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In this paper, a phase-field method under the framework of discrete unified gas-kinetic scheme (DUGKS) for
incompressible multiphase fluid flows is proposed. Two kinetic models are constructed to solve the conservative
Allen-Cahn equation that accounts for the interface behavior and the incompressible hydrodynamic equations
that govern the flow field, respectively. With a truncated equilibrium distribution function as well as a temporal
derivative added to the source term, the macroscopic governing equations can be exactly recovered from
the kinetic models through the Chapman-Enskog analysis. Calculation of source terms involving high-order
derivatives existed in the quasi-incompressible model is simplified. A series of benchmark cases including
four interface-capturing tests and four binary flow tests are carried out. Results compared to that of the lattice
Boltzmann method (LBM) have been obtained. A convergence rate of second order can be guaranteed in the
test of interface diagonal translation. The capability of the present method to track the interface that undergoes
a severe deformation has been verified. Stationary bubble and spinodal decomposition problems, both with a
density ratio as high as 1000, are conducted and reliable solutions have been provided. The layered Poiseuille
flow with a large viscosity ratio is simulated and numerical results agree well with the analytical solutions.
Variation of positions of the bubble front and spike tip during the evolution of Rayleigh-Taylor instability has
been predicted precisely. However, the detailed depiction of complicated interface patterns appearing during
the evolution process is failed, which is mainly caused by the relatively large numerical dissipation of DUGKS
compared to that of LBM. A high-order DUGKS is needed to overcome this problem.

DOI: 10.1103/PhysRevE.99.043302

I. INTRODUCTION

Numerical simulation of multiphase fluid flows has drawn
the attention of many researchers for decades due to its
importance in scientific and engineering applications. With
the rapid progress in computational technology, various nu-
merical methods including the volume of fluid (VOF) method
[1], level set approach [2], front tracking method [3], diffuse
interface method [4,5], and smoothed particle hydrodynamics
method [6,7] have been developed. Among those methods,
the diffuse interface model has shown great advantage by
virtue of its energy-based variational formalism as well as its
simplification in the description of interface evolution. Many
of the kinetic schemes [8–11], aiming at modeling phase be-
haviors at the mesoscopic level and bridging the gap between
the macroscopic features and microscopic intermolecular in-
teractions in multiphase systems, can be categorized into the
diffuse interface method.

As one of many popular kinetic schemes, the lattice Boltz-
mann (LB) method has received great attention due to its sim-
plicity in the application of intermolecular interactions. In the
framework of the LB method, mainly four kinds of multiphase
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models, including color-gradient model [12], pseudopotential
model [13,14], free-energy model [15,16], and phase-field
based model [16,17], are proposed based on different physical
pictures. These LB models have been improved continuously
by plenty of research since the moment they were born
and significant progresses on their performance have been
made [18–23]. While they share the same advantages of the
LB method, such as simplicity and efficiency, relatively low
dissipation, and intrinsic kinetic nature [24], they are also
limited by the drawbacks of the LB method, one of which
is the required uniformity of the lattice structure imposed by
the symmetry of the predefined lattice velocities. In order
to capture the interface precisely and efficiently, either a
high resolution scheme or adaptive mesh refinement (AMR)
technique is usually employed in the simulation of multiphase
problems. The usage of uniform mesh is surely a waste of
time and computational resources. However, application of
the AMR technique to the LB method would result in a loss
of its simplicity. The multiphase lattice Boltzmann flux solver
(MLBFS) aims to combine the advantages of Navier-Stokes
solvers and LB method in the simulation of multiphase flows,
which was first proposed by Wang et al. [10,25]. In their work,
a fifth-order upwind scheme is adopted to solve the Cahn-
Hilliard (CH) equation that governs the evolution of interface
and a lattice Boltzmann flux scheme is used to evaluate the
flux at cell interface for the mass and momentum equation.
A density ratio of 1000 with Reynolds number up to 3000
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is achieved in the simulation of Rayleigh-Taylor instability
(RTI). Pan et al. [11] developed a two-stage fourth-order
gas-kinetic scheme (GKS) for the simulation of compressible
multicomponent flows. Based on a simplified two-species
BGK model, a set of coupled Euler equations that accounts
for different components are constructed and solved by a
fourth-order gas-kinetic scheme. Various numerical tests, in-
cluding shock-bubble interaction, Rayleigh-Taylor instability,
etc., have verified the reliability of this approach. MLBFS
and GKS show a common philosophy in the construction
of flux since kinetic schemes, although different in detail,
are introduced for both methods, which is also the only
point where they have a relationship with kinetic schemes.
Furthermore, both of these two methods lack the ability of
depicting the nonequilibrium effects in the flow field. Gan
et al. [9] proposed a discrete Boltzmann model (DBM) to
study the process of phase separation based on the work of
Gonnella et al. [26]. The interplay between interparticle forces
that drives changes and gradient force that opposes them
is simulated and the nonequilibrium effects behind the phe-
nomenon are investigated thoroughly, which provides a better
understanding of the nonequilibrium behaviors underneath
the phase separation process. Later, the DBM is applied to
the simulation of Rayleigh-Taylor instability in compressible
flows [27,28]. The relations between effects of compressibil-
ity and global nonequilibrium intensity are investigated and a
negative correlation is observed. The DBM provides a distinc-
tive way for the explanation of a physical phenomenon from a
viewpoint of nonequilibrium effects. However, it suffers from
the time step restriction by collision time, which imposes a
negative impact on its efficiency.

The discrete unified gas-kinetic scheme (DUGKS) pro-
posed by Guo et al. [29,30] is a new type of kinetic scheme
which combines the advantages of both the LB method in
its discrete conservative collision operator and gas-kinetic
scheme in its flux modeling [31]. As a finite volume method,
it overcomes the disadvantage of uniform mesh with which
the LB method has to comply and simplifies the calculating
routine in the evaluation of flux at the cell interface. The fully
coupling of streaming and collision processes in DUGKS
ensures a low numerical dissipation feature. The semi-implicit
treatment of the collision term in DUGKS also makes an
improvement in its numerical stability [32]. Furthermore, the
evolution equation rather than direct interpolation is employed
in the evaluation of flux, which contributes to its asymptotic
preserving (AP) feature [30]. That means the time step in
only limited by the Courant-Friedrichs-Lewy (CFL) condition
rather than the collision time in the framework of DUGKS.
Compared to the other discrete velocity methods, DUGKS
has shown a better performance in terms of modeling accu-
racy and computational efficiency when the hydrodynamic
flow regime is dominant [33]. Due to its various advantages,
DUGKS has been applied to modeling force driven flows [34],
nonequilibrium flows [35,36], phonon transportation [37],
binary gas mixtures [38], and fluid-particle flows [39,40].
Recently, Zhang et al. [41] extend the DUGKS to two-phase
flows based on a quasi-incompressible phase-field governing
equation. The accuracy and stability of this method have been
verified. However, the density contrast of different phases in
their work is relatively low and no interface capturing test

is given to evaluate the capability of DUGKS under such a
circumstance. To make a further extension of DUGKS on the
simulation of two-phase problems, we proposed a method by
applying DUGKS to the solution of the conservative Allen-
Cahn (AC) equation [42–44]. The incompressible hydrody-
namic equations from Liang et al. [23] are also implemented
in the DUGKS framework. Various interface capturing tests
are conducted and binary flow cases with a high density ratio
are studied.

The rest of this article is organized as follows. In Sec. II,
the methodology of the proposed model for two-phase flows
will be introduced. In Sec. III, several benchmark tests are
conducted to validate the capability of the current method to
capture the interface in two-phase flows. In Sec. IV, typical
two-phase flow cases are carried out to study the performance
of our model. A brief summary is drawn in Sec. V.

