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Analytic theory of relativistic self-focusing for a Gaussian light beam entering a plasma:
Renormalization-group approach
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Using the renormalization-group approach, we consider an analytic theory describing the formation of a
self-focusing structure of a laser beam in a plasma with relativistic nonlinearity for a given radial intensity
distribution at the entrance and derive approximate analytic solutions. We study three stationary self-focused
waveguide propagation modes with respect to controlling laser-plasma parameters for a Gaussian radial intensity
distribution at the plasma boundary. The proposed theory specifies the domains and their boundaries on the plane
of the controlling parameters where (1) self-trapping, (2) self-focusing on the axis, and (3) tubular self-focusing
solutions occur. We review the concept of the critical power and show that it must be correlated to the form of
the entering light pulse and its value corresponding to the minimum power that admits self-channeling can be
significantly lower than the widely used value 17(ω2/ω2

pe ) GW.
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I. INTRODUCTION

When investigating the propagation of powerful laser ra-
diation beams in plasma, a key issue is to find conditions
for transferring the energy of laser radiation to distances
exceeding the length at which its natural diffraction spreading
occurs in a linear medium. The diffraction divergence of a
light beam in a nonlinear medium (plasma) can be prevented
due to a well-known self-focusing effect for high-power
laser radiation. For the first time self-focusing was predicted
by Askar’yan in 1962 [1] due to the thermal and charge-
displacement nonlinearities. Lasers now have an intensity for
which the problem of the self-focusing of light in a plasma
with a relativistic nonlinearity becomes relevant. An impor-
tance of relativistic effects for self-focusing was first claimed
in [2], and then in [3]. Standardly, relativistic self-focusing
is associated with the effects of relativistic electron mass
and charge-displacement self-channeling that was analyzed
theoretically in the works [4,5] and later on was observed ex-
perimentally [6]. Then, it was studied more completely in both
experiments and numerical simulations in Refs. [7–9]. A more
complicated physical picture may occur if a self-generated
magnetic field affects a relativistic self-focusing. This was
first studied both theoretically and numerically [10] and then
supported by experiment with simulation [11]. Clarifying the
nature of the self-focusing process helps to introduce various
applications, such as wake-field particle acceleration [12–16],
fast ignition concept [17], and penetration of laser radiation
through underdense plasma [18].

Analytical description of the relativistic self-focusing is
based on the classical nonrelativistic approach developed
during the decades of the last century for various types
of medium’s nonlinearities and models of light propagation
[1,19–24]. From the historical standpoint, self-focusing of

wave beams for media with a cubic nonlinearity that corre-
sponds to a relatively low beam intensity has been studied
extremely thoroughly. The obtained results are represented
by exact and approximate analytic theories and also by many
numerical calculations. These results have been described in
several reviews and monographs [19–24]. As for the rela-
tivistic self-focusing, it still remains the subject of active
theoretical studies (e.g., [25]). Despite the large number of
theoretical investigations performed, they are all far from the
most needed study: an analytic description of the formation
of a self-focusing structure of a laser beam having a given
form of the radial intensity distribution at the entrance. All the
theories of relativistic self-focusing so far known that describe
the spatial distribution of the electric field of a light beam in
a plasma are to some extent based on ad hoc constructions,
and this does not allow accepting the obtained solutions, their
properties, and the resultant parametric scaling as entirely
relevant to the boundary value problem (Cauchy problem for
the stationary beams) of practical interest. A theory describing
the redistribution of the laser beam shape from a given radial
distribution at the medium boundary (e.g., from a Gaussian-
shaped beam profile) to the self-consistent self-channeling
profile is very much needed.

A natural advance in the theory of relativistic self-focusing
would be to solve the corresponding Cauchy problem for a
plasma where an intense laser beam modifies the dielectric
constant due to the effects of both relativistic electron mass
and ponderomotive displacement of electrons. We note that a
relativistically intense laser beam leads to the displacement of
electrons from the plasma channel even to the extent of their
complete evacuation, called electron cavitation [5,6,26–29].
We previously presented a solution of the Cauchy problem
using our proposed approximate theory for a nonrelativis-
tic plasma with cubic and saturating nonlinearities for a

2470-0045/2019/99(4)/043201(12) 043201-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.043201&domain=pdf&date_stamp=2019-04-02
https://doi.org/10.1103/PhysRevE.99.043201


V. F. KOVALEV AND V. YU. BYCHENKOV PHYSICAL REVIEW E 99, 043201 (2019)

Gaussian incoming light beam [30,31]. We recently proposed
an extension of this theory based on the renormalization-
group approach [32] to a plasma medium with relativistic
nonlinearity, but the preliminary study [33] was limited to
only a selective demonstration of representative examples
for channeled light propagation. Here, we aim to fill the
void by extending the Cauchy problem for relativistic self-
focusing to a multiparametric study of possible channeled
propagation regimes and their domains of existence on the
plane of laser-plasma controlling parameters, i.e., electron
plasma density, laser intensity (I × λ2, in fact), and beam size.
The theory presented here applies to a circularly polarized
electromagnetic laser wave and a cold plasma approximation.
This analytic study describes self-consistently the formation
of self-focusing structures for a relativistically intense laser
beam with a given transverse form (e.g., Gaussian) of the
intensity distribution at the entrance.

Certainly, numerical simulation of relativistic self-focusing
is now a well-developed tool capable, in principle, of replac-
ing analytic theory. Nevertheless, despite the large number of
published numerical results on relativistic self-focusing (e.g.,
[5,6,25–29,34]), they still cannot entirely compete with theory
in terms of predictive capabilities because of the multipara-
metric nature of the problem. Moreover, numerical simula-
tions cannot be regarded as an easy-to-use tool accessible
to all in contrast to analytic formulas. Analytic theory can
predict the behavior of self-focusing in the entire range of
the controlling parameters. However, none of the analytic
methods are able to provide an exact solution to the non-
linear Schrödinger equation (NLSE) for arbitrary boundary
conditions. Only some specific boundary value problems that
are far from practical applications have been solved so far.
At the same time, numerical simulations in their concrete
implementations can go beyond theoretical approaches by us-
ing more complicated plasma models, which are often closer
to experimental conditions. Therefore, even an approximate
analytic theory for practical boundary conditions being tested
in simulations may advance the understanding of possible
regimes of relativistic self-focusing. Both simulations and
experiments demonstrate that relativistic self-focusing is ac-
companied by several characteristic effects, such as stationary
and nonstationary channeling of a light beam, the formation
of ring structures or numerous filaments [5,6,26,27,29,35],
electron cavitation [28,36], and self-induced transparency
[36–38]. We demonstrate that our theory reproduces some of
these features.

