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Active lift inversion process of heaving wing in uniform flow by temporal change
of wing kinematics
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The transition of the vortex pattern and the lift generated by a heaving wing in a uniform flow was
investigated numerically. As a fundamental problem constituting the insects’ flight maneuverability, we studied
the relationship between a temporal change in the heaving wing motion and the change in the global vortex
pattern. At a Strouhal number that generates an asymmetric vortex pattern, we found that temporal angular
frequency reduction causes inversion of both the global vortex pattern and the lift sign. The inversion is initiated
by the transfer of the leading-edge vortex, which interferes with the vortex pattern generated at the trailing edge.
Successful inversion is conditioned on the starting phase and the time interval of the frequency reduction. The
details of the process during the transition are discussed.
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I. INTRODUCTION

Animal locomotion in fluids, such as the flight of in-
sects and the swimming of fish, is achieved by the unsteady
flow driven by wings or fins. During flight, insects exploit
vortex structures generated by the motion of their wings,
which makes the flight mechanisms different from those of
conventional fixed-wing aerodynamics. Such mechanisms in-
clude delayed stall, rotational circulation, the clap-and-fling
mechanism, and wing-wake interaction [1]; several reviews
are available [1–4]. When the flight (or swimming) is steady
(time-periodic), the generation, transfer, merging, and dissi-
pation of the vortex structure during one flapping cycle are
periodic.

Real insects need to maneuver their flight, i.e., control
their flight speed and/or direction, e.g., take-off, landing, and
changing speeds of forward flight [5,6]. Consequently, their
flight is unsteady (nonperiodic), and the flight mechanisms or
generated vortex structures can change. For instance, butter-
flies fly with a sequence of several flight modes and rapid
maneuvers [5], and they use a variety of flight mechanisms
in successive strokes [7]. Such changes of flight mechanisms
require the control of particular vortex structures via wing
kinematics. Although flight maneuverability is an important
aspect of flapping flight, the study of maneuverability is
limited to observations [7–9] or numerical simulations [10,11]
of real animals.
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For flight maneuverability and stability, unsteady wing
and/or body motion are required to maintain the flight, which
is regarded as unstable in many studies [12–16]. The relation-
ship between such wing and/or body motion and the related
fluid dynamics has not been clarified, except for a “damping
factor” highlighted in studies on maneuverability [17] and
stability [18].

Despite the fundamental importance of actively exploiting
vortex structures, to the best of the authors’ knowledge, few
studies have investigated the fluid dynamics that connects
the vortex structures, including lift generation and unsteady
(nonperiodic) wing kinematics. This is partly because of the
nature of the unsteady flight, i.e., a strongly coupled system
consisting of (1) the motion of the center of mass and the ori-
entation of the body, (2) body and wing motion (deformation
of the animal’s body), and (3) the motion of the surrounding
fluid, even if we omit the sensing and control parts. Clearly,
the entire system is too complex to be resolved all at once. We
should break up the entire problem into fundamental pieces
easier to handle with, which will contribute to resolve the
maneuver problem.

Here, we remark that the analysis of the coupled system
comprising (2) and (3) is interesting and difficult by itself
as a fluid mechanics problem because of the nonperiodicity
and the strongly nonlinear nature of fluid dynamics. Flow
dynamics due to nonperiodic wing motion has not been
studied in detail, except for an impulsively started object as
the simplest example [19–22]. In this study, we focus on
the relationship between vortex patterns (and the associated
hydrodynamic force) and wing kinematics, especially for the
effect of nonperiodic wing motion. If the hydrodynamic force
vector and the vortex structure can be controlled via wing
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motion, such wing motion will be of potential use for efficient
flight or propulsion control, e.g., control without additional
apparatus such as a flap or rudder. Because the description
of nonperiodic wing motion requires many parameters, we
consider a model with simple wing kinematics, i.e., a heaving
wing in a uniform flow with the given wing kinematics, to
highlight the intrinsic nature of the wing-vortex interaction,
though the model of insects’ flapping motion should include
other kinematics such as flapping motion.

Various types of vortex patterns are generated by an oscil-
lating wing. Several studies have investigated vortex patterns
generated by a heaving wing in a uniform flow [23–30]. In
particular, wake deflection is an asymmetric vortex pattern
that is ubiquitous when both the Strouhal number and the
heaving amplitude are large. In this case, the sign of the aver-
age lift depends on the direction of the wake. Wake deflection
has been experimentally observed in the case of both high-
aspect-ratio wings [23,26] and low-aspect-ratio wings [24].
The wake direction (deflection angle) is constant or time de-
pendent [23,27,29]. Similar asymmetric vortex patterns have
been reported for a simple flapping wing [31–34], a wing with
both heaving and flapping motion [30,35–37], and even for a
wing model that can move according to the generated thrust
[38–41].