II. METHODOLOGY

A. Governing equation for two-phase flows

Based on the phase-field theory, a Helmholtz free energy
functional dependent upon an order parameter φ is used to
describe the thermodynamic behavior of a two-phase fluid
system [45]

F (φ) =
∫

V

(
ε(φ) + κ

2
|∇φ|2

)
dV, (1)

where V is the domain of the system, and ε(φ) refers to the
bulk energy density. For binary fluid system, the function of
bulk energy density usually has the following double-well
form:

ε(φ) = β(φ − φH )2(φ − φL )2, (2)

which has two minima corresponding to the two phases of
the fluid. The parameters β and κ are two positive constants
determined by both the surface tension coefficient σ and the
width of interface W :

κ = 3

2
σW, β = 12σ

W
. (3)

The chemical potential μφ is defined as the variation of the
free energy with respect to the order parameter

μφ = δF (φ)

δφ

= 4β(φ − φH )(φ − φL )

(
φ − φH + φL

2

)
− κ�φ. (4)

The equation used for interface tracking in this study is the
following conservative Allen-Cahn equation [44]:

∂φ

∂t
+ ∇ · (φu) = ∇ · [Mφ (∇φ − θn)], (5)

where t is the time, u is the transportation velocity, Mφ is the
mobility coefficient, and n is the local unit vector normal to
the interface. θ is interpreted as a function of φ:

θ = −4(φ − φH )(φ − φL )

W (φH − φL )
. (6)
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The equilibrium profile of φ along the direction normal to the
interface assumes a hyperbolic tangent form

φ(z) = φH + φL

2
+ φH − φL

2
tanh

(
2z

W

)
, (7)

where z is the coordinate along interface normal. The location
of actual interface is determined by φ = 0.5(φH + φL ), where
φH = 1 denotes the heavy fluid and φL = 0 indicates the light
fluid.

For an exhaustive derivation of the conservative AC equa-
tion, one is recommended to refer to Ren et al. [46]. It is worth
noting that divergence-free velocity condition was introduced
during this derivation.

The hydrodynamic equations used for a two-phase fluid
system are chosen to be

∇ · u = 0, (8)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · [μ(∇u + ∇uT )] + F,

(9)

where F consists of the surface tension force Fs = μφ∇φ and
the gravitational force G, if present. The relationship between
order parameter φ and density ρ is

ρ = ρH − ρL

φH − φL
(φ − φL ) + ρL. (10)

Substituting Eqs. (5) and (8) into (10), we can get the noncon-
servative mass equation

∂ρ

∂t
+ ∇ · (ρu) = ρH − ρL

φH − φL
∇ · [Mφ (∇φ − θn)]. (11)

The point we are trying to clarify here is that with the
divergence-free velocity condition, the uniform conservative
mass equation cannot be derived from the conservative Allen-
Cahn equation. The conservativeness of mass equation can
be guaranteed only if the density gradient equals zero, which
means that mass generation or consumption exists during the
process of phase transition when density contrast exists. As
is depicted by Li et al. [47], the uniform mass conservation
and the incompressibility condition cannot be satisfied at
the same time because of the volume diffusive flux across
the interfacial region. Hence, it is not the mass parameter
ρ but the order parameter φ that conservativeness qualifies.
To eliminate the nonconservative property of mass, either the
quasi-incompressible model [48] or the nonlocal AC equation
[49] can be used.

B. DUGKS for two-phase equations

The discrete kinetic equations used to interpret phase equa-
tion (5) and hydrodynamic equation (9) are

∂ fi

∂t
+ ξi · ∇ fi = − fi − f eq

i

τ f
+ S f

i , (12)

∂gi

∂t
+ ξi · ∇gi = −gi − geq

i

τg
+ Sg

i , (13)

where fi and gi, corresponding to the phase order φ and
density ρ, are the particle distribution functions in terms of

position x, discrete particle velocity ξi, and time t . τ f and τg

are the relaxation times related to the mobility coefficient and
dynamic viscosity, respectively. f eq

i and geq
i are the equilib-

rium distribution functions with specific forms. S f
i and Sg

i are
the source terms.

The three-point Gauss-Hermite quadrature is employed
in this work to get the discrete particle velocities in one
dimension. The discrete velocities and associated weights in
two dimensions can be achieved by the tensor product method

ξ =
√

3RT

[
0 1 1 0 −1 −1 −1 0 1

0 0 1 1 1 0 −1 −1 −1

]
,

ωi =

⎧⎪⎨
⎪⎩

4
9 , i = 0
1
9 , i = 1, 3, 5, 7
1

36 , i = 2, 4, 6, 8.

(14)

The equilibrium distribution function for f eq
i is expressed as

f eq
i = ωiφ

(
1 + ξi · u

/
c2

s

)
, (15)

where cs = √
RT is the sound speed. Ren et al. [46] and

Wang et al. [50] both pointed out that by discarding high-order
terms of velocity, an exact form of AC equation achieved
through Chapman-Enskog (CE) analysis can be guaranteed.
The source term S f

i consists of two parts and is defined as

S f
i = ωiθξi · n + ωiξi∂t (φu)/RT . (16)

The second part is necessary to eliminate the term of ∂t (φu)
introduced via the CE expansion.

The equilibrium distribution function for geq
i is [23,51]

geq
i =

{ p
RT (ωi − 1) + ρ(�i(u) − �i(0)), i = 0
p

RT ωi + ρ[�i(u) − �i(0)], i �= 0
(17)

where

�i(u) = ωi

[
1 + ξi · u

RT
+ (ξi · u)2

2(RT )2
− u · u

2RT

]
. (18)

The source term Sg
i is defined as

Sg
i = (ξi − u)

RT
· {[�i(u) − �i(0)]∇(ρRT ) + (Fs + G)�i(u)}.

(19)

It needs to be mentioned that Liang et al. [52] proposed a
simplified force model by discarding the term of O(δt Ma2)
during the CE analysis, which works well when the magnitude
of flow velocity is relatively small. To keep rigorous and
general property of the present scheme, however, the force
model previously used by Liang et al. [23] is applied. By
choosing the appropriate expression for equilibrium distribu-
tion functions and source terms, we can get the exact hydro-
dynamic equations from the discrete kinetic equations via the
CE analysis, details of which are shown in the Appendix.

Since Eqs. (12) and (13) share the same format, a new
symbol ψ is introduced to substitute either f or g for the
convenience of illustration. Thus, the unified form of discrete
kinetic equation is

∂ψi

∂t
+ ξi · ∇ψi = −ψi − ψ

eq
i

τ f
+ Sψ

i . (20)

043302-3



YANG, ZHONG, AND ZHUO PHYSICAL REVIEW E 99, 043302 (2019)

The DUGKS is applied to solve the above equation for its var-
ious advantages [32,53]. Integrating it over a control volume
Vj centered at x j from time tn to tn+1, we get

ψn+1
i − ψn

i + �t

|Vj |Jψ,n+1/2 = �t

2

[
�

ψ,n+1
i + �

ψ,n
i

]
+ �t

2

[
Sψ,n+1

i + Sψ,n
i

]
, (21)

where �
ψ
i = −(ψi − ψ

eq
i )/τψ , Vj is the volume of cell with

index j, n is the time. Jψ,n+1/2 is the microflux across the
cell interface at the middle of current time interval with the
following form:

Jψ,n+1/2 =
∫

∂Vj

(ξi · n)ψi(x f , ξi, tn+1/2)dS, (22)

where ∂Vj is the surface of cell Vj , n is the outward unit
vector normal to the surface element dS, and x f denotes the
position of surface element. Trapezoidal rule is employed for
the integration of the collision term �

ψ
i and source term Sψ

i ,
and midpoint rule is chosen for the evaluation of the microflux
Jψ,n+1/2. To overcome the implicit treatment of source terms
in Eq. (21), two auxiliary distribution functions are introduced
[29,30]:

ψ̃i = ψi − �t

2
�i − �t

2
Si

= 2τψ + �t

2τψ

ψi − �t

2τψ

ψ
eq
i − �t

2
Si, (23a)

ψ̃+
i = ψi + �t

2
�i + �t

2
Si

= 2τψ − �t

2τψ

ψi + �t

2τψ

ψ
eq
i + �t

2
Si. (23b)

Substituting Eq. (23) into (21) and rearranging each of
these terms according to the time step, we have

ψ̃n+1
i = ψ̃+,n

i − �t

|Vj |Jψ,n+1/2. (24)

Instead of the original distribution function ψ , the auxiliary
distribution function ψ̃ is updated. The key step to obtain
an accurate ψ̃ lies in the evaluation of flux Jψ,n+1/2. To get
the original distribution function at intermediate moment of a
time interval, Eq. (20) is integrated along its characteristic line
within a half time step h = �t/2:

ψi(x f , tn + h) − ψi(x f − ξih, tn)

= h

2

[
�

ψ
i (x f , tn + h) + �

ψ
i (x f − ξih, tn)

]
+ h

2

[
Sψ

i (x f , tn + h) + Sψ
i (x f − ξih, tn)

]
. (25)

Again, to remove the implicit treatment of the collision term
and source term, two auxiliary distribution functions are
introduced:

ψ̄i = ψi − h

2
�

ψ
i − h

2
Sψ

i

= 2τψ + h

2τψ

ψi − h

2τψ

ψ
eq
i − h

2
Sψ

i , (26a)

ψ̄+
i = ψi + h

2
�

ψ
i + h

2
Sψ

i

= 2τψ − h

2τψ

ψi + h

2τψ

ψ
eq
i + h

2
Sψ

i . (26b)

As a result, Eq. (25) turns into

ψ̄i(x f , tn + h) = ψ̄+
i (x f − ξih, tn), (27)

which is the most ingenious step in the evaluation of flux.
An indispensable particle distribution function ψ̄i(x f , tn + h)
that is related with the next half time step is reconstructed by
tracing this set of particles back to the current time step, with
the collision and force effects taken into consideration.