As in [30], we here start from the reduced wave equation
for a stationary circular-polarized light in a paraxial approx-
imation for a medium with relativistic nonlinearity includ-
ing the relativistic electron mass increase and the charge-
displacement nonlinearity. Such a model based on the nonlin-
ear Schrödinger equation is widely used to study propagation
of electromagnetic wave beams in a plasma [6,29,36]. The
physical picture of beam self-focusing in this model depends
on the competition of two dimensionless parameters. One
parameter describes the relative strength of the diffraction
with respect to the relativistic electron mass nonlinearity,
and the other is the laser intensity in the relativistic units
and characterizes the contribution of the charge-displacement
nonlinearity. As in the case of a medium with a cubic

nonlinearity [30], the Cauchy problem is posed with a Gaus-
sian radial distribution of the beam intensity at the entrance
of the medium to find an approximate analytic NLSE solution
and classify the possible self-focusing regimes describing this
solution and depending on the controlling parameters.

The paper is divided into four sections and an Appendix.
In Sec. II, we formulate the initial equations for the theo-
retical analysis of light beam propagation in a plasma with
a relativistic nonlinearity, reducing the original NLSE to a
pair of equations for the eikonal derivative and the electric
field amplitude of the laser beam. In Sec. III, we obtain
an approximate analytic solution of the derived equations
using the renormalization-group symmetry method [30,33]
(the details of the method are presented in the Appendix).
We analyze our NLSE solution for a Gaussian beam at the
plasma boundary. In the plane of controlling parameters, we
analytically find the boundaries of the domains corresponding
to different types of beam behavior, which is the result from
our theory most important for experiments. In Sec. IV, we
present examples of the spatial distributions of the electric
field and electron density for different laser beam and plasma
parameters. In Sec. V, we summarize and discuss the results.

II. BASIC EQUATIONS

To analyze the effects of the self-action of a light beam
of relativistic intensity in a plasma, we start from the widely
used mathematical model (see, e.g., [6] and Secs. 6 and 6.4.1
in [25]) in the form of the NLSE

2ik∂zE + �⊥E + k2 εnl

ε0
E = 0, E (0, r) = E0(r), (1)

for the complex electric field amplitude E (z, r) of a circularly
polarized electromagnetic wave (for the case of linear polar-
ization the anisotropic effects can be important [39]) with
the frequency ω slowly varying in the propagation direction
z. Equation (1) corresponds to a paraxial (quasioptical) ap-
proximation describing the stationary structure of the wave
beam. Here, k = (ω/c)

√
ε0 is the wave number of the elec-

tromagnetic wave, �⊥ is the Laplace operator in the plane r
perpendicular to the beam axis, z, ε0 = 1 − 4πe2ne0/(m0ω

2)
is the linear dielectric permittivity of the plasma, and εnl is the
real part of the nonlinear permittivity of the plasma.

The nonlinearity in NLSE (1) is determined by the non-
linear refraction of the light beam given by the function εnl:

εnl = ε0
k2

p

k2

(
1 − ne

γ ne0

)
, k2

p = 4πe2ne0

m0c2
. (2)

It is due to two factors: (1) the relativistic nonlinearity of the
electron mass, determined by the value of the relativistic fac-
tor γ =

√
1 + |E/Erel|2, where E2

rel = (ωcm0/e)2, and (2) the
charge-displacement nonlinearity, which determines the non-
linear deformation of the electron density ne = ne0Ne(γ ), pro-
portional to �⊥γ . Usually, the well-known standard formula

Ne = max
{
0, 1 + k−2

p �⊥γ
}

(3)

is used for Ne, which we follow also taking the standard con-
dition of the non-negativity of the electron density ne � 0 into
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account, which allows describing a strong density modulation
including the electron cavitation effect [6]. The modification
of the piecewise smooth function (3) to obtain a smoothed
transition from a vanishingly low electron density Ne → 0
to a linear dependence on �⊥γ by taking a weak thermal
motion of electrons into account was discussed in [28,36]. As
a possible example of such a modification, we can also use the
smooth approximation

Ne = 1 + k−2
p �⊥γ

1 − exp
[−α0

(
1 + k−2

p �⊥γ
)] , (4)

where the value of the positive parameter α0 � 1 determines
the transition from the linear dependence of Ne ∝ �⊥γ to the
exponentially decreasing Ne → 0 with the intensity gradient
change. Relying on arguments akin to those used in [28], we
believe that there is no need for a concrete identification of
the mechanism responsible for α0 if the results for different
α0 � 1 differ very little.

Using quasioptical approximation (1) establishes the ap-
plicability conditions for our theory, which is determined by
the following constraints on the characteristic longitudinal and
transverse scales 	‖ and 	⊥ of the complex amplitude E (also
see [25]):

k	‖, kp	‖ � 1, k	2
⊥ ≈ 	‖ max

{
1; (k	⊥)2 εnl

ε0

}
. (5)

The inequality in Eq. (5) means that the laser pulse length
substantially exceeds the wavelengths of the corresponding
electromagnetic and plasma fields. It allows neglecting the
contribution of the term with the second derivative of the
electric field with respect to the longitudinal coordinate z
(along the beam axis) compared with the first term con-
tribution to Eq. (1) when deriving the NLSE from more
complicated equations. The approximate equality in Eq. (5)
relates the characteristic transverse and longitudinal scales
of the electric field caused by diffraction and nonlinearity.
Using NLSE (1) involves considering only the electromag-
netic wave propagating forward into the nonlinear medium
and the absence of backward waves that could arise in the
presence of sharp gradients of the dielectric constant of the
medium in the longitudinal direction (see, e.g., p. 432 in
Sec. 17.12 in [24]). Conditions (5) can be violated if the
solution singularity appears where the characteristic longitu-
dinal scale of the complex field amplitude sharply decreases.
Hence, the analytic solution that we obtain characterizes the
behavior of the beam in some finite spatial domain from the
entrance up to the singularity point. This restriction follows
from the mathematical model used based on the NLSE (also
see the discussion of this question in Sec. 9.2 in [25]).

Using the standard representation for the complex field
amplitude E = A exp(iks) and introducing w ≡ A2 = |E |2
and the derivative v = {v, 0} = ∇⊥s of the eikonal s along
the radius, we reduce NLSE (1) to the two equations

∂zv + v∂rv − 1

2
∂r

(
1√
w

(�⊥
√

w ) + ρ2F

)
= 0,

∂zw + w∂rv + v∂rw + w
v

r
= 0,

F = 1 − Ne(γ )

γ
, γ =

√
1 + i0w. (6)

In Eqs. (6), we use the following dimensionless variables for
the coordinates and complex field amplitude:

z →
√

2β
z

d
, r → r

d
, w → w

w0
, v → v√

2β
, (7)

where β = 1/2k2d2, d is the characteristic transverse dimen-
sion of the light beam, and w0 is the maximum value of w

at the boundary of the medium. The contributions propor-
tional to ρ2 = ω2

ped2/c2 and i0 = (e/ωm0c)2w0 determine the
role of the effects of the relativistic and charge-displacement
nonlinearity given by the function F . The parameter i0 can
be written as the ratio of the maximum beam intensity
I0 = (c/4π )w0 to the characteristic relativistic intensity Ir =
ω2m2

0c3/(4πe2), i.e., i0 = I0/Ir . In the limit i0w � 1, the
function F corresponds to a medium with cubic nonlinearity
limi0w→0 F = Fcub = (i0/2)w.

