field will reverse, returning its initial configuration
at t = T . In simulations, the parameters are set as L0 = 200,
U0 = 0.02, σ = 0.001, W = 0.01L0, τg = 1.2, and Pe = 400.
Interface contours φ = 0 with n = 2 and 4 are shown in
Fig. 3. For n = 2, the interface configuration predicted by all
methods is similar to the initial shape. However, the locations
of the interfaces predicted by both the LSG-LBE method and
the ZH-LBE method deviate slightly from the initial positions.

For n = 4, the shape of the interface predicted by all the
methods is distorted. However, the present method can still
restore the initial circular shape with adequate accuracy.

We also compare the results of these methods at t = T/2,
shown in Fig. 4. Since the results of both the ZH-LBE
method and the LSG-LBE method are similar, only the results
obtained by the LSG-LBE method are plotted. It can be found
that the initial circle is stretched into a spiral shape with a
thin tail. The shapes and locations of the interface obtained
by all methods are similar for n = 2. However, for n = 4, the
head of the interface predicted by the present method is more

(a) (b)

FIG. 4. The reconstructed interface φ = 0 at maximum deformation at t = T/2 for the single vortex field with (a) n = 2 and (b) n = 4.
The solid line denotes the results of the ZH-LBE/LSG-LBE method and the dotted line denotes the results of the present method.
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TABLE IV. Relative errors and mass losses for the single vortex
test.

LSG-LBE Present

n ‖E (φ)‖2 E (φ)T/2
area E (φ)T

area ‖E (φ)‖2 E (φ)T/2
area E (φ)T

area

2 0.0915 0.0170 0.0050 0.0538 0.0018 0.0018
4 0.1553 0.0548 0.0071 0.0840 0.0025 0.0011

stretched. We computed the area conservation error defined as

E (φ)T
area =

∑
φ(x,T )>0 1 − ∑

φ(x,0)>0 1∑
φ(x,0)>0 1

. (49)

The results are presented in Table IV, which suggests that the
conservation property of the present method is better than that
of other methods.

D. Deformation of a circular interface

In this subsection, a more complicated problem in a defor-
mation velocity field is implemented. In this test, a circular
interface with radius R = L0/5 is placed in a periodic L0 × L0

domain, and a time-dependent velocity field u = (u, v) is
imposed [23],

u = −U0 sin

[
nπ

(
x

L0
+ 0.5

)]

× sin

[
nπ

(
y

L0
+ 0.5

)]
cos

πt

T
, (50a)

v = −U0 cos

[
nπ

(
x

L0
+ 0.5

)]

× cos

[
nπ

(
y

L0
+ 0.5

)]
cos

πt

T
, (50b)

where U0 is a constant, and n is the number of vortices and is
fixed at 4. T is the period and is set to be 5L0/4U0. The other

parameters are set as L0 = 500, σ = 0.01, U0 = 0.025, Pe =
800, W = 4, and τg = 1.2. The evolutions of the interface
(φ = 0) obtained by all three models at t = T/4, T/2, 3T/4,
and T are shown in Fig. 5. As can be seen in Fig. 5, the initial
circle undergoes a severe topological change. However, the
shapes of the interface are almost identical for all models.
Furthermore, to observe the thickness of the transition layer,
contour lines corresponding to φ = −0.95, 0, and 0.95 of
numerical results are shown in Fig. 6. It can be observed that
the thickness of the transition layer simulated by the present
model remains compact, and the symmetry of the solutions is
well-retained.

E. Binary droplet collision

In the above tests, the velocity fields are prespecified. Now
we test the model with a velocity field governed by the Navier-
Stokes equations. Specifically, two droplets with the same di-
ameter D are placed D/2 apart in another fluid in a rectangular
domain [0, 4d] × [0, 8d]. The two droplets move toward each
other with V/2 and −V/2, respectively, as sketched in Fig. 7.
The relevant dimensionless parameters for this problem are
the Weber number We = ρADV 2/σ , the Reynolds number
Re = DV/ν, and the impact parameter B = h/D. Periodic
boundary conditions are imposed on all boundaries. In the
simulations, the parameters are We = 60, Re = 200, B = 0.5,
Pe = 100, ρA = ρB = 1, d = D = 60, and V = 0.05. The
velocity is simulated by the hydrodynamic LBE model in
Ref. [18] in which the interfacial force is obtained from the
phase-field equation solved by the aforementioned models.
For comparison, we also solve the phase-field equation with
a high-order finite-difference scheme, and the solutions are
used as the reference data. Specifically, an upwind weighted
essentially nonoscillatory (WENO) scheme [53] is employed
to discretize the convection term, a third-order total variation
diminishing Runge-Kutta scheme [54] is used for the tempo-
ral discretization, and the second-order difference scheme is
applied to discretize diffusion terms. For more details, please
see Refs. [54,55].