Two approaches, central scheme and upwind scheme, were
put forward by Guo et al. [29,30] successively to obtain the
value of ψ̄+

i (x f − ξih, tn). Since the simulation of two-phase
flow demands a low numerical dissipation on the algorithm,
the central scheme is used in this study. After the update of
auxiliary distribution function ψ̄i(x f , tn + h) and macroscopic
variables located at the cell interface, the original distribution
function can be calculated by

ψi = 2τψ

2τψ + h
ψ̄i + h

2τψ + h
ψ

eq
i + τψh

2τψ + h
Sψ

i . (28)

Thus, the flux Jψ,n+1/2 can be evaluated from Eq. (22). And,
finally, ψ̃n+1

i can be obtained according to Eq. (24) with the
two following equations:

ψ̄+
i = 2τψ − h

2τψ + �t
ψ̃i + 3h

2τψ + �t
ψ

eq
i + 3τψh

2τψ + �t
Sψ

i , (29)

ψ̃+
i = 4

3
ψ̄+

i − 1

3
ψ̃i. (30)

The macroscopic variables including order parameter φ,
dynamic pressure p, and velocity u at each cell center are
updated by

φ =
∑

i

f̃i, (31)

u =
(∑

i

ξig̃i + �t

2
F

)/
ρ, (32)

p = RT

1 − ω0

[∑
i �=0

g̃i + �t

2
u · ∇ρ + ρ[�0(u) − �0(0)]

]
,

(33)

where f̃i comes from Eq. (23a) with ψ replaced by f and so
does g̃i. The relaxation times are determined by the mobility
and kinetic viscosity according to

τ f = Mφ

RT
, τg = μ

ρRT
. (34)

Generally, two popular approaches are used in the calculation
of the dynamic viscosity μ. One approach is the linear inter-
polation of the reciprocals of the viscosities proposed by Zu
and He [51], i.e.,

1

μ
= φ

(
1

μH
− 1

μL

)
+ 1

μL
. (35)
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The other common approach is to use a linear interpolation
expressed as

μ = φ(μH − μL ) + μL. (36)

The reciprocal interpolation scheme shows a better accu-
racy while a simple interpolation scheme is able to enhance
modeling stability. A detailed comparison between these two
approaches is presented in Sec. IV B.

Since all of the tests in this paper use a uniform Cartesian
grid, a six-point numerical scheme [54] is applied for the
computation of ∇φ, which is the only gradient term that needs
to be updated. The Laplace operator is calculated by a general
nine-point finite difference scheme to ensure the isotropic
property. The temporal derivative in Eq. (16) is calculated by
the first-order forward Euler scheme. The time step in this
work is determined by the CFL condition, as follows:

�t = α
�x√
3RT

, (37)

where α stands for the CFL number and �x measures the size
of the cell.

It is worth noting that Zhang and Guo [41] proposed a
quasi-incompressible model based on DUGKS. Here, we give
some comments on the difference between the model of theirs
and ours. First, the governing equations used to capture the
interface in Guo’s model is the Cahn-Hilliard (CH) equation
[55,56] while the Allen-Cahn (AC) equation [42–44] is em-
ployed in this model. Wang et al. [50] make detailed compari-
son of the results obtained by solving these two equations with
the lattice Boltzmann method. It is found that the Allen-Cahn–
based lattice Boltzmann model shows a better performance
in accuracy and stability. Second, the mass equations used
to describe the flow field are different. In Guo’s method,
a quasi-incompressible model [48] is adopted, with which
the uniform mass conservation can be guaranteed while the
divergence-free velocity condition is introduced in this model
and mass conservation can only be ensured in the single-phase
zone. The phenomenon of mass generation or consumption
can be observed in the mixing layer when a density contrast
exists, as is explained in the first part of this section. Lastly, the
number of first-order and second-order derivative terms that
need to be updated during the iterative process is different.
For Guo’s model, three first-order derivative terms including
∇ρ,∇p,∇μφ and two second-order derivative terms covering
�μφ and �φ need to be calculated during each iterative
process due to the introduction of the quasi-incompressible
model. Since the calculation of a μφ has already involved a
second-order derivative term, a fourth-order derivative term
needs to be calculated to obtain an accurate �μφ , actually.
Those miscellaneous but indispensable derivatives may be
responsible for the relatively low density ratio (no larger than
10) in each of their tests. In terms of the present method, only
two derivative terms, ∇φ and �φ, are necessary during the
process of calculation. The maximum density ratio can reach
as high as 1000 in either static or dynamic cases. In brief,
Guo’s method gives a more accurate description about mass
transfer during the process of phase transition at the price
of introducing more spatial derivative terms up to the fourth
order and is incapable of dealing with high-density-ratio sce-
narios. The present method offers a more efficient and concise

way in interface capturing and behaves well at a relatively
high-density-ratio case except that mass conservation cannot
be guaranteed in the mixing zone of a two-phase flow, which
is a common problem within the framework of the phase-field
theory under the assumption of incompressibility condition
[47].

III. INTERFACE-CAPTURING TESTS

In this section, four typical benchmark problems, includ-
ing interface diagonal translation, Zalesak’s disk rotation,
interface elongation, and interface deformation, are used to
validate the interface-capturing ability of the present scheme.
Each of the velocity fields is specified in advance, hence, only
Eq. (5) needs to be solved. The dimensionless parameters,
Péclet number, and Cahn number, are defined as [46]

Pe = U0L0

Mφ

, Cn = W

L0
, (38)

where U0 is the reference velocity and L0 is the side length of
computational domain. The grid size �x is kept at unity and
the CFL number remains at 0.5 unless otherwise specified. To
quantitatively evaluate the performance of the present method
and make a comparison with the results of the LB method, the
L2-norm-based error of the order parameter is used [23]:

Eφ =
∑

x |φ(x, T ) − φ(x, 0)|2∑
x |φ(x, 0)|2 . (39)

A. Interface diagonal translation

A circular interface with radius R = L0/4 is settled at
the center of a square domain with L0 × L0 cells. Periodic
boundary condition is applied to all of its sides. The uniform
velocity field is specified as

u(x, y) = U0, v(x, y) = U0. (40)

The circular interface would move back to its initial location
after T = L0/U0 time. A comparison based on the conver-
gence rate between the current scheme and the LB method
[52] is provided. The effects of Péclet number and mobility
coefficient are also investigated.

To obtain the convergence rate, the grid number along each
side of the square is refined from 128 to 512. In order to keep
the Péclet number, Cahn number, and mobility coefficient
constant, the reference velocity U0 and interface width W are
tuned along with the variation of grid number. Comparison
results shown in Fig. 1 exhibit a second-order convergence
accuracy of both DUGKS and LB method. The overall error
yielded by DUGKS is a bit higher than that of the LB method,
and for DUGKS has a relatively larger numerical dissipation
[31].

The reference velocity is used to tune the Péclet number to
investigate its effect on the relative error. The other parame-
ters, including the mobility coefficient, reference length, and
Cahn number, are kept at a constant value. When it comes to
the effect of mobility coefficient, also the reference velocity
is tuned to keep the Péclet number fixed. The reference length
keeps a constant value of 256 and the Cahn number is 4/256.
Results pertaining to Pe and Mφ are presented in Tables I and
II, respectively.
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FIG. 1. Convergence rate of DUGKS and LBM, Pe = 128, Cn =
1/32, Mφ = 0.02, �t = 0.5.