Equations (6) should be supplemented by the boundary
conditions that determine the structure of the beam at the
entrance z = 0 of the nonlinear medium. Following, we con-
sider a cylindrically symmetric beam with a plane initial phase
front, i.e., with the zero eikonal derivative v(0, r) = 0 and a
smooth distribution function for the square of the modulus of
the electric field w(0, r) ≡ J (r).

III. APPROXIMATE ANALYTIC SOLUTION:
PROPAGATION OF A GAUSSIAN BEAM IN A PLASMA

To obtain an analytic solution of Eqs. (6), we use
the method of renormalization-group symmetries [32]. This
method consists in finding symmetries of a special kind
that leave the approximate perturbative solution of Eqs. (6)
(which holds at small distances from the boundary z = 0 of
the nonlinear medium) invariant and using these symmetries
to extend the approximate solution to the domain far from
the boundary. We previously used this procedure to derive
solution of Eqs. (6) in a medium with cubic and saturating
nonlinearities [30,31]. More details on the implementation of
this procedure for a medium with a relativistic nonlinearity are
described in the Appendix. The resulting approximate analytic
solutions for Eqs. (6) have the forms

v(z, r) = (z/2)∂χS, w(z, r) = J (μ)
χ

r

∂χ2 S

∂μ2 S
. (8)

Here, the variables χ and μ are defined in terms of z and r
using the relations

r = χ (1 + z2∂χ2 S), S(μ) = S(χ ) + z2

4
(∂χS)2 (9)

with the function S depending on χ = r − vz:

S(χ ) = ρ2F (J ) + 1

χ
√

J (χ )
∂χ [χ∂χ (

√
J (χ ))],

F (J ) = 1 − Ne{γ [J (χ )]}
γ [J (χ )]

, (10)

and accounting for the effects of the relativistic and charge-
displacement nonlinearity of the medium.

In the case where the nonlinear and diffraction contribu-
tions to (10) balance each other, i.e., for S = 0, we obtain
a solution depending only on the coordinate r in the form
of a waveguide configuration [30,31]. This occurs only for
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certain forms of the distribution of the light beam electric
field amplitude at the medium boundary. In the more general
case, where the nonlinear and diffraction contributions do not
balance each other [an arbitrary distribution of J (r) at the
entry into the medium], the electric field distribution in the
medium is described by a two-dimensional solution (8) of
system (6), depending on both r and z.

We note that in obtaining formulas of type (8) for the cubic
nonlinearity or nonlinearity with saturation in [30,31], we
made no initial assumptions concerning the spatial structure
of the beam in the medium. Therefore, the relations obtained
there are applicable for beams with arbitrary smooth boundary
distributions. This is a fundamental difference from the case of
relativistic nonlinearity under consideration because we must
restrict the laser beam form at the entrance by requiring the
absence of complete cavitation of electrons (we do not discuss
the effect of cavitation of electrons at the boundary of the
medium here). If this restraint is satisfied, then the only limita-
tion that makes relations (8) approximate and not exact is due
to the algorithm for deriving an approximate solution using
approximate renormalization-group symmetries (see [30,31]
and the Appendix for more details). Therefore, the correctness
of the solution given by Eq. (8) depends on the validity of the
already used quasioptical approximation (5) and the absence
of explosionlike distortion of the spatial profile of the beam.
Our renormalization-group algorithm, in principle, allows for
the latter to occur, for example, as a result of breaking the
profile v(z, r). This is manifested in the characteristic propa-
gation length znl � 	nl, where 	nl = (ρ2F )−1 is determined
by the considerable change in the beam intensity along its axis
due to nonlinearity. Roughly speaking, the developed theory
based on approximate renormalization-group symmetries is
applicable for propagation distances before the solution sin-
gularity appears.

We emphasize that the solution Eqs. (8)–(10) of Eq. (6)
are valid for arbitrary smooth function Ne(γ ) and therefore
for the function (4) of interest. Correspondingly, the relations
and plots depending on Ne(γ ), which are obtained below,
use Eq. (4) with α0 � 1, where the dependence on α0 is
negligible.

Using Eqs. (8), we analyze the evolution of the laser beam
with the initial Gaussian profile J (r) = exp(−r2) and assume
that the effect of electron cavitation does not appear at the
boundary of the nonlinear medium. We can then even use in
Eq. (10) the simplest expression for Ne, Eq. (3), which is itself
a smooth function and does not require smoothing approxi-
mation, Eq. (4). The function F in Eq. (10) is determined only
by the initial distribution of the square of the amplitude of the
electric field of the beam at z = 0. We rewrite the expression
for S(χ ) after introducing the variable p = exp(−χ2) in the
form

S(p) = ρ2

(
1 − 1√

1 + i0 p

)
− 2

1 + i0 p
− ln p

(1 + i0 p)2
. (11)

We recall that the applicability of Eq. (11) is limited only
by distributions of electron densities that correspond to the
condition that there is no effect of electron cavitation at the
boundary of the nonlinear medium z = 0, i.e., cavitation does

not occur when the inequality

ρ � ρcav, where ρ2
cav = 2i0(1 + i0)−1/2, (12)

is satisfied. A characteristic feature of the solution given by
Eqs. (8), (9), and (11) is the possibility of the growth of
distortions of the wavefront of the beam with the coordinate
z, up to breaking the profile v(z, r). This happens when a
single-valued dependence of r on χ is violated, i.e., when
two conditions are met: ∂χχ r = 0 and ∂χ r = 0. The first
condition defines the radial coordinate of the breaking point
rbr = √

ln 1/pbr (1 − z2
br{p∂pS}|p=pbr ) written in terms of pbr,

and the second gives the corresponding coordinate zbr along
the beam axis. In the variables {z, p}, the conditions for the
appearance of the solution singularity can be written as{

p

√
ln

1

p
[3(∂pS + p∂ppS) + 2 ln p(∂pS + 3p ∂ppS

+ p2∂pppS)]

}
|p=pbr

= 0, (13)

z2
br = {[p ∂pS + 2 ln p(p ∂pS + p2∂ppS)]−1}|p=pbr . (14)

Solutions of the equation for pbr in Eq. (14) correspond to
either of its two factors vanishing, i.e., either (a) ln(1/pbr ) =
0, which corresponds to the appearance of the axial singularity
pbr = 1, or (b) the expression in square brackets in Eq. (14)
vanishes, which corresponds to the off-axis singularity pbr �=
0. We analyze these two cases separately.