Figure 8 shows the results obtained by LSG-LBE, the
present model, and the finite-difference method at τg = 0.7
and 1. In the case of τg = 0.7, the interface shapes obtained
by all models agree well. This is because the Knudsen number
proportional to the relaxation time is small and the truncation
term has little effect on numerical results. In the case of

(a) (b) (c) (d)

FIG. 5. The order-parameter contour (φ = 0) for the deformation field problem at (a) T/4, (b) T/2, (c) 3T/4, and (d) T . Dotted: ZH-LBE;
dashed: LSG-LBE; solid: the present model.
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(a)

(b)

(c)

FIG. 6. The order-parameter contours (φ = −0.95, 0, 0.95) predicted by (a) ZH-LBE, (b) LSG-LBE, and (c) the present model at
t = T/4, T/2, 3T/4, T . The final interfaces at T against the exact solution (red thick line).

τg = 1, differences appear in both shapes and locations of
the droplets predicted by all three methods as time goes on.
However, the droplet shapes predicted by the present model

FIG. 7. Schematic of the collision of two equal-sized drops.

are much closer to the reference ones, which suggests that
the correction term can improve the numerical accuracy of
tracking the interface by eliminating the leading error term.

F. Droplet falling under gravity

Finally, we consider two falling droplets under gravity.
In simulations, a smaller drop with radius R1 is positioned
at (0.5L0, 3L0 − 2R1) and a larger bubble with radius R2

is placed at (0.5L0, 3L0 − 2R1 − 3R2). The computational
domain is set to L0 × 3L0. Periodic boundary condition is
applied to the vertical boundaries, and no-slip boundary con-
dition is imposed on the top and bottom boundaries. The den-
sities are ρA = 2.5 and ρB = 1. The Eötvös number defined as
Eo = g(ρ1 − ρ2)4R2

2/σ is set to 17. The other parameters are
defined as L0 = 160, R1 = 10, R2 = 32, σ = 0.02, W =3,

v = 0.025, τg = 0.7. Figure 9(a) shows the evolution of the
falling drops due to gravity at Pe = 10. There are almost no
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(a)

(b)

FIG. 8. Snapshots for droplet shape for (a) τg = 0.7 and (b) τg = 1.0. The times from the left pattern to the right are t/103 = 1.2, 3, 6, 9.
Solid: the finite-difference method; dashed: LSG-LBE; dotted: the present method.

differences between the results of the LSG-LBE method and
the present method for the large body. However, the position
of the interface of the small drop simulated by the LSG-LBE
method is lower than that predicted by the present method.
This difference may be partly caused by the bulk Knudsen
number of the small droplet due to the radius of the small
droplet being the characteristic length. To illustrate this, we
simulated the same case but with R2 = 20, which suggests
that a smaller bulk Knudsen number can be achieved, and the
differences of the position and shape of the droplet should
disappear. The results are shown in Fig. 9(b). As expected,
there is little difference between the results of both methods
for this case.

In addition, we repeated the above simulation with a large
Pe. The results are shown in Fig. 10. The positions and
the shapes of both the small droplet and the large droplet
predicted by the LSG-LBE method deviate from those of
the present method, which demonstrates that the correction
term plays an important role in such a situation. We also
found that a higher-density ratio, i.e., ρA/ρB = 4, can be
achieved for the present model while numerical instability
occurs for both the ZH-LBE model and the LSG-LBE one,
which implies that the present model is able to improve the
numerical stability.