It can be shown in Table I that the relative error of DUGKS
continues increasing as the Péclet number goes up gradually
while the results of LBM always remain at the same level. The
differences are caused by the reconstruction method adopted
in the evaluation of flux. As is mentioned in Sec. II B, a central
scheme instead of upwind scheme is used to ensure the low
numerical dissipation. Since the Péclet number indicates the
ratio of the rate of advection by the rate of mobility driven
by a gradient, the flow is mainly dominated by advection
when the Péclet number is relatively large. Surely, the central
scheme used in flux evaluation would cause deviations under
such a circumstance. To overcome this problem, a high-order
upwind scheme needs to be developed. Table II gives the
relative error of the order parameter for DUGKS and LBM at
Pe = 256. Both of these two methods give stable results with
an magnitude order as low as 1×10−3 despite the increase of
mobility.

In a scenario of uniform velocity field, the performance
of DUGKS fails to compare with that of the LB method at
a relatively large Péclet number, while DUGKS is able to give
results comparable to the LB method when the Péclet number
is relatively low.

B. Zalesak’s disk rotation

As shown above, the diagonal translation of circular inter-
face does not involve any sharp interface. To further explore
the ability of the present method in capturing sharp interface,
Zalesak’s disk [51,57,58] test is conducted. The disk with a
slot is initially located at the center of a 256 × 256 square
domain, as illustrated in Fig. 2. The radius of the disk is set
as 100 and the width of the slot is 20. The disk is driven by a

TABLE I. L2 error of φ for interface diagonal translation, Mφ =
0.02, L0 = 256, Cn = 4/256.

Pe 128 256 512 1024

DUGKS 3.6470×10−3 5.7916×10−3 1.1548×10−2 2.3409×10−2

LBM 1.9808×10−3 1.9769×10−3 1.9669×10−3 1.9173×10−3

TABLE II. L2 error of φ for interface diagonal translation, Pe =
256, L0 = 256, Cn = 4/256.

Mφ 0.02 0.04 0.064 0.1

DUGKS 5.7916×10−3 5.1422×10−3 5.3437×10−3 6.4816×10−3

LBM 1.9769×10−3 1.9720×10−3 2.0981×10−3 2.8430×10−3

irrotational flow field governed by

u(x, y) = −U0π

L0
(y − 0.5L0),

v(x, y) = U0π

L0
(x − 0.5L0). (41)

In theory, the disk would return to its initial position after
T = 2L0/U0 time. The Cahn number is fixed at 4/256. The
order parameter inside the disk is initialized by φH and φL

accounts for the rest part. As a diffusive interface method,
a transition layer is necessary for the description of the
interface. However, no smooth function is available at start
time to generate this transition layer in the current case. Thus,
there exist discontinuities in the vicinity of the step-shaped
interface.

We first make a comparison of the interface patterns ob-
tained respectively with DUGKS and LBM after one cycle,
which are shown in Figs. 3–6. Both DUGKS and LBM can
give a stable evolution of the interface and no sawtooth
phenomenon [23] is observed. At low Péclet numbers (128
and 256), DUGKS is able to capture the interface as accurate
as the LBM. As the Péclet number increases, a small amount
of distortion at the tip of the slot can be observed, which is
mainly caused by the relatively higher numerical dissipation
of DUGKS compared to LBM.

To give a quantitative analysis on the results of DUGKS
and LBM, the relative error of the order parameter in terms
of Péclet number is presented in Table III. It can be found
that the results achieved by both methods in the end show a
large deviation from the initial distribution of φ. As mentioned

FIG. 2. Initial state of Zalesak’s disk, Cn = 4/256, Mφ = 0.02.
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(a)DUGKS (b)LBM

FIG. 3. Results of Zalesak’s disk after one period at Pe = 128.

(a)DUGKS (b)LBM

FIG. 4. Results of Zalesak’s disk after one period at Pe = 256.

(a)DUGKS (b)LBM

FIG. 5. Results of Zalesak’s disk after one period at Pe = 512.
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(a)DUGKS (b)LBM

FIG. 6. Results of Zalesak’s disk after one period at Pe = 1024.

above, no smooth function is adopted to define the interface.
Hence, the interface width is zero at initial time. However,
interface with a certain width is formed during the process
of evolution. That is why a relatively large deviation between
the results achieved at initial and final moment exists. This
viewpoint can also explain the same phenomenon shown in
Table IV, in which results concerning the effect of mobility
coefficient are presented.

C. Interface elongation in a shear flow

Neither of the above two cases deal with large shape
deformation as the interface remains unchanged during the
evolution process. To further validate the ability of the present
method in capturing interface deformation, the circular in-
terface elongation in a shear flow is studied. In this case, a
circular interface with radius R = L0/5 is initially placed at
x = 0.5L0 and y = 0.3L0 in a square domain with L0 × L0

cells, where L0 = 256 is the reference length. The velocity
field is governed by

u(x, y) = U0π sin

(
πx

L0

)
cos

(
πy

L0

)
,

v(x, y) = −U0π cos

(
πx

L0

)
sin

(
πy

L0

)
. (42)

After L0/U0 time, the velocity field is reversed to its opposite
direction. In this way, the elongated interface would recover to
its initial state after another L0/U0 time. The whole time used
in this process is defined as the time period T = 2L0/U0. The
interface is displayed by the contour level of φ = 0.5(φH +
φL ). Figures 7–10 illustrate the stretching process of the

TABLE III. L2 error of φ for Zalesak’s disk rotation, Mφ =
0.02, L0 = 256, Cn = 4/256.

Pe 128 256 512 640 1024

DUGKS 1.085×10−1 1.071×10−1 1.078×10−1 1.089×10−1 1.118×10−1

LBM 1.069×10−1 1.057×10−1 1.048×10−1 1.044×10−1 1.041×10−1

interface obtained by the present method and LBM. At the
time of t = 0.5T , the tail tip of the stretched interface is
about to break in LBM while DUGKS is able to maintain
this tail tip stable. The velocity field is reversed afterward
and the stretched interface starts to recover. At t = 0.75T ,
the contour of interface shown in Fig. 9 is approximate to
the results presented in Fig. 7 except a small distortion at the
tip of stretched interface. After a period time, the stretched
interface is restored back up to its original shape, which
is shown in Fig. 10. A close inspection toward the results
in Fig. 10 shows that there exists a slight deviation at the
lower-left part of the interface between the final (solid line)
and initial (dashed dotted line) moments, which originates
from the tip distortion during the process of restoration. To
give a quantitative description about this deviation, the relative
error of order parameter in terms of the Péclet number is
calculated and presented in Table V. As the Péclet number
increases, a tiny increment can be observed in the relative
error obtained with DUGKS while results achieved with LBM
remain stable. It is worth noting that at a relatively large
Péclet number, DUGKS fails to give a result comparable to
that of LBM in the case of interface diagonal translation. In
the current test, however, the results obtained by DUGKS
and LBM at a large Péclet number are pretty close. The
effect of mobility coefficient is also studied and results are
presented in Table VI. A same growth trend can be observed
in the relative errors obtained with both DUGKS and LBM
as the mobility coefficient increases. Also, results produced
by DUGKS are comparable with those of LBM at various
mobility coefficients.

TABLE IV. L2 error of φ for Zalesak’s disk rotation, Pe =
256, L0 = 256, Cn = 4/256.

Mφ 0.02 0.04 0.064 0.08 0.1

DUGKS 1.071×10−1 1.068×10−1 1.065×10−1 1.068×10−1 1.070×10−1

LBM 1.057×10−1 1.048×10−1 1.058×10−1 1.059×10−1 1.061×10−1
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(a)DUGKS (b)LBM

FIG. 7. Results of interface elongation in a shear flow at t = 0.25T , Mφ = 0.01, Pe = 256.

(a)DUGKS (b)LBM

FIG. 8. Results of interface elongation in a shear flow at t = 0.5T , Mφ = 0.01, Pe = 256.