(a) The appearance of the axial singularity pbr = 1. The
simplest form of Eqs. (14) is obtained at pbr = 1, when a
singularity appears on the beam axis at the point {zbr}p=1 ≡
zaxis defined by the equality

z2
axis =

[
ρ2i0

2

1

(1 + i0)3/2
+ 2i0 − 1

(1 + i0)2

]−1

. (15)

The positivity condition z2
axis > 0 determines the range of

parameters ρ2 and i0 for which there exists an axial singularity

ρ > ρaxis, where ρ2
axis = 2

i0
(1 − 2i0)(1 + i0)−1/2,

i0 �
√

2 − 1. (16)

The minimum beam radius ρaxis depending on i0 above which
an axial singularity appears corresponds to the limit z2

axis →
∞ in (15). The upper limit of i0 in Eq. (16) is given by the
condition of the absence of the electron cavitation effect at
z = 0 and corresponds to ρaxis � ρcav. For a higher laser beam
intensity i0 >

√
2 − 1, the allowable range of the beam radius

is cut from the side of small values by the condition ρ > ρcav.
(b) The appearance of an off-axis singularity pbr �= 1. The

off-axis singularity corresponds to a nonzero value pbr �= 1
given by the condition ∂χχ r = 0, which in this case becomes

[3(∂pS + p ∂ppS) + 2 ln p(∂pS + 3p ∂ppS

+p2∂pppS)]|p=pbr = 0. (17)

The boundary of the domain of parameters for which there
exists an off-axis singularity is determined by the equation

ρ = ρoff , where ρ2
off = 8(3 − i0)

(i0 − 2)
√

1 + i0
(18)
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FIG. 1. The boundaries of the domains I, II, III, and IV on the
parameter plane {i0, ρ} for different types of solutions (8). These
boundaries are defined by the relations ρ = ρaxis(i0) (curve a, bound-
ary between I and II), ρ = ρoff (i0) (curve b, boundary between II
and III), and ρ = ρcav(i0) (curve c, boundary between IV and all the
others, I, II, and III).

for 2 < i0 �
√

13 − 1. For greater beam intensity values i0 >√
13 − 1, the lower boundary of the beam radius is given, as in

case (a), by the condition ρ > ρcav. Comparing Eqs. (16) and
(18) shows that the boundary of the domain for the solution
with the off-axis singularity is at greater beam intensities than
the domain for the solution with the axial singularity.

Combining the above conditions on the beam-plasma pa-
rameters given by Eqs. (12), (16), and (18), we obtain the
partitioning of the controlling parameter plane into several
domains. A graphical representation on the parameter plane
{i0, ρ} in terms of the domain boundaries is shown in Fig. 1.
The domains are labeled by the numbers I, II, III, and IV and
characterize qualitatively different behaviors of the laser beam
in plasma. The curves separating these domains are defined
as follows. The boundary between the domains I and II (curve
a) is defined by the equation ρ = ρaxis(i0). The boundary
between the domains II and III (curve b) is defined by the
equation ρ = ρoff (i0). The boundary between the domain IV
and all the other domains (curve c) is defined by the equation
ρ = ρcav(i0). Although the parameter plane describes the laser
beam behavior in a wide range of parameters, extremely small
values of ρ are excluded from our consideration by constraints
(5) on the theory.

Knowing the boundaries of the domains in the parameter
plane {ρ, i0} makes it much easier to analyze the type of
solutions and the conditions for the appearance of the solution
singularities. This is an important finding in the theory of
relativistic self-focusing. Even if there is no solution singu-
larity, i.e., in domain I, a specific regime for a light beam
with relativistic nonlinearity still exists, which is of physical
interest. Namely, this is the regime in which the intensity of
the beam along the axis is preserved at distances exceeding
the diffraction length defining divergence of light rays in a
linear medium. Such a beam self-trapping mode occurs when
its radius is close to ρaxis given by (16) but does not exceed it;
the point in the parameter domain is close to curve a.

For the plasma and beam parameters related to domains
II and III, the appearance of the axial singularity, whose

0.0 0.5 1.0 1.5
r0.0

0.1
0.2
0.3
0.4
0.5
0.6

v

0.0 0.5 1.0 1.5
r0.0

0.2

0.4

0.6

0.8

1.0

w

FIG. 2. The spatial distribution of the eikonal derivative v (left
image) and the square of the amplitude of the electric field of the
light beam w (right image) for different values of the longitudinal
coordinate z along the beam axis for i0 = 0.01 and ρ = 13.96:
the different curves correspond to the transition from z = 0 to
0.6; 0.8; 0.9; 1.0; 1.2. An increase of z is accompanied by a clearly
discernible decrease of w in the region of small r → 0.

coordinate is found from formula (15), is possible if the
condition {p ∂pS}p=1 > 0 is satisfied. Similarly, for plasma
and beam parameters related to domain III, the condition for
the appearance of an off-axis singularity can be satisfied. The
corresponding “radial coordinate” pbr of the singularity for the
given values of i0 and ρ is found from Eq. (17) if the inequality
{p ∂pS + 2 ln p(p ∂pS + p2∂ppS)}p=pbr > 0 is satisfied. If this
condition is satisfied, then the coordinate of the singularity
point along the beam axis zbr can be found from Eq. (14)
using the previously found value pbr. In general, solution (8)
can be characterized by several singularities with different
longitudinal coordinates. Comparing these coordinates allows
identifying the smallest of them, which characterizes the
most rapidly manifested singularity. Beyond the point of this
singularity, the obtained solution (8) becomes inapplicable,
limiting the applicability domain of the theory. We do not
discuss domain IV of parameters corresponding to the effect
of cavitation of electrons at the boundary of the medium in
this paper.

IV. EXAMPLES OF THE LASER FIELD AND
ELECTRON DENSITY SPATIAL DISTRIBUTIONS

To illustrate the results obtained above, we now present
plots of the spatial distributions of the eikonal derivative,
the square of the amplitude of the light beam electric field,
and the electron density obtained above using approximate
analytic solution (8) for the four sets of parameters i0 and ρ

corresponding to the four points (p1), (p2), (p3), and (p4) in
Fig. 1.

The first two examples correspond to those values of i0 and
ρ for which the points (p1) and (p2) in the plane {i0, ρ} are
to the left of curve a but very close to it. In this case, the
nonlinearity partially compensates the diffraction spreading
of the beam as the z increases but not so much as to lead
to the formation of a singularity. Such a regime in which the
beam intensity in the near-axis region is preserved at distances
exceeding the length at which the beam diffraction divergence
occurs in a linear medium is called the self-trapping mode
of the wave beam. This mode is illustrated in Figs. 2 and 3,
where the spatial distribution of the eikonal derivative v and
the square of the amplitude w of light beam electric field are
shown for i0 = 0.01, ρ = 13.96 [point (p1)] and for i0 = 0.1,
ρ = 3.99 [point (p2)] for different values of the coordinate z
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FIG. 3. The spatial distribution of the eikonal derivative v (left
image) and the square of the amplitude w of the electric field of
the light beam (right image) for different values of the longitudi-
nal coordinate z along the beam axis for i0 = 0.1 and ρ = 3.99:
the different curves correspond to the transition from z = 0 to
0.6; 0.8; 0.9; 1.0; 1.2. An increase of z is accompanied by a clearly
discernible decrease of w in the region of small r → 0.

along the beam axis. Comparing the plots in Figs. 2 and 3
shows their qualitative and quantitative similarity, and the
difference is manifested in the plots of the spatial distribution
of the electron density presented in Fig. 4. We note that for the
parameters corresponding to points (p1) and (p2) in the plane
{i0, ρ}, the role of the ponderomotive charge-displacement is
negligibly small, the electron density perturbations are very
low, and there is no cavitation of electrons.