IV. CONCLUSIONS

In this paper, we developed a LBE model for the Cahn-
Hilliard equation. Based on the truncation error analysis of the
recovered macroscopic equation, we found that the leading
error term is largely determined by the Peclet number and

the Knudsen number. The result is further confirmed by
the Maxwell iteration. To remove the leading error term, a
correction term is added in the source term. In addition, the
relaxation time as a adjustable variable in the LBE model
must be carefully adjusted to improve the accuracy and stabil-
ity of the model. In particular, when the relaxation time τg is
set to be a special value, i.e., τg = 1/2 + √

3/6, the correction
term can be eliminated and the present model reduces to that
of Liang [18]. For other relaxation time, the correction term
can play an important role in capturing the interface accu-
rately, especially for a large Peclet number. Several numerical
tests are carried out to validate the accuracy and stability of
the present model. The results show that the proposed model
is capable of capturing the interface with improved accuracy
and stability compared with the previous LBE models.
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APPENDIX A: DISCRETIZATION OF THE DISCRETE
VELOCITY BOLTZMANN EQUATION

In this Appendix, we shall present the discretization of
the lattice Boltzmann equation with the single-relaxation-time
collision operator, which can be expressed as

∂hi

∂t
+ ci · ∇hi = �i + Si, (A1)

where hi is a scalar function of the particle distribution at
position x and time t , satisfying

∑
i hi = φ and �i = (heq

i −
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(a)

(b)

FIG. 9. Evolution of falling droplets under gravity at Pe = 10 with (a) R2 = 10 and (b) R2 = 20. The solid and dashed lines are the results
obtained by the LSG-LBE method and the present method, respectively. From left to right, the computational times are t/104 = 0.5, 1, 2, 3, 4.

hi )/τh, with τh being the relaxation time. Integrating Eq. (A1)
over a time interval [t, t + δt] along the characteristic line ci

and applying the trapezoidal integral formula to the integral
terms on the right-hand side of Eq. (A1) gives

hi(x + δx, t + δt ) − hi(x, t ) = �t+δt
i + �t

i

2
δt + St+δt

i + St
i

2
δt .

(A2)

To remove the implicity, the following variable is introduced:

gi = hi − �i

2
δt − Si

2
δt . (A3)

Inserting Eq. (A3) into Eq. (A2) gives

g(x + δx, t + δt ) = g(x, t ) + geq
i − g

τg
+

(
1 − 1

2τg

)
Siδt,

(A4)

where τgδt = τh + 0.5δt and geq
i = heq

i . From Eq. (A3), the
order parameter can be calculated by

φ =
∑

i

gi + δt

2

∑
i

Si. (A5)

Note that, for the sake of derivative convenience, the coeffi-
cient 1 − 1/(2τg) is absorbed into the source term Si in Eq. (9).
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FIG. 10. Evolution of falling droplets under gravity at PE = 400. The solid and dashed lines are the results obtained by the LSG-LBE
method and the present method, respectively. From left to right, the computational times are t/104 = 0.5, 1, 2, 3, 4.

In addition, the Taylor expansion of the source term
Si(x, t + δt ) with respect to time t leads to

Si(x, t + δt ) = Si(x, t ) + δt∂t Si(x, t ) + δt2

2
∂2

t Si(x, t )

+ δt3

6
∂3

t Si(x, t ) + · · · . (A6)

With this approximation, Eq. (A2) becomes

hi(x + δx, t + δt ) − δt

2
�t+δt

i

= hi(x, t ) − δt

2
�t

i + �t
iδt + S̃iδt, (A7)

where S̃i = Si(x, t ) + 1/2
∑

n�1
δt n

n! ∂n
t Si(x, t ). To remove the

implicity, an alternative variable is

gi = hi − δt

2
�i. (A8)

Inserting Eq. (A8) into Eq. (A7) leads to

g(x + δx, t + δt ) = g(x, t ) + geq
i − g

τg
+ S̃iδt . (A9)

Then, the order parameter can also be calculated by

φ =
∑

i

gi. (A10)

APPENDIX B: HIGH-ORDER ANALYSIS
WITH THE MAXWELL ITERATION METHOD

In the Maxwell iteration, the time step δt is chosen as a
small parameter. We still express the moments of the force

term and the equilibrium function as Eqs. (14) and (10). Like
the previous analysis, we first derive the moments of the force
term required to match the CHE with second-order accuracy.
By retaining terms to O(δt2) and applying the Taylor expan-
sion to the left-hand side of Eq. (9), we have

−g − geq

τ1
+ Si = Dig

eq − τ2D2
i geq + τ1DiSi + O(δt2). (B1)