(a)DUGKS (b)LBM

FIG. 9. Results of interface elongation in a shear flow at t = 0.75T , Mφ = 0.01, Pe = 256.
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(a)DUGKS (b)LBM

FIG. 10. Results of interface elongation in a shear flow at t = T , Mφ = 0.01, Pe = 256.

A further study on the capacity of the kinetic model based
on Allen-Cahn equation is conducted with a time-dependent
velocity field, which is governed by the same equations used
in Liang et al. [23]. With such a velocity field, the interface
will expose to severe stretch and transform into a long and
thin shape. To eliminate the influence caused by numerical
schemes, an Allen-Cahn–based multirelaxation-time (MRT)
lattice Boltzmann model proposed by Ren et al. [46] is used
here. The free relaxation parameters except those related to
Mφ are kept at unity. Results at the moment of half-period
are shown in Fig. 11. It can be seen clearly that the tail tip
of the interface breaks up into small drops. As illustrated by
Liang [23], the kinetic model based on Cahn-Hilliard equation
is able to capture the long thin tail and the initial circular shape
of the interface can be recovered accurately. The deficiency in
the Allen-Cahn–based kinetic model may have an impact on
numerical simulations referring to subtle interface changes.

D. Interface deformation in a smoothed shear flow

To further explore the ability of the present method in cap-
turing interface deformation, we continue to conduct another
test about the deformation of a circular interface in a smoothed
shear flow, which is regarded as one of the most rigorous
problems as the interface undergoes a severe deformation
[23,44]. The circular interface with a radius R = L0/5 is
located at the center of a periodic domain with L0 × L0 cells,
where L0 = 512 is the reference length. The velocity field is

TABLE V. L2 error of φ for interface stretch in a shear flow,
Mφ = 0.01, L0 = 256, Cn = 4/256.

Pe 256 512 1024 1638

DUGKS 2.596×10−2 2.831×10−2 3.246×10−2 3.798×10−2

LBM 1.405×10−2 1.232×10−2 1.309×10−2 1.653×10−2

controlled by

u(x, y) = −U0sin

(
4πx

L0

)
sin

(
4πy

L0

)
cos

(
πt

T

)
,

v(x, y) = −U0cos

(
4πx

L0

)
cos

(
4πy

L0

)
cos

(
πt

T

)
, (43)

where U0 is the reference velocity and T = L0/U0 is the pe-
riod. In the case above, the interface undergoes transfiguration
in the first half-period and reconsolidation in the last half-
period. The main difference is that a temporal smoothing term
cos( πt

T ) is introduced in the current case to avoid the rapid
shift of velocity field. The deformation of the interface driven
by a smooth velocity field is shown in Figs. 12–15. It can be
found that the results obtained with DUGKS share the same
deformation pattern as those of LBM. The restored interface
(solid line) after one period time overlaps with the initial one
(dashed dotted line) exactly for both methods. In addition,
quantitative comparisons between DUGKS and LBM are
presented in Tables VII and VIII, illustrating the effects of the
Péclet number and mobility coefficient, respectively. It can be
shown clearly that even at a large Péclet number, the results
provided by DUGKS are almost the same as that of LBM,
which is mainly attributed to the finer mesh resolution. As the
mobility coefficient increases, DUGKS even shows a better
performance than that of the LB method.

From the above cases, we notice that the model based
on DUGKS is able to track various deformed interfaces as
accurate as LBM when a nonlinear velocity field is imposed,
which testify to the capability of DUGKS in interface-tracking
simulations.

TABLE VI. L2 error of φ for interface stretch in a shear flow,
Pe = 256, L0 = 256, Cn = 4/256.

Mφ 0.01 0.02 0.04 0.05 0.064

DUGKS 2.596×10−2 2.681×10−2 2.749×10−2 2.868×10−2 3.072×10−2

LBM 1.405×10−2 1.480×10−2 1.561×10−2 1.635×10−2 1.796×10−2
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(a)DUGKS (b)LBM

FIG. 11. Results of interface elongation in a shear flow at t = 0.5T , Mφ = 0.1, Pe = 256.

(a)DUGKS (b)LBM

FIG. 12. Results of interface deformation in a smoothed flow at t = 0.25T , Mφ = 0.02, Pe = 2048.

(a)DUGKS (b)LBM

FIG. 13. Results of interface deformation in a smoothed flow at t = 0.5T , Mφ = 0.02, Pe = 2048.

043302-11



YANG, ZHONG, AND ZHUO PHYSICAL REVIEW E 99, 043302 (2019)

(a)DUGKS (b)LBM

FIG. 14. Results of interface deformation in a smoothed flow at t = 0.75T , Mφ = 0.02, Pe = 2048.

IV. BINARY FLOW TESTS

As the ability of DUGKS in interface capturing has been
validated, more tests related to hydrodynamic behavior are
used to explore the capacity of the present method. In this sec-
tion, four benchmark cases including stationary bubble, lay-
ered Poiseuille flow, spinodal decomposition, and Rayleigh-
Taylor instability are chosen to test and verify the performance
of the current model. The convergence criterion for steady
flows depends on∑

x |Q(x, n + 1000) − Q(x, n)|2∑
x |Q(x, n + 1000)|2 < 1.0 × 10−8, (44)

where Q stands for either the order parameter φ or the flow
velocity u and n is the time step. The CFL number remains at
0.5 if not otherwise specified.

A. Stationary bubble

The stationary bubble is a basic problem in verifying newly
developed numerical methods [59,60]. At initial state, a light
bubble immersed in the heavy liquid is placed at the center
of a square domain with L0 × L0 cells. Periodic boundary
condition is applied to all boundaries. The initial profile of
order parameter is given by

φ = φH + φL

2
+ φH − φL

2

× tanh
2[
√

(x − xc)2 + (y − yc)2 − R]

W
, (45)

TABLE VII. L2 error of φ for interface deformation in a
smoothed flow, Mφ = 0.02, L0 = 512, Cn = 4/512.

Pe 512 1024 1638 2048

DUGKS 9.762×10−3 7.986×10−3 1.033×10−2 1.339×10−2

LBM 9.409×10−3 7.281×10−3 9.026×10−3 1.203×10−2

where (xc, yc) is the center of the computational domain and
R is the bubble radius. The interface width W is fixed at 5 and
the kinetic viscosity ν remains at 0.1 for the whole flow field.
The density ratio varies from 10 to 1000 for different cases.
The end condition is determined by Eq. (44) with Q replaced
by φ.

The performance of the present method is first examined
by Laplace’s law. The relationship between pressure differ-
ence across the interface and reciprocal of bubble radius
is determined by �P = σ/R, where P is the thermody-
namic pressure and is calculated through P = p0 − κφ�φ +
κ|∇φ|2/2 + p with the equation of state p0 = φ∂φε(φ) −
ε(φ) [23,41,48,61]. Figure 16 presents the validation of
Laplace’s law based on the current method at a density ratio
of 1000. As the surface tension coefficient (STC) increases,
obvious deviations between the numerical results (solid line)
and analytical results (dashed line with symbols) can be
observed. For all situations, the ratio of numerical STC to
analytical ones is around 96.5%, which is approximated to the
results of Liang et al. [23] obtained with an MRT model. The
absolute error between the numerical results and analytical
results is enlarged with the growth of STC.

Figure 17 depicts the density profile along the vertical
center line with various values of mobility coefficient. It
can be seen that numerical results match with the analytical
solution exactly, which indicates the fundamental ability of
the current method in simulation of hydrodynamic problems.

The magnitude of spurious velocity draws attention to
numbers of researchers focusing on two-phase problems
[62–64]. Here, we give a detailed study on the relationship

TABLE VIII. L2 error of φ for interface deformation in a
smoothed flow, Pe = 512, L0 = 512, Cn = 4/512.