The next example corresponds to values of the parameters
i0 and ρ for which the point on the plane {i0, ρ} is in domain
II, i.e., between curves a and b. As follows from the results
obtained above, a solution singularity in this case can arise,
developing on the beam axis. The illustration of this focusing
on the axis regime is presented for the parameter values i0 =
0.2 and ρ = 5 corresponding to point (p3) in Fig. 1. The plots
of the spatial distributions of the eikonal derivative v and the
square of the amplitude w of the electric field of the light beam
for different values of the coordinate z are shown in Fig. 5.

Finally, the last example corresponds to values of the
parameters i0 and ρ for which the point on the plane {i0, ρ}
is in domain III, i.e., to the right of curve b. In this case,
there is a possibility to develop both off- and on-axis solution
singularities, which for the parameter values i0 = 5, ρ = 3
corresponding to point (p4) in Fig. 1 appear at zbr ≈ 0.686
(off-axis singularity) and at zaxis ≈ 0.749 (for the on-axis sin-
gularity). The plots of the spatial distributions of the eikonal
derivative v and the square of the amplitude w of the electric
field of the light beam for this example are shown for different
values of the coordinate z in Fig. 6. Because the zaxis value
exceeds zbr, the off-axis feature appears more explicitly in the
form of a ring structure shown in Fig. 6, although the square
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FIG. 4. The spatial distribution of the electron density Ne corre-
sponding to the intensity distribution of the laser beam for the plasma
and beam parameters in Figs. 2 (left image) and 3 (right image).
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FIG. 5. The spatial distribution of the eikonal derivative v (left
image) and the square of the amplitude w of the electric field of
the light beam (right image) for different values of the longitudinal
coordinate z along the beam axis for i0 = 0.2 and ρ = 5: the value of
the longitudinal coordinate of the axial singularity for the chosen pa-
rameter values i0 = 0.2 and ρ = 5, given by condition (15), is equal
to zaxis = 0.82. The different curves correspond to the transition from
z = 0 to 0.6zaxis; 0.7zaxis; 0.8zaxis; 0.9zaxis; 0.95zaxis from the top down
for curves in the left image and from the bottom up in the right image
(for small r → 0).

of the amplitude of the electric field on the beam axis also
increases.

The form of the spatial distributions of v(r) shown in
Figs. 5 and 6 demonstrates the characteristic peculiarity of
solutions (8), which was noted in [31]: these solutions cor-
respond to a waveguide-type configuration of the light beam.
Indeed, it follows from formulas (8) that the value of the
radius rw for which v vanishes is the same for all z for which
the solution is given. Integrated over the radius in the range
0 � r � rw with the weight r, the square of the amplitude of
the electric field of the beam Mw = ∫ rw

0 dr rw is conserved
in the domain inside the radius rw according to the second
equation in (6). The redistribution of the amplitude inside this
domain accompanying the change in the coordinate z does
not change the fraction of the total energy inside the radius
rw. Therefore, such a structure of a light beam can be called
the waveguide-type configuration with the waveguide radius
rw. The domain in the plane {i0, ρ} where the waveguide-type
configurations are realized is located to the right of the curve
given by the solution of the equation ρ = ρaxis.

For the distributions of w(r) shown in Figs. 5 and 6, the
spatial gradient of the amplitude of the light beam electric
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FIG. 6. The spatial distribution of the eikonal derivative v (left
image) and the square of the amplitude w of the electric field of
the light beam (right image) for different values of the longitudinal
coordinate z along the beam axis for i0 = 5 and ρ = 3: the values
of the longitudinal coordinates of the on- and off-axis singularities
for the chosen parameter values are zaxis ≈ 0.564 and zbr ≈ 0.454.
The different curves correspond to the transition from z = 0 to
0.6zbr; 0.7zbr; 0.8zbr; 0.85zbr; 0.92zbr from the top down for curves in
the left image and from the bottom up in the right image (for small
r → 0).
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FIG. 7. The spatial distribution of the electron density Ne corre-
sponding to the intensity distribution of the laser beam for the plasma
and beam parameters in Figs. 5 (left image) and 6 (right image). The
effect of electron cavitation in the axial zone in the left image and in
the off-axis zone in the right image is clearly visible.

field increases along the distance from the boundary of the
medium: near its axis for the on-axis singularity variant and
in the zone of ring formation for the off-axis singularity
variant. Therefore, we should expect manifestation of electron
cavitation. Describing the electron density dynamics requires
considering the conservation law for the total number of elec-
trons and therefore presents certain difficulties in modeling
the relativistic laser-plasma interaction numerically [6,28].
The approximate analytic approach used does not claim to de-
scribe the electron cavitation process exhaustively, but it gives
the possibility of analyzing this phenomenon qualitatively
with relation (4), which uses the intensity distribution (8) of
the laser beam expressed it terms of its characteristics at the
plasma boundary. More importantly, these results can be im-
proved using the next-order approximation in the parameters
involved in constructing the renormalization-group symmetry.
As a confirmation of this, we show plots in Fig. 7 of the spatial
distributions of the electron density for the propagation of a
laser beam with parameters corresponding to Figs. 5 and 6. It
can be seen that the steepening of the profile of the electric
field leads to forming an area of electron cavitation either in
the vicinity of the beam axis (in case of an on-axis singularity)
or in the off-axis region (in case of an off-axis singularity),
which correctly characterizes the electron cavitation process
qualitatively.

We note that a result of type (8) can also be obtained in the
case where complete cavitation of electrons already occurs at
the plasma boundary, but such an analysis is beyond the scope
of this paper.

V. DISCUSSION AND SUMMARY

To conclude, we emphasize that we have here reported
analytic results for relativistic self-focusing in the NLSE
model. For a laser beam in a plasma with relativistic and
ponderomotive charge-displacement effects, we obtained an
approximate analytic solution of the Cauchy problem as a
series of several types of solutions. We analyzed the solutions
to describe the channeled longitudinal-radial distribution of
the light beam intensity in plasma with a Gaussian beam at
the boundary. The technique used is based on the theory of
transformation groups.