In this paper, we use a simple model to show that temporal
frequency reduction can cause inversion of the deflected wake
pattern. The parameters are chosen such that the nondimen-
sional parameters are set in the range of insects [42,43]. By
limiting the wing kinematics, we clarify the parameter region
for the nontrivial vortex transition. A previous study has
reported vortex pattern transitions when flapping is abruptly
stopped in the case of a two-dimensional free-flight model
[44]; however, owing to the coupling between the vortex
dynamics and the center-of-mass motion, the separation dy-
namics and the vortex dynamics in the parameter space of
wing kinematics were not examined in detail. The model
analyzed here is simplified considerably to focus on changes
in the vortex pattern on the basis of smooth wing kinematics.

The remainder of this paper is organized as follows. Sec-
tion II describes the details of the model and the numerical
method. Section III presents the results. Vortex structures
and the lift and drag in simple heaving motion are discussed
in Sec. III A, whereas the transition of the vortex structures
owing to nonperiodic wing motion is discussed in Sec. III B.
Further, the Reynolds number dependence on the discovered
vortex transition process is discussed in Sec. III C. Finally,
Sec. IV concludes the paper.

II. MODEL

A. Wing kinematics

A heaving wing in a two-dimensional uniform flow (Fig. 1)
is considered. We assume that the wing is a plate with wing
chord length c and thickness cδ, and that both ends are
semi-circles of radius cδ/2. The wing, which oscillates ver-
tically to the uniform flow U0 = (U0, 0), is always parallel to
U0, and the center of the wing, Xw, moves perpendicular to
U0: Xw = (0, h(t )). The function h(t ) is defined as

h(t ) = A sin �(t ), (1)

U0=(U0,0) Xw=(0,h(t))

x

c
cδ

FIG. 1. Configuration of the model. A wing in a two-dimensional
uniform flow oscillates perpendicular to the uniform flow. The posi-
tion of the center of the wing is described by Xw = (0, h(t )).

where the constant A is the oscillation amplitude and the
function �(t ) is the phase of the oscillation, which determines
the details of the wing motion. When �(t ) = ωt (ω is the
constant angular velocity), the wing motion is simple heaving.
To describe the general wing kinematics, we need an infinite
number of parameters. However, in this paper, the wing mo-
tion is restricted such that �(t ) is described as follows:

�(t ) = �(t ; ω,�ω, t1, t2)

= φ + ωt − (t2 − t1)F (t ; t1, t2)�ω, (2)

where the constants φ and �ω are the initial phase of oscilla-
tion and the decrement in angular frequency, respectively. The
function F (t ; t1, t2) is defined as

F (t ; t1, t2) = σ

(
t − t1 + t2

2
,

4

t2 − t1

)
,

σ (x, a) = 1

2

(
tanh

ax

2
+ 1

)
, (3)

where σ (x, a) is the sigmoid function that connects 0 and
1 smoothly around x = 0, i.e., limx→−∞ σ (x, a) = 0 and
limx→∞ σ (x, a) = 1, with characteristic width 1/a. Thus, the
function �(t ; ω,�ω, t1, t2) shifts the phase of oscillation by
−�ω(t2 − t1); in other words, the local angular velocity,
defined by ∂�/∂t , undergoes a temporal decrease of −�ω at
t = (t1 + t2)/2. The change mainly occurs in the time interval
[t1, t2] (cf. Fig. 8).

B. Numerical method of fluid motion

To numerically solve the fluid motion according to the
wing motion, we use a coordinate system in which the wing
is fixed. Let us define the coordinate system in the laboratory
frame as O-xy and the wing-fixed coordinate system as O-XY .

The velocity and acceleration of the center of the wing
in the O-xy system are V w = (0, h′(t )) and Aw = (0, h′′(t )),
respectively. When the fluid velocity in the O-xy system is
u, the fluid velocity in the O-XY system, U , is given by
U = u − V w. Similarly, when the force in the O-xy system
is f , the force acting on the wing in the O-XY system, F, is
given by F = f − ρwBAw. Note that the force calculated in
the O-XY system includes an artificial force proportional to
the acceleration and volume of the wing; ρwBAw, where ρw

and B are the density and volume (area in the two-dimensional
case) of the wing, respectively. These formulae give the
transformation between variables in both coordinate systems.
In the following, we represent the values of all the variables in
the O-xy coordinates, although the calculation was performed
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FIG. 2. (a) Subregions for the simulation domain. (b) Subregions
(divided by thick lines) and the collocation points (represented by the
crossing points of thin lines) near the wing.

in the O-XY coordinates (for comparison with the calculation
using the immersed boundary method in the laboratory frame,
refer to the Appendix).