Mφ 0.01 0.02 0.04 0.064 0.08

DUGKS 1.051×10−2 9.762×10−3 8.652×10−3 7.880×10−3 7.570×10−3

LBM 9.422×10−3 9.409×10−3 9.355×10−3 9.255×10−3 9.178×10−3
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(a)DUGKS (b)LBM

FIG. 15. Results of interface deformation in a smoothed flow at t = T , Mφ = 0.02, Pe = 2048.

among density ratio, Laplace number (La), and spurious ve-
locity. The Laplace number is defined as σρLR/μ2

L, which is
different from Liang et al. [52]. Figure 18 shows the maximum
magnitude of spurious velocity at various La number and
density ratio. It can be seen that the maximum magnitude of
spurious velocity is linear with La number regardless of the
density ratios. Actually, the Laplace number is adjusted with
the variation of STC in the current test. Other parameters such
as the radius, the density, and dynamic viscosity of light phase
are kept at constants. Hence, we can conclude that a linear
relationship between the maximum magnitude of spurious
velocity and STC is observed. As the density ratio goes up,
a significant drop in the maximum magnitude of spurious
velocity can be found. The same trend can be observed in
Liang’s work [52]. The maximum magnitude of spurious
velocity is no less than 10−6 in terms of other previous LB

models [23,62,64]. The above results testify that the current
method is able to produce lower spurious velocities.

B. Layered Poiseuille flow

The layered Poiseuille flow is used as a benchmark in
the validation of various two-phase approaches [10,46,65].
Two immiscible fluids are driven by a constant body force
G = (Gx, 0) in an infinite channel. The upper region of 0 <

y � h in the channel is filled with the fluid of small viscosity
while the other part is filled with the fluid of large viscosity.
Periodic boundary condition is applied to the inlet and outlet
and no-slip boundary condition is implemented on the upper
and lower walls. When the flow reaches its steady state, the
velocity field is consistent with

u(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Gxh2

2μL

[
−

( y

h

)2
− y

h

(μL − μH

μL + μH

)
+ 2μL

μL + μH

]
, 0 < y � h

Gxh2

2μH

[
−

( y

h

)2
− y

h

(μL − μH

μL + μH

)
+ 2μH

μL + μH

]
, −h � y � 0.

(46)

The central velocity uc at steady state is related to the
constant driving force Gx, i.e., uc = Gxh2/(μL + μH ). The
computing process terminates when Eq. (44) is satisfied, with
Q replaced by u. Two sets of grid, 10×100 and 10×200, are
used in our simulation and comparisons are made between
the numerical results and analytical ones. The central velocity
uc is set to be 10−4, which is small enough to guarantee the
incompressible condition. Other parameters are set as W =
4, σ = 10−3, ρH = ρL = 1. Three conditions with different
dynamic viscosity ratio are considered in the current case.
The results of velocity profile are normalized by the central
velocity. Figure 19 presents the velocity profile along the y
direction with various viscosity ratios μ∗. It can be found that
results obtained with both sets of grid are in good agreement
with the analytical solution. The deviation mainly occurs at

the interfacial region. As the mesh resolution goes finer, the
deviation becomes smaller. A quantitative description of the
relative error between the numerical and analytical solutions
is presented in Fig. 20. Compared to the results of Ren et al.
[46], the relative error achieved by DUGKS is a bit larger.
This is mainly caused by the different schemes used in the
evaluation of dynamic viscosity. To avoid the diffusion effect
at the interfacial region, Ren adopts a step function for the dy-
namic viscosity while a continuous function is implemented
in our study. The overall L2-norm error is recorded and it
is found that the maximum value of the numerical error
is 4.866 × 10−3 at the condition of μ∗ = 1000, Ny = 200,
and 1.431 × 10−2 at the condition of μ∗ = 1000, Ny = 100,
which have the same order as those in the literature [61]. The
results above show that the present method is accurate enough
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FIG. 16. Validation of Laplace’s law with a density ratio of 1000
and Mφ = 0.1.

in simulating two-phase flows involving large viscosity
ratio.

In some of others’ work [52,66], a linear interpolation of
the original dynamic viscosities is used to estimate the viscos-
ity at the interfacial region. Comparisons between the profiles
of velocity as well as relaxation time obtained through these
two schemes are made and shown in Fig. 21. It can be seen
that linear scheme underestimates the velocity profile of large
viscosity fluid. As is demonstrated by Zu and He [51], the
scheme of inverse linear interpolation ensures the continuity
of viscosity flux at the mixture layer. It is reasonable to get
a better result using this scheme. Liang et al. [65] also adopt
the scheme of inverse linear interpolation for the estimation of
interfacial viscosity in their new research.

ρ
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FIG. 17. Density profile along the vertical center line with a
density ratio of 1000.
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FIG. 18. Maximum magnitude of spurious velocity with various
La number and density ratios.

C. Spinodal decomposition

The spinodal decomposition, also known as phase separa-
tion, is a pervasive phenomenon in the study of immiscible
fluids. It occurs due to the existence of fluctuations in a
homogeneous mixture with a metastable state. Several studies
on the spinodal decomposition problem have been carried out
with the implementation of LB methods [9,51,52,67]. Among
those works, only Liang et al. [52] perform a simulation with
a large density ratio of 1000. To demonstrate the capability of
the current method in the study of phase separation process
under large density ratio and to further illustrate the mass
diffusion phenomenon during this process, the same spinodal
decomposition problem is investigated. Our simulation is
carried out in a square domain with a mesh of 200 × 200.
Periodic boundary condition is implemented at all boundaries.
The initial distribution of the order parameter is defined by

φ(x, y) = 0.6 + rand(x, y), (47)

where rand(x, y) is a random function used to impose fluc-
tuations on the homogeneous mixture. The density field is
calculated by Eq. (10), where ρH and ρL are set to be 1000
and 1, respectively. The kinetic viscosity ratio of νL to νH is
fixed at 10. Other parameters are given as W = 4, σ = 0.1,
and Mφ = 0.1. The dimensionless evolution time during the
phase separation process is defined as t∗ = t/T , where T =
ρHνHW/σ . The termination moment of our simulation is set
at t = 2500, which is long enough to prove the stability of
the current method [51]. Figure 22 depicts several contours
of density distribution at various moments extracted from the
process of phase separation. At a preliminary state, the small
fluctuations in density evolve into large-scale inhomogeneities
and interfaces separating different phases are beginning to
emerge. Then, the inhomogeneities drive the material of light
phase into tiny bubbles with irregular shapes. As the system
develops, some of these bubbles keep on coalescing into large
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FIG. 19. Velocity profile of layered Poiseuille flow with various viscosity ratios.

ones. Eventually, a thermodynamic equilibrium state at which
binary phases with distinctive contrast can be observed is
reached.
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FIG. 20. Relative errors of layered Poiseuille flow with μ∗ = 10.

To investigate the conservation of mass, we also record
the mass variation in terms of the whole domain during the
process of phase separation. Figure 23 illustrates that mass
generation and diffusion appears until the system reaches a
relatively stable condition where no intensive coalescence or
condensation take place. Although the relative value of mass
variation is small, it may induce unphysical behaviors at some
special conditions [48]. For problems referring to continu-
ous separation of different phases, the quasi-incompressible
model in literature [41] should be more reliable.

D. Rayleigh-Taylor instability

In the final case, the benchmark problem of Rayleigh-
Taylor instability (RTI) is conducted. The RTI is a common
and important phenomenon in nature, which occurs when a
heavy phase is on top of a light phase with initial perturba-
tion in the interface. This benchmark has been extensively
studied by several newly developed numerical approaches
[10,23,41,47,51,58,61] in order to validate their reliability.
The computational domain is a rectangular box with L0 ×
4L0 cells. The initial interface is located at H (x, y) = 2L0 +
0.1L0cos(2πx/L0) and the initial order profile is defined as

φ(x, y) = φH + φL

2
+ φH − φL

2
tanh

2[y − H (x, y)]

W
. (48)
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FIG. 21. Velocity profile (a) and relaxation time (b) with different interpolation schemes (μ∗ = 10).

Two dimensionless numbers, Atwood number and Reynolds
number, are introduced to characterize the RTI problem and
their expressions are defined as follows:

At = (ρH − ρL )/(ρH + ρL ), Re = ρH L0

√|GyL0|/μ, (49)

where Gy stands for acceleration of gravity. The relationship
of density ratio ρ∗ and Atwood number At is ρ∗ = (1 +
At)/(1 − At). The physical parameters are fixed as L0 =
256,

√|GyL0| = 0.04, W = 5, σ = 5×10−5 and the refer-
ence time is set to be T = √

L0/|GyAt|/�t . The CFL number
is adjusted to 0.25 to reduce the temporal dissipation. The
no-slip boundary condition is applied to the top and bottom
sides and periodic boundary condition is implemented at the
left and right sides.