Summing Eq. (B1) over i and using Eqs. (10) and (14) lead to

∂tφ + ∇ · (φu) = M∇2μ + τ2∂t∂m(φum) − τ1∂mBm︸ ︷︷ ︸
TE2

, (B2)

where M = c2
s ητ2. To recover the CHE up to second-order

accuracy, the moments of the source term must take

Bm = τ2

τ1
∂t (φum). (B3)

As seen, this is consistent with the results of the CE analysis.
To analyze the truncation error of the recovered CHE, we

further apply the Maxwell iteration to Eq. (9) and retain the
terms to O(δt4),

D f eq
i = τ4D4 f eq

i + τ3D3 f eq
i + τ2D2 f eq

i + τ1τ3D3Si

+ τ1τ2D2Si − τ1DSi + O(δt4). (B4)

With the aid of Eqs. (11) and (B3), the recovered macroscopic
equation can be written as

∂tφ + ∇ · (φu) = M∇2μ + TE, (B5)

with the truncation error (TE)

TE = (3τ4 + 3τ2τ3)∂3
t ∇ · (φu) + 3c2

s M
τ4

τ2
∇4μ + c2

s (12τ4 + 3τ2τ3)∂t�∇ · (φu) + M

(
6τ4

τ2
+ τ3

)
∂2

t ∇2μ

+ 2
(
τ 2

2 + τ3
)
∂2

t ∇ · (φu) + M

(
3τ3

τ2
+ τ2

)
∂t∇2μ + 3c2

s τ3�∇ · (φu) + c2
s τ1τ2∇2C0 + 3c2

s τ1τ3∂t∇2C0 + O(δt4). (B6)
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Using Eq. (39), the dimensionless equation reads

∂tφ + ∇ · (φu) = 1

Pe

(∇2μ + TE
)
, (B7)

μ = (φ − φA)(φ − φB)

(
φ − φA + φB

2

)
− Cn2|φA − φB|2

32
∇2φ, (B8)

TE = 3τ3 + τ 2
2

τ 2
2

KnMa∂t∇2μ + 3τ4

τ 3
2

Kn2∇2∇2μ + 6τ4 + τ2τ3

τ 3
2

(KnMa)2∂2
t ∇2μ

+ 3τ4 + 3τ3τ2

τ 2
2

Pe(KnMa)3∂3
t ∇ · (φu) + 12τ4 + 3τ2τ3

τ 3
2

PeKn3Ma∂t�∇ · (φu)

+ 2τ 2
2 + 2τ3

τ 2
2

Pe(KnMa)2∂2
t ∇ · (φu) + 3τ3

τ 2
2

PeKn2�∇ · (φu) + τ1

τ2
PeKn2∇2C0 + 3τ1τ3

τ 3
2

PeKn3Ma∂t∇2C0. (B9)

As both the Knudsen number and the Mach number are small parameters and the Peclet number may take a very large value, the
above equation can be simplified by neglecting all terms of order O(Kn2),

∂tφ + ∇ · (φu) = 1

Pe

[
∇2μ + PeKn2 3τ3

τ 2
2

�∇ · (φu) + τ1

τ2
PeKn2∇2C0 + O(Kn2, MaKn)

]
. (B10)

As seen, the second term on the right-hand side of the above equation is the leading error term which is consistent with the
result of the Chapman-Enskog expansion.

[1] C. W. Hirt and B. D. Nichols, J. Comput. Phys. 39, 201 (1981).
[2] M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell,

and M. L. Welcome, J. Comput. Phys. 148, 81 (1999).
[3] D. M. Anderson, G. B. McFadden, and A. A. Wheeler,

Annu. Rev. Fluid Mech. 30, 139 (1998).
[4] D. Jacqmin, J. Comput. Phys. 155, 96 (1999).
[5] V. Badalassi, H. Ceniceros, and S. Banerjee, J. Comput. Phys.

190, 371 (2003).
[6] H. Ding, P. D. Spelt, and C. Shu, J. Comput. Phys. 226, 2078

(2007).
[7] H. W. Zheng, C. Shu, and Y. T. Chew, Phys. Rev. E 72, 056705

(2005).
[8] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).
[9] M. E. Gurtin, Physica D 92, 178 (1996).