It is a common knowledge that methods of a classical group
analysis allow one to derive exact solutions to the NLSE in
1D, 2D, and 3D geometries for cubic and quintic nonlineari-
ties (see Refs. [40,41]). It is especially important for multidi-

mensional solutions of the NLSE, which cannot be integrated
by the inverse scattering method (see Ref. [42]). However,
boundary conditions for the solutions just mentioned do not
correspond to a localized electromagnetic beam at the entry
plane. The key idea of our approach to the solution of the
NLSE consists of finding a special class of symmetries for the
chosen boundary value problem. It does not imply any a priori
assumptions and provides an approximate analytical solution
to a specific boundary value problem. The renormalization-
group symmetry method has already been applied for the
analysis of a number of particular solutions for NLSE for
media with cubic and saturating nonlinearities [30,31]. In our
paper [30], which used the renormalization-group symme-
try approach to the NLSE with cubic nonlinearity, we have
proven that the assumptions used about the profile of the
incident beam, axial symmetry, and the type of a nonlinearity
are not restrictive. We believe that renormalization-group
symmetry approach for relativistic media will work well for
the problems of higher dimensionality to describe, e.g., beam
filamentation, multifocus structure formation, etc., in the case
of arbitrary smooth light beams at the plasma entry.

A consequence of the approximate analytic approach is
the appearance of a singularity in the self-focusing solution:
wave breaking of the profile of the beam eikonal derivative
with respect to the radius occurs at a finite coordinate along
the beam axis and hence limits the applicability of the theory.
The analytic theory hence describes self-focusing at a limited
distance from the boundary of the medium and does not
pretend to describe the behavior of the beam far from it, where
the applicability conditions for the theory are violated and
multifocus structures, bundle of rays, etc., can be formed.
Despite the limitations of the theory associated with using
approximate transformation groups, it explicitly gives the de-
pendence of the solutions on the controlling parameters such
as the dimensionless characteristic beam radius ρ = ωped/c
and the ratio i0 = I0/Ir of the maximum beam intensity to
the characteristic relativistic value. This advantageously dis-
tinguishes the obtained analytic solutions from the results
of numerical simulations and allows predicting the proper-
ties of self-focused beams in a wide range of laser-plasma
parameters and the behavior of the laser beam under given
experimental conditions. In turn, the variety of experimental
conditions in which relativistic self-focusing can manifest
itself is dictated by the wide range of applications of modern
laser beams with a relativistic intensity.

Describing laser beam propagation in an extended plasma
is very important for realizing fast ignition in laser fusion
[17], for obtaining high-energy electrons (e.g., in the wake
field excitation regime [12]), and for ensuring the penetration
of laser radiation through preplasma in front of an irradiated
target [18]. In dimension variables, the radius of the beam and
its intensity at the boundary of the medium are expressed in
terms of the parameters ρ and i0, the ratio ω/ωpe, and the
wavelength of the laser λ as

d ≈ 0.16
ω

ωpe
λ[μm] ρ (μm),

I0 ≈ 2.74 × 1018

(
1

λ[μm]

)2

i0 (W/cm2). (19)
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The character of the spatial redistribution of the beam en-
ergy depends on the initial beam radius and the beam intensity.
Knowing the boundaries of different parameter domains can
greatly facilitate and supplement numerical experiments in a
detailed investigation of specific regimes of the laser beam
evolution. We have analytically determined the conditions for
the appearance of various beam self-focusing regimes, leading
either to the appearance of an axial singularity in the distri-
bution of the square of the amplitude of the electric field of
the beam (focusing on the axis) or to the appearance of maxi-
mums of the electric field at a finite value of the radius outside
the beam axis (off-axis feature). In addition, the plasma-beam
parameters are specified for the regime of a propagation of a
relativistic laser beam in which a singularity does not arise
but the square of the amplitude of the electric field of the
beam on the axis practically does not decrease at distances
comparable to the diffraction length. This was demonstrated
with four examples of typical laser-plasma channels defined
by points (p1), (p2), (p3), and (p4) in Fig. 1.

For a low beam intensity i0 and for a beam radius close to
but not exceeding the value ρaxis, beam propagation occurs in
a self-capture mode, which was demonstrated for the param-
eters corresponding to points (p1) and (p2). A similar regime
was observed in [43,44] for one-dimensional or almost one-
dimensional solutions of the NLSE model with an amplitude
A that is constant or varies slowly with the coordinate z in the
paraxial approximation [44] and in [43] from the analysis of
beam propagation with a transverse electric field shape close
to the lowest eigenmode of the stationary NLSE solution. For
a moderate beam intensity, comparable to the relativistic value
Ir in order of magnitude, and for a large radius ρ � ρaxis, the
“classical” mode of self-focusing on the axis is realized [vari-
ant (p3)]. An overwhelming number of works on numerical
simulation of relativistic self-focusing demonstrate this best-
known regime [5,6,25,29]. Finally, an intensity significantly
exceeding the relativistic intensity value leads to the formation
of a transverse ring structure (tube beam) as the light beam
propagates deep into the medium [variant (p4)]. Such a regime
was observed in numerical simulations [25], [p. 142], but in
contrast to the example we considered, it corresponded to a
ring-type channel with an intensity in the ring zone lower than
in the accompanying central filament. Another version of the
ring structure, closer to the one shown in Fig. 6 and in which
the electric field intensity in the ring zone exceeds the inten-
sity at the beam axis, was observed in particle-in-cell (PIC)
simulations for ne0/ncr < 0.1 [27,34]. For significantly higher
electron density ne0/ncr = 0.36, the channel structure, which
corresponds to a ring and a central filament, was observed in
Ref. [45]. Meanwhile, Ref. [27] reports that ring structure is
not stable against azimuthal perturbations for dense plasma.
Stability analysis of the channel solutions, which appear in
our theory, is beyond the scope of this paper. However, it is
obvious that future studies should address this issue.

We note that according to Eqs. (19) for the different beam
modes shown in Figs. 2, 3, 5, and 6, the maximum intensity of
laser radiation at the medium boundary is I0(λ[μm])2 =
0.027 × 1018 W/cm2 for variant (p1), I0(λ[μm])2 =
0.274 × 1018 W/cm2 for variant (p2), I0(λ[μm])2 = 0.548 ×
1018 W/cm2 for variant (p3), and I0(λ[μm])2 = 13.7 ×
1018 W/cm2 for variant (p4). These values are typical

for experiments and numerical calculations on relativistic
self-focusing [5,6,25,27,29,34].

Historically, the theoretical models of relativistic self-
focusing were developed aimed primarily at establishing the
so-called critical power, above which the beam becomes self-
focused as a result of the predominance of nonlinearity over
diffraction. Up to now, most papers dealing with relativistic
self-focusing refer to the value Pc ≈ 17(ω2/ω2

pe) GW as a
critical power. However, it has already been observed in the
simulations [43] that self-focusing regimes may occur at the
beam powers less than Pc. Following, we explain in details
how this happens.