To make a comparison between the results obtained by
the current method and other available data presented in
literature [41,46,47,58], we first carried out a simulation at
the condition of At = 0.5, Re = 3000. Five stages in the
evolution of interface are illustrated in Fig. 24. As is observed
in previous works, the heavy fluid falls down symmetrically
by gravity and the light fluid is driven to rise up on the
opposite side. The flow patterns at early stages show the same
characteristics as those results presented in literature [46,66]
since the elongation of the interface is relatively small. With
the evolution of the system, breakups at the rolling-up tail
of the interface can be observed clearly. The results obtained
with the current method display more severe breakups, which
is mainly caused by the larger dissipation feature of DUGKS
compared to the LB method. The interface at the top of flow
domain is no longer distinguishable when it comes to the end
stage of evolution. Actually, if we make a close inspection of
the interfacial differences between the results achieved by the
Allen-Cahn–based model [46,66] and those from the Cahn-
Hilliard–based model [23,47,51] under the framework of the
LB method, it can be found that in the results presented by the
Allen-Cahn–based model the rolling-up tails of the interface
tend to break up at an early stage while an elaborated contour
of interface rolling up can be observed and tail breakups are
delayed in the results of the Cahn-Hilliard–based model. The

rolling up of the interface shown in the current case shares
some similarities with the interface elongation problem in
Sec. III C. Both of them undergo an interface elongation
process during which a smoothed interface is stretched and
prolongated. As is depicted in Sec. III, the Cahn-Hilliard–
based model shows a better performance than the Allen-
Cahn–based model in the interface elongation test. Hence, it
is reasonable to get a more distinguishable interface contour
with the Cahn-Hilliard–based model. Solving the AC equation
in the framework of DUGKS has made its weak points more
obvious.

Variations in the dimensionless positions of bubble front
of the light phase and spike tip of the heavy phase are shown
in Fig. 25. It can be seen that the results presented by the
current method are in good agreement with the previous works
[41,46,47,58].

To make a further exploration of the capability of the
present method, simulations of RTI at two more conditions
of At = 0.1, Re = 150 and At = 0.1, Re = 3000 are carried
out and the evolution of interface at five different stages
is presented in Figs. 26 and 27. At low Reynolds number
(Re = 150), there is not much difference between the results
of Zhang et al. [41] and ours as the interface pattern is simple
and no complicated structure is evolved. As the Reynolds
number goes higher (Re = 3000), large disparities in the
evolution of interface patterns can be observed between these
two models. The rolling-up tail of the interface breaks up into
small bubbles or drops, which is illustrated by the discrete
blue or red spots in Fig. 27 at t = 2.5T . With the evolution
of the interface, coalescence of these scattered elements can
be observed, which means that process of phase separation
happens locally. With the development of the system, the tail
grows thinner as well as longer. At a certain moment, breakups
of this slender tail take place and the interface pattern at t =
4.0T shows up. Compared to the evolution process depicted
by Zhang et al. [41], the present model fails to give a distinct
depiction of interface patterns at a later stage.

To investigate the influence of different hydrodynamic
models, another case using the hydrodynamic part of the He-
Chen-Zhang (HCZ) model [17] is conducted. Both Fakhari

043302-16



PHASE-FIELD METHOD BASED ON DISCRETE UNIFIED … PHYSICAL REVIEW E 99, 043302 (2019)

FIG. 22. Contours of density distribution at various moments in
the process of phase separation.

et al. [68] and Zhang et al. [41] adopt this hydrodynamic
model to solve the mass and momentum equations. All of
the parameters were kept the same as the above one with
a condition of At = 0.1, Re = 3000. The time evolution of
interface patterns is shown in Fig. 28. At early stages, the
interface patterns obtained by two different hydrodynamic
models are almost identical. Although slight disparities can
be observed at the last two stages, the overall flow patterns
obtained by the HCZ model are nearly the same as the results
achieved with the hydrodynamic model mainly used in this
work. The influence of different hydrodynamic models can
be neglected. Hence, the different phase equations should
account for the disparities in the evolution of interface patterns
discussed above.

With detailed comparisons conducted in this subsection,
we can conclude that the failure of DUGKS in the detailed
depiction of complex interfaces during the evolution of RTI

0 50 100 150 200 250
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FIG. 23. Mass variation along with the process of phase
separation.

is to blame for not only the relatively larger dissipation of
DUGKS compared to the LB method, but also the weakness
of the Allen-Cahn–based models exposed in the scenario of a
severely stretched and deformed interface. Since the model
based on the LB method shows a better performance than
the model based on DUGKS in depicting complex interfaces
during the evolution of RTI, it is reasonable to infer that a
high-order scheme of DUGKS [69] is able to overcome this
problem.

As for the underlying causes of the discrepancy noticed be-
tween the Allen-Cahn–based and Cahn-Hilliard–based mod-
els, we attempt to explain it from the physical equations em-
ployed to implement them. Both the conservative AC equation
and CH equation are able to describe phase evolution without
an explicit tracking of the interface. The only difference
between them is the source term on the right-hand side of the
two equations. The source term of the CH equation involves
fourth-order partial derivatives, while the source term of the
AC equation involves only second-order partial derivatives.
The main reason behind the different format in source terms
lies in the assumptions. Compared to the derivation of the CH
equation [70], a normal interface velocity proportional to the
interface curvature is introduced during the derivation of the
AC equation [44]. The equilibrium profile of interface also de-
pends on the curvature. The accuracy of curvature plays an im-
portant role in interface depiction. When the interface is rela-
tively simple, it is easy to calculate the value of local curvature
along with the normal interface velocity accurately. As the
interface becomes much more complicated, there may appear
precision loss in the computing of local curvature, which in
turn leads to the failure in tracking long stretched and severely
deformed interfaces. The necessity of accurate curvature value
puts a demand on the numerical scheme used to compute it
and a high-order numerical scheme is needed in order to track
complex interfaces with an Allen-Cahn–based model.

Because the main concern of our study is two-phase flow
with a large density ratio, another two cases with larger
Atwood number are carried out. Figure 29 shows the time evo-
lution of interface pattern with conditions of At = 0.98 (ρ∗ =
99), Re = 150 and At = 0.998 (ρ∗ = 999), Re = 50. Of note

043302-17



YANG, ZHONG, AND ZHUO PHYSICAL REVIEW E 99, 043302 (2019)

FIG. 24. Time evolution of interface patterns of Rayleigh-Taylor instability at At = 0.5 (ρ∗ = 3), Re = 3000.

is that the interface width W = 8 in this simulation. It can be
found that the heavy fluid falls directly into the light fluid and
no rolling-up behavior of interface is observed. The results
obtained here show a considerable similarity with the results
of Ren et al. [46]. The current method fails to simulate the
condition with a higher Reynolds number (At = 0.98, Re =
600), which is mainly caused by the larger dissipation of
DUGKS compared to LBM. A high-order scheme is necessary
to simulate conditions with high Reynolds number as well as
large density ratios [10].

V. CONCLUSION

In this article, a phase-field method for the simulation of
two-phase flows is developed in the framework of DUGKS.
The conservative Allen-Cahn equation is used to capture
the interface and incompressible hydrodynamic models are
employed to solve the velocity and pressure field. The macro-
scopic equations can be recovered exactly from the discrete
kinetic models through the Chapmann-Enskog analysis.