[10] S. M. Allen and J. W. Cahn, Acta Metall. 27, 1085 (1979).
[11] J. Shen and X. Yang, Discrete Contin. Dyn. Syst 28, 1669

(2010).
[12] P.-H. Chiu and Y.-T. Lin, J. Comput. Phys. 230, 185 (2011).
[13] J. Shen, X. Yang, and Q. Wang, Commun. Comput. Phys. 13,

1045 (2013).
[14] T. Inamuro, T. Ogata, S. Tajima, and N. Konishi, J. Comput.

Phys. 198, 628 (2004).
[15] T. Lee and C.-L. Lin, J. Comput. Phys. 206, 16 (2005).
[16] T. Lee and L. Liu, J. Comput. Phys. 229, 8045 (2010).
[17] H. Zheng and C. Shu, J. Comput. Phys. 218, 353 (2006).
[18] H. Liang, B. C. Shi, Z. L. Guo, and Z. H. Chai, Phys. Rev. E 89,

053320 (2014).
[19] K. Yang and Z. Guo, Phys. Rev. E 93, 043303 (2016).
[20] J. Y. Shao, C. Shu, H. B. Huang, and Y. T. Chew, Phys. Rev. E

89, 033309 (2014).
[21] X. He, S. Chen, and R. Zhang, J. Comput. Phys. 152, 642

(1999).
[22] Y. Q. Zu and S. He, Phys. Rev. E 87, 043301 (2013).
[23] M. Geier, A. Fakhari, and T. Lee, Phys. Rev. E 91, 063309

(2015).

[24] F. Ren, B. Song, M. C. Sukop, and H. Hu, Phys. Rev. E 94,
023311 (2016).

[25] A. Fakhari and M. H. Rahimian, Phys. Rev. E 81, 036707
(2010).

[26] H. L. Wang, Z. H. Chai, B. C. Shi, and H. Liang, Phys. Rev. E
94, 033304 (2016).

[27] Y.-H. Qian and S.-Y. Chen, Phys. Rev. E 61, 2712 (2000).
[28] B. Servan-Camas and F. T.-C. Tsai, Adv. Water Res. 31, 1113

(2008).
[29] D. J. Holdych, D. R. Noble, J. G. Georgiadis, and R. O. Buckius,

J. Comput. Phys. 193, 595 (2004).
[30] G. Yan and J. Zhang, Math. Comput. Simul. 79, 1554 (2009).
[31] Y. Dong, J. Zhang, and G. Yan, Appl. Math. Modell. 34, 481

(2010).
[32] R. Huang and H. Wu, J. Comput. Phys. 327, 121 (2016).
[33] Q. Zhai, L. Zheng, and S. Zheng, Phys. Rev. E 95, 023313

(2017).
[34] W.-A. Yong, W. Zhao, L.-S. Luo et al., Phys. Rev. E 93, 033310

(2016).
[35] W. Zhao and W.-A. Yong, Phys. Rev. E 95, 033311 (2017).
[36] D. Jacqmin, J. Fluid Mech. 402, 57 (2000).
[37] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 31, 688 (1959).
[38] Q. Li, K. H. Luo, Y. J. Gao, and Y. L. He, Phys. Rev. E 85,

026704 (2012).
[39] Z. Guo, P. Lin, and J. S. Lowengrub, J. Comput. Phys. 276, 486

(2014).
[40] L. Zheng, S. Zheng, and Q. Zhai, Phys. Rev. E 91, 013309

(2015).
[41] J. Huang, C. Shu, and Y. Chew, Int. J. Numer. Methods Fluids

60, 203 (2009).
[42] S. H. Kim and H. Pitsch, J. Comput. Phys. 303, 19 (2015).
[43] R. Van der Sman and S. Van der Graaf, Comput. Phys.

Commun. 178, 492 (2008).
[44] Z. Guo, C. Zheng, and B. Shi, Phys. Rev. E 65, 046308

(2002).