The fluid motion is governed by the incompressible Navier-
Stokes (NS) equations:

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν∇2u, ∇ · u = 0, (4)

where u = (u, v) is the velocity field, p is the pressure, and ν

is the kinematic viscosity.
In this model, we have three nondimensional parame-

ters: Reynolds number Re = U0c
ν

, Strouhal number St = f A
U0

( f = ω
2π

), and the nondimensional amplitude r = A
c .

The fluid motion is solved using the spectral element
method (SEM), which is a high-order finite element technique
that combines the geometric flexibility of finite elements with
the high accuracy of spectral methods. We used Semtex [45],
an open-source SEM package that has been used in many
hydrodynamic problems.

In this study, the computational domain is [X1, X2] ×
[Y1,Y2]. The boundary condition at the outer sides of the
domain is inflow with u = U0 except for the right side (x =
X2,Y1 � y � Y2), where the robust outflow condition pro-
posed by Dong et al. [46] with a smoothness parameter (“δ” in
their paper) of 0.1 is applied. The domain is decomposed into
N1 × N2 quadrilateral subregions (“elements” in the Semtex
manual) with O-type geometry; N1 and N2 denote the number
of divisions in the azimuthal and radial directions, respec-
tively. Each subregion contains M2 Lagrange knot points
(Fig. 2).

The parameters of the system were as follows: U0 = 1, ρ =
1, c = 2, δ = 0.05, A = 0.6, and r = 0.3. For numerical sim-
ulation, we used N1 = 32, N2 = 20, M = 9, X1 = −20, X2 =
40,Y1 = −20, and Y2 = 20. The time integration was of the
second order with time step �t = 1.0 × 10−4T , where T =
1/ f is the heaving period. The grid width in the subregions
attached to the wing ranged from 2.13 × 10−3 to 2.83 × 10−2.
The initial state was u(t = 0) = U0. In the following, Re =
200, and we controlled St, t1, t2, and �ω except for Sec. III C,
where Re was changed.

We confirmed that the main result with the physical param-
eters (St,�ω, t1, t2) = (0.275, ω/2, 7 1

3 , 8 1
3 ) (see Sec. III B)

as well as the results with the simple heaving (�ω = 0, 0.1 �
St � 0.3) did not change with finer simulation parameters
(N1, N2, M,�t ) = (40, 25, 11, T/15000).

(a) (b)

FIG. 3. 〈CD〉10 and 〈CL〉10 for φ = π . (a) 〈CD〉10 vs St. (b) 〈CL〉10

vs St.

III. RESULTS

A. Simple heaving

1. Transition of vortex pattern

First, we show the results with �ω = 0 (simple heaving)
to explain the vortex patterns observed in this system. In this
case, the heaving motion is periodic and the vortex patterns
depend on St [23,29]. We considered the case of φ = π for
the integration time 10T . Figure 3 shows 〈CL〉10 and 〈CD〉10 for
0.025 � St � 0.35, where 〈CL〉n and 〈CD〉n denote the period-
averaged lift and period-averaged drag, respectively, 〈CL〉n =
1
T

∫ nT
(n−1)T CL dt , and a similar formula applies to 〈CD〉n.
Figure 3(a) shows that the sign of 〈CD〉10 changes at

St � 0.175. When St is below the critical value, the horizontal
force acting on the wing is positive (drag), and a negative
force (thrust) is generated above the critical value. Figure 3(b)
shows the transition of 〈CL〉10 from smaller values to order-
of-unity values occurring at St � 0.20, i.e., a transition from a
symmetric vortex pattern to an asymmetric one. A symmetric
vortex pattern with drag (St = 0.10) is shown in Fig. 4(a),
and an asymmetric vortex pattern, i.e., wake deflection, with
thrust (St = 0.275) is shown in Fig. 4(b). The major vortex
structure is generated up to t = 10T . The asymmetric vortex
pattern loses its order when St � 0.325. In this case, both
the leading-edge vortex (LEV) and the trailing-edge vortex
(TEV) are released from the wing to generate an irregular
pattern [Fig. 4(c)]. A chaotic flow generation due to LEV-
TEV interaction was analyzed in the case of the pitching and
heaving wing with larger Reynolds number (1000) [37]

2. Vortex dynamics in wake deflection

The details of the asymmetric vortex pattern also depend
on the initial phase φ; two cases, φ = π/2 and φ = π , were
compared. In the range St � 0.20 (symmetric vortex pattern),
there is no significant difference between the two cases. How-
ever, a difference is observed when St � 0.20, which suggests
that the asymmetric vortex pattern depends on φ, though the
symmetry is broken in both the cases (data not shown).