The performance of our proposed model is validated
thoroughly by a series of numerical tests. In the interface-

FIG. 25. Time evolution of bubble front and spike tip positions. Comparison with the results of Zhang et al. [41], Li et al. [47], Ren et al.
[46], and Ding et al. [58].
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FIG. 26. Time evolution of interface patterns of Rayleigh-Taylor instability at At = 0.1 (ρ∗ = 1.1/0.9), Re = 150.

capturing tests, our model presents reliable results which
are in good agreement with the LB method in terms of the
convergence rate and numerical dispersion at various Péclet
numbers and mobility coefficients. A key weakness of the

Allen-Cahn–based model, ignored by Wang et al. [50], is
observed in the simulation of interface elongation test. It has
been verified that this drawback does have an impact on the
results of the Rayleigh-Taylor instability. In the binary flow

FIG. 27. Time evolution of interface patterns of Rayleigh-Taylor instability at At = 0.1 (ρ∗ = 1.1/0.9), Re = 3000.
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FIG. 28. Time evolution of interface patterns of Rayleigh-Taylor instability by the HCZ model at At = 0.1 (ρ∗ = 1.1/0.9), Re = 3000.

tests, stationary bubbles with various density ratios are inves-
tigated. Laplace’s law has been verified and relations between
the maximum magnitude of spurious velocity and the Laplace
number at various density ratios are disclosed quantitatively.
Compared to previous work, a lower magnitude of spurious
velocity can be achieved with the present method. In the case
of layered Poiseuille flow, the numerical results of velocity

FIG. 29. Time evolution of interface patterns of Rayleigh-
Taylor instability at (a) At = 0.98 (ρ∗ = 99), Re = 150; (b) At =
0.998 (ρ∗ = 999), Re = 50.

profile obtained at high viscosity ratios agree well with the
analytical solution. The comparison between two different
schemes of viscosity calculation is conducted and similar
phenomena to that shown by Zu and He [51] are observed.
The capability of the present model in the simulations in-
volving high density ratio is further validated by the spinodal
decomposition test. The phenomenon of mass generation or
dispersion is observed and the parameter that conservativeness
qualifies has been emphasized. The present model fails to give
a detailed depiction of the interface patterns in the evolution
process of Rayleigh-Taylor instability, which is mainly due
to the numerical dissipation of DUGKS. To overcome this
problem, a high-order scheme or adaptive mesh refinement
technique needs to be implemented.

In conclusion, we conduct a preliminary research on the
performance of the Allen-Cahn–based two-phase model under
the framework of DUGKS. Satisfying results are obtained in
several benchmark tests. Compared to the model proposed
by Zhang et al. [41], a high density ratio of 1000 can be
achieved and calculation of source terms referring to high-
order derivatives has been simplified. The detailed depiction
of the subtle interfaces appeared during the evolution of
Rayleigh-Taylor instability is failed. A high-order scheme
needs to be developed in future research.

ACKNOWLEDGMENTS

The project has been financially supported by the National
Natural Science Foundation of China (Grant No. 11472219),
the 111 Project of China (Grant No. B17037), and the ATCFD
Project (No. 2015-F-016).

043302-20



PHASE-FIELD METHOD BASED ON DISCRETE UNIFIED … PHYSICAL REVIEW E 99, 043302 (2019)

APPENDIX: CHAPMAN-ENSKOG ANALYSIS

In this Appendix, the macroscopic equations are recovered from the discrete kinetic equation with the application of
Chapman-Enskog analysis. With the introduction of a small parameter ε, the discrete distribution function and derivative
operators in Eq. (20) can be expanded as

ψi = ψ
(0)
i + εψ

(1)
i + ε2ψ

(2)
i + · · · , (A1a)

∂t = ε∂t0 + ε2∂t1 , ∇ = ε∇0, Si = εSi
(0). (A1b)

Substituting the above equation into Eq. (20) and rearranging each item based on the power of ε, we have

ε0 : ψ
(0)
i = ψ

(eq)
i , (A2a)

ε1 : ∂t0ψ
(0)
i + ξi · ∇0ψ

(0)
i = − 1

τ
ψ

(1)
i + S(0)

i , (A2b)

ε2 : ∂t0ψ
(1)
i + ∂t1ψ

(0)
i + ξi · ∇0ψ

(1)
i = − 1

τ
ψ

(2)
i . (A2c)

First, we give a detailed derivation of the AC equation (5).
The moments of fi and its corresponding source terms can be calculated by Eqs. (15) and (16), i.e.,∑

i

f eq
i = φ,

∑
i

ξi f eq
i = φu,

∑
i

ξiξi f eq
i = φRT I, (A3)

∑
i

F (0)
i = 0,

∑
i

ξiF
(0)

i = F (0)
φ = ∂t0 (φu) + ε∂t1 (φu) + θRT

∇0φ

|∇φ| . (A4)

Replacing ψi with fi in Eq. (A2) and taking the zeroth- and first-order moments of Eq. (A2b), we have

∂t0φ + ∇0(φu) = 0, (A5a)

∂t0 (φu) + RT ∇0φ = − 1

τ f
M (1) + F (0)

φ . (A5b)

The zeroth-order moment of Eq. (A2c) is given as

∂t1φ + ∇0M (1) = 0. (A6)

Calculate M (1) in Eq. (A5b) and substitute it into Eq. (A6), and then we have

∂t1φ = τ f RT ∇0

(
∇0φ − θ

∇0φ

|∇φ| − ε∂t1 (φu)

)
. (A7)

Combining Eq. (A7) with Eq. (A5a) and neglecting the term of O(ε3), the final AC equation (5) can be exactly recovered with
Mφ = τ f RT .

Next the recovery of hydrodynamic equations are explained with elaboration. The moments of gi and its corresponding source
terms can be computed from Eqs. (17) and (19), i.e.,∑

i

g(eq)
i = 0,

∑
i

ξig
(eq)
i = ρu,

∑
i

ξiξig
(eq)
i = pI + ρuu,

∑
i

ξiξiξig
(eq)
i = RT ρ3̃uI = RT ρ(δαβuγ + δβγ uα + δγαuβ ), (A8)∑

i

Gi = u · ∇ρ,
∑

i

ξiGi = Fs + G = F,

∑
i

ξiξiGi = [uF + Fu] + RT [u∇ρ + ∇ρu + (u · ∇ρ)I]

= [uαFβ + uβFα] + RT [uα∂βρ + uβ∂αρ + uγ ∂γ ρδαβ ]. (A9)

Since we have the following relations in terms of the conservative variables,∑
i

gi = 0,
∑

i

ξigi = ρu. (A10)
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It is easy to get ∑
i

g(k)
i = 0,

∑
i

ξig
(k)
i = 0, k > 0. (A11)

Replacing ψi with gi in Eq. (A2) and taking the zeroth- and first-order moments of Eq. (A2b), we have

∇ · u = 0, (A12a)

∂t0 (ρu) + ∇0(ρuu + pI) = − 1

τg
�(1) + F (0), (A12b)

where �(1) = ∑
i ξigi

(1) = 0.
The zeroth- and first-order moments of Eq. (A2c) are expressed as

∇0�
(1) = 0, (A13a)

∂t1 (ρu) = −∇0

(∑
i

ξiξig
(1)
i

)
, (A13b)

where ∑
i

ξiαξiβg(1)
i = −τg

[
∂t0 (ρuαuβ + pδαβ ) + RT [∇0α (ρuβ ) + ∇0β (ρuα ) + ∇0γ (ρuγ )] −

∑
i

ξiαξiβG(0)
i

]

= −τgRT [ρ∂0αuβ + ρ∂0βuα] + O(u3). (A14)

Combining Eq. (A13b) with Eq. (A12b), we get the momentum equation in final form:

∂t (ρu) + ∇ · (ρuu + pI) = ∇ · [ρν(∇u + ∇uT )] + F, (A15)

where ν = τgRT .
Since the computation of dynamic pressure in Eq. (33) is a bit complicated, a detailed derivation is given below. The zeroth-

order moment of Eq. (23a) with ψi replaced by gi is given as∑
i

g̃i = 2τg + �t

2τg

∑
i

gi − �t

2τg

∑
i

geq
i − �t

2
u · ∇ρ, (A16)

where gi can be divided into the equilibrium part geq
i and nonequilibrium part gneq

i . Then, the above equation can be rearranged
as ∑

i

g̃i + �t

2
u · ∇ρ =

∑
i

geq
i + 2τg + �t

2τg

∑
i

gneq
i = 0. (A17)

Subtracting g̃0 from the left-hand side of the above equation, we get∑
i �=0

g̃i + �t

2
u · ∇ρ =

∑
i �=0

geq
i + 2τg + �t

2τg

∑
i �=0

gneq
i − �t

2
G0︸ ︷︷ ︸

O(u3 )

. (A18)

With the help of Eq. (A11), the above equation can be rewritten as∑
i �=0

g̃i + �t

2
u · ∇ρ = −geq

0 − 2τg + �t

2τg
gneq

0 . (A19)

The nonequilibrium term gneq
0 can be dropped since its value is tiny compared to that of geq

0 . At last we have∑
i �=0

g̃i + �t

2
u · ∇ρ = −geq

0 . (A20)

The dynamic pressure can be finally calculated by Eq. (17).
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