043310-14

https://doi.org/10.1016/0021-9991(81)90145-5
https://doi.org/10.1016/0021-9991(81)90145-5
https://doi.org/10.1016/0021-9991(81)90145-5
https://doi.org/10.1016/0021-9991(81)90145-5
https://doi.org/10.1006/jcph.1998.6106
https://doi.org/10.1006/jcph.1998.6106
https://doi.org/10.1006/jcph.1998.6106
https://doi.org/10.1006/jcph.1998.6106
https://doi.org/10.1146/annurev.fluid.30.1.139
https://doi.org/10.1146/annurev.fluid.30.1.139
https://doi.org/10.1146/annurev.fluid.30.1.139
https://doi.org/10.1146/annurev.fluid.30.1.139
https://doi.org/10.1006/jcph.1999.6332
https://doi.org/10.1006/jcph.1999.6332
https://doi.org/10.1006/jcph.1999.6332
https://doi.org/10.1006/jcph.1999.6332
https://doi.org/10.1016/S0021-9991(03)00280-8
https://doi.org/10.1016/S0021-9991(03)00280-8
https://doi.org/10.1016/S0021-9991(03)00280-8
https://doi.org/10.1016/S0021-9991(03)00280-8
https://doi.org/10.1016/j.jcp.2007.06.028
https://doi.org/10.1016/j.jcp.2007.06.028
https://doi.org/10.1016/j.jcp.2007.06.028
https://doi.org/10.1016/j.jcp.2007.06.028
https://doi.org/10.1103/PhysRevE.72.056705
https://doi.org/10.1103/PhysRevE.72.056705
https://doi.org/10.1103/PhysRevE.72.056705
https://doi.org/10.1103/PhysRevE.72.056705
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1016/0167-2789(95)00173-5
https://doi.org/10.1016/0167-2789(95)00173-5
https://doi.org/10.1016/0167-2789(95)00173-5
https://doi.org/10.1016/0167-2789(95)00173-5
https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.1016/0001-6160(79)90196-2
https://doi.org/10.3934/dcds.2010.28.1669
https://doi.org/10.3934/dcds.2010.28.1669
https://doi.org/10.3934/dcds.2010.28.1669
https://doi.org/10.3934/dcds.2010.28.1669
https://doi.org/10.1016/j.jcp.2010.09.021
https://doi.org/10.1016/j.jcp.2010.09.021
https://doi.org/10.1016/j.jcp.2010.09.021
https://doi.org/10.1016/j.jcp.2010.09.021
https://doi.org/10.4208/cicp.300711.160212a
https://doi.org/10.4208/cicp.300711.160212a
https://doi.org/10.4208/cicp.300711.160212a
https://doi.org/10.4208/cicp.300711.160212a
https://doi.org/10.1016/j.jcp.2004.01.019
https://doi.org/10.1016/j.jcp.2004.01.019
https://doi.org/10.1016/j.jcp.2004.01.019
https://doi.org/10.1016/j.jcp.2004.01.019
https://doi.org/10.1016/j.jcp.2004.12.001
https://doi.org/10.1016/j.jcp.2004.12.001
https://doi.org/10.1016/j.jcp.2004.12.001
https://doi.org/10.1016/j.jcp.2004.12.001
https://doi.org/10.1016/j.jcp.2010.07.007
https://doi.org/10.1016/j.jcp.2010.07.007
https://doi.org/10.1016/j.jcp.2010.07.007
https://doi.org/10.1016/j.jcp.2010.07.007
https://doi.org/10.1016/j.jcp.2006.02.015
https://doi.org/10.1016/j.jcp.2006.02.015
https://doi.org/10.1016/j.jcp.2006.02.015
https://doi.org/10.1016/j.jcp.2006.02.015
https://doi.org/10.1103/PhysRevE.89.053320
https://doi.org/10.1103/PhysRevE.89.053320
https://doi.org/10.1103/PhysRevE.89.053320
https://doi.org/10.1103/PhysRevE.89.053320
https://doi.org/10.1103/PhysRevE.93.043303
https://doi.org/10.1103/PhysRevE.93.043303
https://doi.org/10.1103/PhysRevE.93.043303
https://doi.org/10.1103/PhysRevE.93.043303
https://doi.org/10.1103/PhysRevE.89.033309
https://doi.org/10.1103/PhysRevE.89.033309
https://doi.org/10.1103/PhysRevE.89.033309
https://doi.org/10.1103/PhysRevE.89.033309
https://doi.org/10.1006/jcph.1999.6257
https://doi.org/10.1006/jcph.1999.6257
https://doi.org/10.1006/jcph.1999.6257
https://doi.org/10.1006/jcph.1999.6257
https://doi.org/10.1103/PhysRevE.87.043301
https://doi.org/10.1103/PhysRevE.87.043301
https://doi.org/10.1103/PhysRevE.87.043301
https://doi.org/10.1103/PhysRevE.87.043301
https://doi.org/10.1103/PhysRevE.91.063309
https://doi.org/10.1103/PhysRevE.91.063309