In this paper, we define the asymmetric vortex pattern
for large values of |〈CL〉n| (larger than 2.0), i.e., “deflected
wake” [23]. In this case, the wake deflection is clear, and
the deflection angle of the asymmetric pattern α, i.e., the
angle between the x axis and the line passing near the trailing
edge and the separation vortices, takes a positive value. The
angle depends on the initial condition; the inverted pattern
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FIG. 4. Vortex pattern at t = 10T, φ = π . The displayed region is [−5, 30] × [−12.5, 12.5]. The vorticity, ∇ × u, is shown by filled
contours. (a) St = 0.10. (b) St = 0.275. (c) St = 0.35.

with the deflection angle −α can be obtained when the initial
phase is shifted by π .

We remark that this difference of 〈CL〉n for the initial phase
φ is not transient. In Fig. 5(a), 〈CL〉n for φ = π/2 and φ = π

for St = 0.275 are shown for the number of periods, n. In the
case of φ = π , the deflection angle keeps positive (upward)
from the beginning of wake formation, but the size of LEV
becomes large and the wake structure changes (i.e., the dis-
tance between the vortices consisting of the dipoles becomes
shorter) as n becomes large [Figs. 5(b) and 5(c)]. Then, LEV
interacts with the wake via TEV, which causes an instability
of the whole vortex structure to fluctuate. Such LEV-TEV
interaction is also referred to in the context to a trigger to
chaos in the flow around the heaving-pitching wing for larger
Reynolds number [37]. On the other hand, in the case of φ =
π/2, the vortex structure is horizontal rather than deflected
[Fig. 5(d)]. The line passing between positive and negative
vortices waves aperiodically as it goes downstream, which
causes small fluctuations of 〈CL〉n. Clearly, 〈CL〉n depends on
φ, and the difference is observed up to at least 100T [47]. Such
simulations of the heaving wing suggest that the deflection
angle varies with time over a long timescale (over 100 periods)
[27], but the present integration time is not sufficiently long to
diagnose the periodicity. It seems that such long-lasting initial
phase dependence has not been reported previously.

The formation of the asymmetric vortex pattern is related
to the values of 〈CL〉n. The interference of separation vortex
generation with the vortex structure may be represented by the
increment in 〈CL〉n, i.e., 〈CL〉n − 〈CL〉n−1 (or gradient of the

graph). Figure 5 shows that the increments in 〈CL〉n for n < 7
are larger than those for 7 < n < 40, which suggests that
the vortex structure generated before n = 7 is qualitatively
different. This observation is in agreement with the fact that
the major vortex pattern is generated up to 10T [Figs. 6(a)
and 6(b)]. The function 〈CL〉n for n > 40 shows fluctuations
due to the stability of the deflected wake with many vortices.
Hereafter, we mainly focus on the vortex structure generated
until around t = 15T , which covers the critical number of
periods determined by the lift increment. Focusing on this
time range, we can omit the effect of the boundary condition
because the wake structure does not reach the outer boundary,
and the instability of the wake is not observed. This time
range also covers the minimum period for the lift inversion
discussed in Sec. III B.

The maintenance of the deflected wake is due to the follow-
ing factors: (1) generation of the asymmetric vortex pattern
by the TEV and (2) noninterference of the LEV with the
TEV. These factors are clearly observed in Fig. 6, where the
sequence of the vortex patterns near the wing is shown over
one period. (See the Supplemental Material [48] for vortex
dynamics generated by simple heaving wing.)

For the first factor, St is larger than those for symmetric
vortex patterns, which means that the angular frequency and
the heaving speed are also larger. Thus, the generated TEV
has larger circulation. The interactions of the TEV with other
shed vortices are stronger, and they break the symmetry of the
vortex pattern with respect to the direction of uniform flow.
This mechanism is reproduced by the simulation without the
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FIG. 5. (a) Plot of (n − 1
2 , 〈CL〉n) for different initial phases (φ =

π/2, π ). (b) Snapshot of the wing and vortices for t = 10.5T and
φ = π . Vorticity is indicated by filled contours; the boundaries are
∇ × u = ±(4 + 8k) (k = 0, 1, . . . , 5). (c) Same as (b), but for t =
40.5T . (d) Same as (b), but for t = 70.5T and φ = π/2.