The critical power Pc ≈ 17(ω2/ω2
pe) GW was obtained

from a one-dimensional solution of the NLSE as a threshold
value of the beam power above which relativistic self-focusing
arises [5]. In our study here, we analyzed two-dimensional
NLSE solutions with singularities that arise both on the beam
axis and outside the axis (ring structure) and also solutions
characterizing beam self-trapping. The power of a Gaussian
beam at the entrance to the medium, which characterizes
such solutions, can be either larger or smaller than Pc. If
we formally rewrite the given power of a Gaussian beam at
the plasma boundary as a function of the used dimensionless
beam and plasma parameters,

P = ρ2i0
4

ω2

ω2
pe

m2c5

e2
≈ 2.18

ω2

ω2
pe

ρ2i0 (GW), (20)

in accordance with Fig. 1, we then have ρ2i0 = 1.95 for
variant (p1), ρ2i0 = 1.525 for variant (p2), ρ2i0 = 5 for
variant (p3), and ρ2i0 = 45 for variant (p4). Estimates of
the beam powers for these regimes correspondingly yield
Pp1 ≈ 4.251(ω2/ω2

pe) GW, Pp2 ≈ 3.325(ω2/ω2
pe) GW, Pp3 ≈

10.9(ω2/ω2
pe) GW, and Pp4 ≈ 98.1(ω2/ω2

pe) GW. All these
regimes correspond to laser beam nonlinear channeling, and
the lowest power corresponds to variant (p2). At the same
time, the largest power is for variant (p4). Self-trapping
regimes of variants (p1) and (p2) with the lowest power
corresponding to the condition where the diffraction beam di-
vergence is balanced by the relativistic nonlinearity are phys-
ically most appropriate to be called the critical laser power.
The minimum value of the power for the Gaussian beam at
the boundary of the medium for such a regime follows from
Eq. (20) at i0 = √

2 − 1 in view of Eq. (16) and is equal to
Pmin ≈ 0.629(ω2/ω2

pe) GW. This value is significantly smaller
than the commonly used value of Pc. The relative excess of
Pp1, Pp2, Pp3, and Pp4 over the minimal power Pmin is 6.76 for
variant (p1), 5.29 for variant (p2), 17.33 for variant (p3), and
155.96 for variant (p4). These estimates qualitatively agree
with the results of the numerical experiment [27] in which the
formation of a ring structure in a plasma was observed only
with a relativistic laser beam power significantly exceeding
(more than 30 times) the critical value. We note that the power
values of the beams propagating in a plasma with the above
discussed parameters shown in Fig. 1 and for characteristic
values of the plasma density ne0/ncr = (ωpe/ω)2 from 0.005
to 0.1 are in the range from 0.1 to 600 TW, which is currently
being intensively used in numerical simulations [6,25,27] and
in experiments [25,46,47].
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FIG. 8. The dependencies of zaxis (left image) and pw (right
image) on i0 for different ρ = 5, 4, 3, 2, and 1.2. The dashed curves in
both images limit the range of i0 for each given ρ due to the condition
of no initial cavitation ρcav = ρ.

Aside from the parameters ρ and i0, which define different
regimes of beam self-focusing, there are two additional char-
acteristics for the domains II and III, the distance to the sin-
gularity zbr or zaxis, defined by Eqs. (14) and (15) and fraction
of the beam power inside the waveguide with the radius rw,
defined as pw ≡ Pw/P = 1 − p(rw). The knowledge of these
parameters helps to better understand relation between the
distance at which the singularity occurs and the fraction of the
beam power trapped within. To illustrate this point, the plots
for the dependencies zaxis(i0) (left image) and pw(i0) (right
image) at different values of ρ are shown in Fig. 8. For any
given value of ρ, each of the curves in Fig. 8 (both zaxis and
pw) ends at some cutoff intensity imax,

imax = ρ4/8 + (ρ2/2)
√

1 + ρ4/16 , (21)

when electron cavitation occurs, ρcav = ρ. For 23/8(
√

2 −
1)1/2 < ρ < 2/31/4 the value of zaxis steadily decreases with
i0, while for ρ > 2/31/4 each curve zaxis(ρ, i0) reaches the
minimum zaxis(ρ, 2) = √

3(1 + ρ2/
√

3)−1/2 at i0 = 2.
It is of interest to compare our dependencies described

by the curves on Figs. 1 and 8 with those from a con-
ception of eigenmodes for NLSE (see, e.g., [6,25]). These
one-dimensional modes, depending only on the transverse
coordinate r, can be obtained from the first equation in Eq. (6)
where the first two terms proportional to ∂zv and ∂rv are
omitted. Formally, this also follows from the equation S(J ) =
const, where S(J ) is defined by Eqs. (10) and J = J (r). One
might expect the similar relation between ρ and i0 for the base
eigenmodes of NLSE and the Gaussian beam with zaxis → ∞.
As an illustration, consider the self-trapping regime. In the of-
ten discussed case of Ne = 1 when charge-displacement non-
linearity is omitted we get Snocav = ρ2(1 − 1/

√
1 + i0 p) −

2 − ln p and the following expression for the singularity co-
ordinate znocav = ((ρ2i0/2)(1 + i0)−3/2 − 1)−1/2. In the limit
znocav → ∞, we get ρnocav = √

2/i0(1 + i0)3/4. This relation
corresponds to the result suggested in Ref. [44] as the self-
trapping condition. In accordance with Eq. (20), the light
beam power of the least radius ρnocav,min = 33/4, which is
achieved at i0 = 2 is given by Pnocav(i0 = 2) ≈ 22.66(ω2/ω2

pe)
GW. The estimate obtained is comparable to the generally ac-
cepted value of the critical power Pc, i.e., order of magnitude
higher than the above discussed value Pmin. This demonstrates
that the critical power for relativistic self-focusing depends
not only on the beam intensity distribution at the plasma
entrance, but also on a concrete model of nonlinearity.

When written in dimensional variables, the distance from
the plasma boundary to the point zbr of the solution singularity
reads as

Lsing ≈ 0.16

(
ω

ωpe

)2

ρ2λ[μm] zbr (μm). (22)

For the parameters in Figs. 5 and 6, this formula for ne0/ncr =
0.036 and λ = 1 μm gives 91.1 μm for Fig. 5 (axial singu-
larity) and 90.8 μm for Fig. 6 (off-axis singularity). These
values show an order-of-magnitude agreement with the results
of the numerical experiment [27], where similar solutions
with either an on-axis peak or a ring electric field structure
were obtained. We note that formula (22) corresponds to the
upper limit for our theory: we cannot apply our results for z >

zbr, while numerical experiments produce results beyond this
point. Hence, comparing numerical results with our analytic
results is reasonable if we consider beam self-focusing for
z < zbr.
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APPENDIX: APPROXIMATE SOLUTION OF NLSE (6)
WITH RELATIVISTIC NONLINEARITY BY THE