https://doi.org/10.1103/PhysRevE.91.063309
https://doi.org/10.1103/PhysRevE.91.063309
https://doi.org/10.1103/PhysRevE.94.023311
https://doi.org/10.1103/PhysRevE.94.023311
https://doi.org/10.1103/PhysRevE.94.023311
https://doi.org/10.1103/PhysRevE.94.023311
https://doi.org/10.1103/PhysRevE.81.036707
https://doi.org/10.1103/PhysRevE.81.036707
https://doi.org/10.1103/PhysRevE.81.036707
https://doi.org/10.1103/PhysRevE.81.036707
https://doi.org/10.1103/PhysRevE.94.033304
https://doi.org/10.1103/PhysRevE.94.033304
https://doi.org/10.1103/PhysRevE.94.033304
https://doi.org/10.1103/PhysRevE.94.033304
https://doi.org/10.1103/PhysRevE.61.2712
https://doi.org/10.1103/PhysRevE.61.2712
https://doi.org/10.1103/PhysRevE.61.2712
https://doi.org/10.1103/PhysRevE.61.2712
https://doi.org/10.1016/j.advwatres.2008.05.001
https://doi.org/10.1016/j.advwatres.2008.05.001
https://doi.org/10.1016/j.advwatres.2008.05.001
https://doi.org/10.1016/j.advwatres.2008.05.001
https://doi.org/10.1016/j.jcp.2003.08.012
https://doi.org/10.1016/j.jcp.2003.08.012
https://doi.org/10.1016/j.jcp.2003.08.012
https://doi.org/10.1016/j.jcp.2003.08.012
https://doi.org/10.1016/j.matcom.2008.07.006
https://doi.org/10.1016/j.matcom.2008.07.006
https://doi.org/10.1016/j.matcom.2008.07.006
https://doi.org/10.1016/j.matcom.2008.07.006
https://doi.org/10.1016/j.apm.2009.06.024
https://doi.org/10.1016/j.apm.2009.06.024
https://doi.org/10.1016/j.apm.2009.06.024
https://doi.org/10.1016/j.apm.2009.06.024
https://doi.org/10.1016/j.jcp.2016.09.030
https://doi.org/10.1016/j.jcp.2016.09.030
https://doi.org/10.1016/j.jcp.2016.09.030
https://doi.org/10.1016/j.jcp.2016.09.030
https://doi.org/10.1103/PhysRevE.95.023313
https://doi.org/10.1103/PhysRevE.95.023313
https://doi.org/10.1103/PhysRevE.95.023313
https://doi.org/10.1103/PhysRevE.95.023313
https://doi.org/10.1103/PhysRevE.93.033310
https://doi.org/10.1103/PhysRevE.93.033310
https://doi.org/10.1103/PhysRevE.93.033310
https://doi.org/10.1103/PhysRevE.93.033310
https://doi.org/10.1103/PhysRevE.95.033311
https://doi.org/10.1103/PhysRevE.95.033311
https://doi.org/10.1103/PhysRevE.95.033311
https://doi.org/10.1103/PhysRevE.95.033311
https://doi.org/10.1017/S0022112099006874
https://doi.org/10.1017/S0022112099006874
https://doi.org/10.1017/S0022112099006874
https://doi.org/10.1017/S0022112099006874
https://doi.org/10.1063/1.1730447
https://doi.org/10.1063/1.1730447
https://doi.org/10.1063/1.1730447
https://doi.org/10.1063/1.1730447
https://doi.org/10.1103/PhysRevE.85.026704
https://doi.org/10.1103/PhysRevE.85.026704
https://doi.org/10.1103/PhysRevE.85.026704
https://doi.org/10.1103/PhysRevE.85.026704
https://doi.org/10.1016/j.jcp.2014.07.038
https://doi.org/10.1016/j.jcp.2014.07.038
https://doi.org/10.1016/j.jcp.2014.07.038
https://doi.org/10.1016/j.jcp.2014.07.038
https://doi.org/10.1103/PhysRevE.91.013309
https://doi.org/10.1103/PhysRevE.91.013309
https://doi.org/10.1103/PhysRevE.91.013309
https://doi.org/10.1103/PhysRevE.91.013309
https://doi.org/10.1002/fld.1885
https://doi.org/10.1002/fld.1885
https://doi.org/10.1002/fld.1885
https://doi.org/10.1002/fld.1885
https://doi.org/10.1016/j.jcp.2015.09.029
https://doi.org/10.1016/j.jcp.2015.09.029
https://doi.org/10.1016/j.jcp.2015.09.029
https://doi.org/10.1016/j.jcp.2015.09.029
https://doi.org/10.1016/j.cpc.2007.11.009
https://doi.org/10.1016/j.cpc.2007.11.009
https://doi.org/10.1016/j.cpc.2007.11.009
https://doi.org/10.1016/j.cpc.2007.11.009
https://doi.org/10.1103/PhysRevE.65.046308
https://doi.org/10.1103/PhysRevE.65.046308
https://doi.org/10.1103/PhysRevE.65.046308
https://doi.org/10.1103/PhysRevE.65.046308