LEV, which was determined by the discrete vortex method
considering the separation from the trailing edge alone [23].

For the second factor, we follow the dynamics of the LEV.
Two LEVs with positive and negative signs are generated
during upstroke and downstroke, respectively. We focus on the
LEV with the negative sign generated during the downstroke
[LVn in Fig. 6(a)]. The LEV is connected with the leading

FIG. 6. Time sequences of vortex patterns for St = 0.275. (a) t =
9.00T . (b) t = 9.25T . (c) t = 9.50T . (d) t = 9.75T .

FIG. 7. CL vs t/T for St = 0.275 (8T � t � 10T ).

edge via a thin vortex layer [Fig. 6(b)] before it is stretched
and dissipated owing to the upstroke [Figs. 6(c) and 6(d)].
However, a part of the vortex remains and merges with the
separation vortex generated during the next downstroke. On
the other hand, the LEV with the positive sign generated
during the upstroke [LVp in Fig. 6(c)] is stretched, and most
of it is dissipated. These processes show that the LEV does
not interfere with the TEV dynamics significantly.

Neither dissipation nor trapping of LEVs occur when St
is much larger (St � 0.35); the LEVs also detach from the
wing and disturb the patterns due to the TEVs, and the entire
vortex pattern becomes irregular [Fig. 6(c)]. In other words,
the suppression of LEV-TEV interference gives an important
condition for generation of the deflected wake. Controlling the
LEV-TEV interference might enable us to realize a change in
the vortex structure.

The instantaneous lift coefficient is shown in Fig. 7. Asym-
metric lift generation is clearly observed. In the interval
9T < t < 10T , positive lift is generated when t < 9.12T and
9.60T < t , whereas negative lift is generated when 9.12T <

t < 9.60T . As φ = π , the downstroke is observed when t <

9.25T and 9.75T < t , which corresponds to the interval of
positive lift in an approximate sense. The vortex dynamics
in the positive lift generation is shown in Figs. 6(a) and 6(d)
[the pattern in Fig. 6(d) is nearly the same as the pattern at
t = 8.75T ]. In this sequence, the free vortex with a negative
sign near the TEV [Vn in Fig. 6(a)], which was detached from
the trailing edge, remains near the trailing edge; thus, the lift
generation is enhanced. On the other hand, the negative lift
generation is relatively weak because the free vortex with a
positive sign near the TEV [Vp in Fig. 6(c)] is not as close to
the trailing edge as in the downstroke. The effect of the free
vortex on the lift generation is reminiscent of the wake capture
in insect flight [49]. The asymmetric lift generation results in
a nonzero value of the total lift.

B. Temporal reduction of heaving frequency

In this section, we demonstrate that an inversion of the
vortex pattern associated with the lift sign can be triggered
by a temporal reduction in the heaving frequency when
St = 0.275, φ = π , and �ω = ω/2. Figure 8 shows the lo-
cal angular frequency ∂�/∂t and nondimensional heaving
motion h(t )/A for (t1/T, (t2 − t1)/T ) = (7 1

3 , 1). In this case,
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FIG. 8. Wing kinematics for �ω = ω/2, t1 = 7 1
3 T, t2 = 8 1

3 T .
(a) d�/dt (b) h(t )/A.

the frequency reduction is apparent in the eighth flapping,
while the change is smooth according to the definition of the
class of the wing motion.

Figure 9 shows a series of 〈CD〉n and 〈CL〉n for two typical
cases, t1/T = 7 and 7 1

3 , to demonstrate how the inversion
depends on (t1, t2). In both cases, a strong disturbance due
to the wing motion causes a significant change in the period-
averaged values. The results for the case t1/T = 7 are shown
in Figs. 9(a) and 9(c). In this case, regardless of the value of t2,
the values of 〈CL〉n and 〈CD〉n in the last period did not change
significantly. In particular, the sign of 〈CL〉n did not change
for all values of t2 in 0.4 � (t2 − t1)/T � 1.6. In other words,
the disturbances when t1/T = 7 did not change the eventual
vortex structures.