RENORMALIZATION-GROUP SYMMETRY METHOD

We here describe the construction of approximate solutions
of NLSE (6) with relativistic nonlinearity using the method
of renormalization-group symmetries [32]. This method con-
sists in finding symmetries of a special kind under which
approximate solutions of (6) constructed by perturbation the-
ory for small distances from the boundary of a nonlinear
medium are invariant and then applying these symmetries to
extend the approximate solutions to the bulk of the nonlin-
ear medium. Such a procedure is based on the property of
a renormalization-group symmetry operator to transform a
solution of a boundary value problem with given boundary
data into a solution of the same boundary value problem.
To construct the renormalization-group symmetry operator,
following the general renormalization-group symmetry algo-
rithm [30,32], we use the Lie-Bäcklund symmetries admitted
by the original differential equations (6) and determined by
the canonical group operator

X = f ∂v + g∂w. (A1)

The coordinates f and g of this operator are found by solv-
ing the corresponding determining equations expressing the
invariance conditions for system (6) with respect to the group
with operator (A1):

Dz f + vDr f + f v1 − ∂w(B)g − ∂w1 (B)Drg

−∂w2 (B)D2
r g − ∂w3 (B)D3

r g = 0,

Dzg + wDr f + vDrg + gv1 + f w1 + vg

r
+ f w

r
= 0.

(A2)
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Here,

B = 1

2
Dr

(
Dr (rDr

√
w)

r
√

w

)
+ 1

2
Dr (ρ2F ),

vs ≡ ∂sv

∂rs
, ws ≡ ∂sw

∂rs
, (A3)

Dr = ∂r +
∞∑

s=0

(vs+1∂vs + ws+1∂ws ),

and Dz is represented as Dz = D0
z + D1

z , where

D0
z = ∂z −

∞∑
s=0

{
Ds

r (vv1)∂vs +
[

Ds+1
r (wv) + Ds

r

(
wv

r

)]
∂ws

}
,

D1
z =

∞∑
s=0

Ds
r (B)∂vs . (A4)

Because the terms originating from B in the first equation in
(6) in the case of a slowly varying electric field amplitude
are considered small compared with the first and the second
terms, we seek f and g in the form of a series expansion
in powers of the “dimensionless relative amplitude” b of the
contributions from B:

f =
∞∑

i=0

f i, g =
∞∑

i=0

gi. (A5)

We restrict ourselves to only the first-order corrections

f = f 0 + f 1 + o(b), g = g0 + g1 + o(b), (A6)

where f 0 ∝ O(1), g0 ∝ O(1), f 1 ∝ O(b), and g1 ∝ O(b).
We substitute (A6) in the determining Eqs. (A2) and collect
the zeroth- and first-order terms, obtaining

M0 f 0 = 0, M1g0 + M2 f 0 = 0,

M0 f 1 + D1
z f 0 − ∂w(B)g0 − ∂w1 (B)Drg0 − ∂w2 (B)D2

r g0

− ∂w3 (B)D3
r g0 = 0,

M1g1 + D1
z g0 + M2 f 1 = 0, (A7)

where

M0 = D0
z + vDr + v1,

M1 = D0
z + vDr + v1 + v/r,

M2 = wDr + w1 + w/r. (A8)

We now set

f 0 = 1

2
Dr (v2), g0 = 1

r
Dr (wvr), (A9)

following [30]. This choice obviously satisfies zeroth-order
equations (A7) and the invariance conditions f 0 = 0 and
g0 = 0 at the boundary. We can then find f 1 from the first
of the first-order equations in (A7), which we rewrite as

M0( f 1 + B) = 0. (A10)

The solution of this equation is expressed in terms of invari-
ants of the operator M0,

f 1 = 1

2
Dr

(
S(χ ) − ρ2F − 1√

w
(�⊥

√
w )

)
, χ = r − vz

(A11)

where

S(χ ) = ρ2F (J ) + 1

χ
√

J (χ )
∂χ [χ∂χ (

√
J (χ ) )],

F (J ) = 1 − Ne{γ [J (χ )]}
γ [J (χ )]

. (A12)

Substituting this result in the second first-order equation in
(A7) leads to an equation for the function g1:

M1g1 + 1

2r
Dr[wzDrS(χ )] = 0. (A13)

It is easy to show by direct substitution that Eq. (A13) can be
rewritten as

M0(rg1) + 1
2 Dr[wzDrS(χ )] = 0.

This equation can be integrated similarly to Eq. (A10). We
then obtain

rg1 = − 1
2 Dr (rwz∂χS).

Finally, up to the first order in the small parameter b, the Lie-
Bäcklund symmetry operators in the canonical form are

f = vv1 + 1

2
Dr

(
S(χ ) − ρ2F − 1√

w
(�⊥

√
w )

)
, (A14)

g = v

(
w1 + w

r

)
+ wv1

− z

2

[
w(1 − zv1)∂χχS +

(
w1 + w

r

)
∂χS

]
. (A15)

In view of (6), we can rewrite (A14) as

f = −∂zv + (1 − zv1)
∂χS

2
.

Together with Eq. (A15), the last equation leads to the two
relations

v = z
∂χS

2
, (A16)

∂zv = (1 − zv1)
∂χS

2
, (A17)

which must be satisfied to preserve the invariance requirement
f = 0 and g = 0.

Keeping in mind the relation between the canonical form
of the symmetry operator and the point-symmetry group
operator [48], we can now write the group symmetry operator:

R =
(

1 + z2

2
∂χχS

)
∂z + ∂χS

2
∂v + 1

2
(z∂χS + vz2∂χχS)∂r

− wz

2

[(
1 + vz

r

)
∂χχS + 1

r
∂χS

]
∂w. (A18)

Operator (A18) is similar to the one previously obtained in
[30] for a collimated beam except that S(χ ) now contains
the function F , which describes the laser beam nonlinearity
in relativistic plasma. Operator (A18) yields a system of
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characteristic equations:
dz

1 + z2∂χχS/2
= dv

∂χS/2
= dχ

−v
= d ln(wr)

−z∂χχS/2
. (A19)

This system of equations can be easily integrated after
Eq. (A16) is taken into account. The second and third equa-
tions in (A19) give

S + (∂χS)2 z2

4
= S(μ), (A20)

where μ corresponds to the value of χ at the boundary. The
third and fourth equations in (A19) yield another invariant
rw/∂χS, which gives the dependence of w as

w = J (μ)
χ

r

∂χ2 S

∂μ2 S
(A21)

in terms of its initial profile J (χ ). Correspondingly, r and χ

are related as

r = χ (1 + z2∂χ2 S). (A22)

In summary, the solutions are represented by the equations

v(r, z) = z

2
∂χS, w(r, z) = J (μ)

χ

r

∂χ2 S

∂μ2 S
, (A23)

where χ and μ are defined as functions of z and r by the
relations

r = χ (1 + z2∂χ2 S), S(μ) = S(χ ) + z2

4
(∂χS)2. (A24)

These solutions are discussed in detail in Sec. III.
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