HIGH-ORDER LATTICE-BOLTZMANN MODEL FOR THE … PHYSICAL REVIEW E 99, 043310 (2019)

[45] Y.-H. Qian and Y. Zhou, Phys. Rev. E 61, 2103 (2000).
[46] J. F. Lutsko, Phys. Rev. E 73, 021302 (2006).
[47] S. Ansumali, I. Karlin, S. Arcidiacono, A. Abbas, and

N. Prasianakis, Phys. Rev. Lett. 98, 124502 (2007).
[48] F. Magaletti, F. Picano, M. Chinappi, L. Marino, and C. M.

Casciola, J. Fluid Mech. 714, 95126 (2013).
[49] Z. Guo, C. Zheng, and B. Shi, Phys. Rev. E 83, 036707 (2011).

[50] W. Rider and D. Kothe (unpublished).
[51] W. J. Rider and D. B. Kothe, J. Comput. Phys. 141, 112 (1998).
[52] Y. Sun and C. Beckermann, J. Comput. Phys. 220, 626 (2007).
[53] G.-S. Jiang and C.-W. Shu, J. Comput. Phys. 126, 202 (1996).
[54] G.-S. Jiang and C.-c. Wu, J. Comput. Phys. 150, 561 (1999).
[55] J. Shao and C. Shu, Int. J. Numer. Methods Fluids 77, 526

(2015).

043310-15

https://doi.org/10.1103/PhysRevE.61.2103
https://doi.org/10.1103/PhysRevE.61.2103
https://doi.org/10.1103/PhysRevE.61.2103
https://doi.org/10.1103/PhysRevE.61.2103
https://doi.org/10.1103/PhysRevE.73.021302
https://doi.org/10.1103/PhysRevE.73.021302
https://doi.org/10.1103/PhysRevE.73.021302
https://doi.org/10.1103/PhysRevE.73.021302
https://doi.org/10.1103/PhysRevLett.98.124502
https://doi.org/10.1103/PhysRevLett.98.124502
https://doi.org/10.1103/PhysRevLett.98.124502
https://doi.org/10.1103/PhysRevLett.98.124502
https://doi.org/10.1017/jfm.2012.461
https://doi.org/10.1017/jfm.2012.461
https://doi.org/10.1017/jfm.2012.461
https://doi.org/10.1017/jfm.2012.461
https://doi.org/10.1103/PhysRevE.83.036707
https://doi.org/10.1103/PhysRevE.83.036707
https://doi.org/10.1103/PhysRevE.83.036707
https://doi.org/10.1103/PhysRevE.83.036707
https://doi.org/10.1006/jcph.1998.5906
https://doi.org/10.1006/jcph.1998.5906
https://doi.org/10.1006/jcph.1998.5906
https://doi.org/10.1006/jcph.1998.5906
https://doi.org/10.1016/j.jcp.2006.05.025
https://doi.org/10.1016/j.jcp.2006.05.025
https://doi.org/10.1016/j.jcp.2006.05.025
https://doi.org/10.1016/j.jcp.2006.05.025
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.1999.6207
https://doi.org/10.1006/jcph.1999.6207
https://doi.org/10.1006/jcph.1999.6207
https://doi.org/10.1006/jcph.1999.6207
https://doi.org/10.1002/fld.3995
https://doi.org/10.1002/fld.3995
https://doi.org/10.1002/fld.3995
https://doi.org/10.1002/fld.3995