The results for the case t1/T = 7 1
3 , in which t1 is slightly

different value from that of the above-mentioned case, are
shown in Figs. 9(b) and 9(d). It is clear that the sign of
the lift is inverted for several values of t2 with decreasing
values in the latter periods. Figure 10(a) shows the detailed
values of 〈CL〉15 for t1/T = 7 1

3 . A wide range of values of
(t2 − t1)/T gives greater negative values [e.g., 〈CL〉15 < −1

FIG. 9. (a) 〈CD〉n vs n (n is the period) for t1/T = 7.0. The open
triangle (�), filled triangle (�), open circle (◦), filled circle (•),
open inverted triangle (�), closed inverted triangle (�), and open
square (�) indicate (t2 − t1)/T = 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, re-
spectively. (b) Same as panel (a), but t1/T = 7 1

3 . (c) 〈CL〉n vs n for

t1/T = 7.0. (d) Same as panel (c), but t1/T = 7 1
3 .

(a) (b)

FIG. 10. (a) 〈CL〉15 vs (t2 − t1)/T for t1/T = 7 1
3 .

(b) Contour of 〈CL〉15 for sets of (t1/T, (t2 − t1)/T ), where
t1/T ∈ {7, 7 1

4 , 7 1
3 , 7 1

2 , 7 3
4 , 7 5

6 } and (t2 − t1)/T ∈ {0.4, 0.6, 0.8, 1.0,

1.2, 1.4, 1.6}. The region 〈CL〉15 < 0 is shaded.

for 0.7 � (t2 − t1)/T � 1.2)]. These results suggest that the
lift inversion is robust for the values of (t2 − t1) around (t2 −
t1)/T = 1.0.

The result of a parametric study on the lift inversion is
shown in Fig. 10, where 〈CL〉15 was used. In Fig. 10(b) the
contour of 〈CL〉15, which was used as a characteristic variable
of the inversion, is shown for sets of (t1/T, (t2 − t1)/T ). We
can see that the range around (t1/T, (t2 − t1)/T ) = (7 1

3 , 1)
gives negative values [shaded region in Fig. 10(b)] corre-
sponding to the lift inversion. We remark that the time interval
of reduced frequency t2 − t1 considered here is less than 1.5T ,
which implies that the phenomena discussed here is due to
unsteady (nonperiodic) dynamics of wing and the flow.

Next, the robustness to the characteristic start time of the
frequency reduction, t1, is examined. Figure 11 shows 〈CL〉n

as a function of n. We fixed (t2 − t1)/T = 1. Four cases for
t1/T = 4 1

3 , 7 1
3 , 10 1

3 , and 13 1
3 and a case of no frequency

reduction (t1 → ∞) are shown to examine the relationship
between the vortex structure at the beginning of the reduction
and the final result. Note that the phase of the frequency
reduction was fixed because it is important for the inver-
sion, as shown in Fig. 10(b). Figure 11 shows that the case

FIG. 11. 〈CL〉n vs n. The open circles indicate the case of no
maneuvering (�ω = 0). The filled triangles (�), open squares (�),
filled squares (�), and diamonds (�) indicate t1/T = 4 1

3 , 7 1
3 , 10 1

3
and 13 1

3 , respectively.
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FIG. 12. Vortex patterns during temporal reduction of the local
angular frequency (t1/T = 7 1

3 , t2 − t1 = T ). Curves indicate stream-
lines. (a) t = 6.0T . (b) t = 6.5T . (c) t = 7.5T . (d) t = 7.75T .
(e) t = 8.0T . (f) t = 8.5T . (g) t = 9.0T . (h) t = 14.0T .

t1/T = 4 1
3 did not reach the final inversion, which suggests

that the vortex structure generated up to this time is not suffi-
ciently “mature” to accept the transition mechanism discussed
below. The time series of 〈CL〉n for t1/T = 7 1

3 , 10 1
3 , 13 1

3
are rather universal. The lift sign changes once to negative
during the temporal frequency reduction and then changes to
positive for one or two periods; finally, decreasing negative
values are observed. This result suggests that the process
of the transition in the vortex structure has a universal-
ity property and the temporal frequency reduction strategy
for the lift inversion requires a “matured” vortex structure
that contains several coherent vortices. In the following, we
consider the case t1/T = 7 1

3 , (t2 − t1)/T = 1 as a typical
example. We note that similar inversion process is observed
when 0.26 � St � 0.28 while keeping other parameters the
same.

The vortex dynamics during the reduction is shown in
Fig. 12. (See the Supplemental Material [48] for vortex dy-
namics generated by heaving wing with temporal frequency
reduction.) As explained in Sec. III A, the LEVs are dissi-
pated or trapped near the leading edge in the simple heaving
motion, which also occurs before the reduction starts [“a”
in Figs. 12(a) and 12(b)]. However, the temporal frequency
reduction weakens the stretching or dissipation process of the
LEVs. Because of slower upward motion of the wing in this
process, the LEV above the wing did not stretch considerably,

resulting in its survival [“A” in Fig. 12(c)]. Because this vortex
is generated before the frequency reduction, the magnitude of
the vorticity is close to the corresponding vortex in simple
heaving [Figs. 5(b) and 5(c)], although the detailed shape
depends on the wake structure. Figures 12(c)–12(f) show
the dynamics during the frequency reduction interval. The
streamlines indicate that the flow around the LEV “A,” which
is detached from the leading edge, is rightward. The time
interval of the frequency reduction is sufficient to transfer the
LEV “A” to the trailing edge, and the LEV reaches without
significant distortion or dissipation. The negative sign of the
LEV induces stronger local velocity near the trailing edge. As
a result, the LEV shifts the position of the TEV generated
in this interval [“B” in Fig. 12(e)]. Moreover, the LEV “A”
remains near the trailing edge during the next period to induce
a backward flow so that the vortices near the trailing edge are
not advected excessively. Then a dipole vortex moving in an
obliquely downward direction is generated [Figs. 12(f) and
12(g)]. The arrangements of the vortices significantly change
the position of the subsequently generated coherent vortices
to finally invert the vortex pattern [Fig. 12(h)]. The vortex
patterns in Figs. 12(a) and 12(h) are roughly symmetric with
respect to a horizontal line [note that the phase of the wing
oscillation shifted by −�ω(t2 − t1) = −π ].

It should be remarked that the unsteady wing-vortex inter-
action during the lift inversion matches the successful param-
eters of (t1, t2). Actually, Fig. 10(b) suggests that (t2 − t1)/T
should be around unity, and the phase of t1 is around 1/3 (of
the period). The former corresponds to the order of time to
transfer LEV along the wing cord, and the latter is a condition
for the wing to upward slowly during frequency reduction
period.

The essential part of this transition dynamics can be ex-
tracted from the time-expanded images shown in Fig. 13.
Figure 13(a) is generated by stacking the line vorticity dis-
tribution c/4 above the wing; a horizontal cross section of the
figure shows the spatial vorticity distribution, and a vertical
cross section shows the time series of the vorticity at a
particular point. In the time interval “A,” two lines per one
period are shown on the right (downstream). These lines
indicate positive and negative vortices generated to form the
deflected wake with a positive deflection angle [corresponding
to Fig. 12(a)]. The LEV transfer above the wing is indicated
by the region “V” for the time interval [7T, 8T ]. The trans-
ferred LEV interacts with the TEV to change the deflection
angle. After the interaction, one of the lines, corresponding
to negative vortices, disappear because the deflection angle is
inverted.

Figure 13(b) is generated similarly to Fig. 13(a), but for
the line vorticity distribution c/4 below the wing. The vortex
pattern before the frequency reduction is similar to that in
Fig. 13(a) after the frequency reduction with the inverted sign,
suggesting that the deflection pattern is inverted during the
process. Similarly, the vortex pattern in Fig. 13(a) during the
period “A” is similar to that in Fig. 13(b) during the period
after the frequency reduction with the inverted sign (indicated
by “B”). These images clearly show the inversion dynamics,
especially for the effect of LEV transfer.

Furthermore, the vortex pattern indicated by “v′” shows
an irregular transfer of a part of the LEV without temporal
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FIG. 13. Time expanded image for t1/T = 7 1
3 , t2 − t1 = T . This

image was generated by stacking the horizontal line distribution of
vorticity from top to bottom, for the interval 0 � t � 20T, −2 �
x � 4. The legend is the same as that for Fig. 6. (a) Image for the
horizontal line c/4 above the wing. (b) Image for the horizontal line
c/4 below the wing.

frequency reduction. Although the entire vortex pattern is
disturbed by such an irregular vortex transfer that is observed
sometimes, it does not change significantly (cf. Fig. 5).

C. Discussion: The Reynolds number dependency

In this subsection, we discuss the Reynolds number depen-
dence on the transitions of the vortex structures.

First, the transition behaviors of 〈CD〉n and 〈CL〉n for differ-
ent St values are determined for the case Re = 150, φ = π .
Figure 14 shows the result, together with the case Re = 200,
which suggests that the vortex transition for different St values
does not change significantly in this interval, though a slight
increment in the value of 〈CD〉 is observed for Re = 150.

FIG. 14. (a) Reynolds number dependence on the transitions of
〈CD〉10. (b) Same as panel (a) but for 〈CL〉10.

FIG. 15. 〈CL〉n vs n for the cases Re = 150, 200, where t1/T =
7 1

3 and t2 − t1 = T .

However, in particular, the behavior at St = 0.275, which has
been discussed in detail in Sec. III A 1, is the same; i.e., thrust
is generated and the asymmetric vortex pattern is observed.
The transition behaviors of the lift and the vortex structures
for the temporal frequency reduction were compared for the
typical case: t1/T = 7 1

3 , (t2 − t1)/T = 1. Figure 15 shows the
result; clearly, the lift inversion fails when Re = 150.

The difference is attributed to the large dissipation. A long-
time simulation of simple heaving shows that 〈CL〉n attains a
plateau t > 90T for the case Re = 150 (data not shown); by
contrast, for the case Re = 200, t � 50T (Fig. 5). Moreover,
the initial increase rate of 〈CL〉n for Re = 150 is smaller than
that for Re = 200. Because the number of vortices in the
vortex structures at a particular time does not depend on Re,
the low increase rate is attributed to the large dissipation. In
this case, the LEV is transferred as in the case of Re = 200,
but there is no rearrangement of the TEV that leads to the
inversion of the lift or the vortex structure. We performed a
similar analysis for the cases Re = 170 and Re = 180, and we
found that the critical Reynolds number seems to lie between
Re = 170 and Re = 180 (data not shown).

IV. CONCLUDING REMARKS

In this paper, we studied the inversion of the lift and the
asymmetric vortex pattern of a heaving wing in a uniform
flow under a temporal reduction of the angular frequency. In
a parameter range, it is possible to invert the vortex pattern
and the lift sign. During the inversion process, the LEV
plays an important role. Without the temporal reduction of
the local angular frequency, the LEV dissipates or remains
near the leading edge, and it does not contribute to the vortex
generation at the trailing edge significantly. However, during
the temporal reduction of the local angular frequency, the LEV
is advected to the trailing edge to enhance the local flow,
which triggers the inversion process initiated by the position
shift of the generated TEV.

We demonstrated that it is possible to control the vor-
tex structure via the wing motion, but such control is not
straightforward even in our simple configuration. Previously
considered examples of lift generation based on vortex gen-
eration include wake capture [49] and the symmetry-breaking
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mechanism of symmetric flapping models [50,51]. However,
the mechanism presented here is used to change the qualitative
vortex structure, which is different from the above-mentioned
mechanisms.

Efficient usage of the LEV-TEV interference can lead to
vortex pattern inversion. As discussed in Sec. III A, suppres-
sion of the LEV-TEV interference is required to maintain
the deflected wake under regular flapping. Such interference
might be exploited for lift vector control in the future.

It is interesting to note that the Strouhal number in the flight
and swimming of many animals lies in the range of 0.2–0.4
[43], and the authors suggest that the vortex pattern generated
in this range is a key underlying factor. In this region, the
LEV is shed as the downstroke ends, which is in agreement
with our result that the LEV transfer causes the vortex pat-
tern change. Our results suggest that such LEV shedding
behavior might be useful not only for maintaining flapping
flight but also for maneuverability. Although our results are
restricted to the transition of the vortex dynamics owing to
change of the wing motion, we believe that they will facili-
tate a deeper understanding of the maneuverability of flying
animals.
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APPENDIX: VALIDATION

The validity of the simulation code and the algorithm for
the transformation between the laboratory frame (O-xy) and

FIG. 16. Time series of the lift on the oscillating wing in a
uniform flow. The calculation methods are SEM (δ = 0.025, 0.01)
and IB.

the wing-fixed frame (O-XY ) was verified by comparing the
lift acting on the oscillating wing in a uniform flow. We com-
pared the SEM code with the code of the immersed boundary
(IB) method, which is a variant used by Yokoyama et al.
[16]. In the calculation of the IB method, the computational
domain was [−10, 30] × [−5, 5], which was represented by
1024 × 256 modes corresponding to the regular intervals. The
time step for the IB method was 1.6 × 10−5. The wing chord
was represented by 64 grid points, corresponding to c = 2.5.
We compared our SEM approach with the IB approach for the
case Re = 200, St = 0.15, r = 0.2. Figure 16 shows the lift
coefficient CL calculated by both methods. The time series are
nearly identical, especially for the case δ = 0.01.
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