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Numerical investigation on the collapse of a bubble cluster near a solid wall
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This paper studies numerically the collapse of a cluster of cavitation bubbles (as a primitive model for a
bubble cloud) near a solid wall. The homogeneous two-phase mixture model is used, with the liquid-vapor
interface resolved by volume of fluid method. The liquid is treated as compressible, allowing the propagation of
pressure waves at the speeds determined by a state equation. This cluster consists of 27 identical bubbles, evenly
distributed in a cubic region, with various bubble-wall and bubble-bubble distances considered. Our simulations
suggest that the bubble-wall distance plays a more significant role. The maximum impulsive pressure of 41 MPa
is achieved when the cluster is very close to the wall. The inward progress of collapse is observed by examining
the evolutions of bubble shapes and flow fields, with two distinctly different sequences of collapse identified
between the small and large bubble-wall distances. At a large bubble distance, the centermost bubble is the last
to collapse, while at a small bubble distance, it is the central bubble nearest to the wall which collapses lastly.
This difference can also explain the more intensive impulsive pressure for the smaller bubble-wall distances.
The proposed numerical approach is of special interest because it can resolve the details of bubble-bubble and
bubble-wall interactions, which are significant to the study of the collapse of a cavitation cloud, and its potential
damage to hydraulic systems.
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I. INTRODUCTION

The collapse of cavitation bubble is a strongly nonlin-
ear problem, which has been studied for decades owing to
its negative effects on hydraulic facilities, which should be
avoided or at least controlled [1]. For example, the strong
microjets and the high pressure impulses induced around
the collapsing bubbles may severely damage solid walls by
removing material from the surface, leading to serious erosion
in valves and associated hydraulic equipment [2–4]. It is well
known that the ability of collapsing cavitation bubbles to focus
and concentrate energy is at the root of cavitation damage,
sonochemistry, or sonoluminescence [5–7]. This unique abil-
ity to focus energy can also be put to remarkably constructive
use. Cavitation bubbles are now used in a remarkable range
of surgical and medical procedures, for example, to emulsify
tissue (most commonly in cataract surgery or in lithotripsy
procedures for the reduction of kidney and gall stones) or to
manipulate the DNA in individual cells [8]. By creating cavi-
tation bubbles noninvasively thereby depositing and focusing
energy nonintrusively, one can generate minute incisions or
target cancer cells [9,10].

It was recognized a century ago in Lord Rayleigh’s work
[11] that the pressure in the liquid outside a collapsing bubble
can be predicted to reach upward of 100 bar in a few tens
to hundreds of nanoseconds. Rayleigh proposed a transport
equation of spherically symmetrical cavitation bubble, assum-
ing that the surrounding liquid is incompressible and invis-
cid, and the surface tension is negligible [11]. Plesset [12],
Noltingk and Neppiras [13], and Poritsky [14] modified this
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equation to include the effects of viscosity, surface tension,
and incident sound waves. Considering the compressibility of
the liquid, the Keller-Miksis equation was proposed to model
the finite-amplitude bubble oscillations [15], which has been
used in most modern studies [16]. The theoretical models of
bubbles have been continuously developed. More recently,
different variations of Rayleigh-Plesset–type equations were
proposed to describe the finite-amplitude oscillation of a bub-
ble in a liquid-filled cavity confined by an elastic solid owing
to the possible medical applications to soft tissues [17–20].

In contrast to the spherically symmetric configurations in
most theoretical models, it is more practical to consider the
cavitation bubble collapsing near a wall. As early as 1944, it
was realized by Kornfeld and Suvorov [21] that microjetting
can be a dominant mechanism in the collapse of a cavitation
bubble in liquid. It is well known now that a liquid jet can
be formed in a collapsing bubble due to inhomogeneities
in the pressure field when the collapsing cavity is close
to a solid wall, as predicted by Plesset and Chapman [22]
through solving numerically the potential flow, and verified
experimentally by Lauterborn and Bolle [2]. Then, a series of
experiments were performed by the same research group to
accurately measure the jetting flows by time-resolved particle
velocimetry (PIV) [23,24].

It was followed by the experiments concerning different
aspects of this problem, such as the collapse of a pair of
bubbles [25–28], the bubble-sphere interactions [29], the bub-
ble collapsing between two perpendicular rigid walls [30],
the collapse of large bubbles in a highly overpressured en-
vironment [31], the cavitation bubbles in liquid mercury [32],
and a wide variety of nonspherical bubbles induced by new
laser techniques [33]. In those experiments, the bubbles were
induced by ultrasonics, laser pulses, electric sparks, or even
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by mechanical impacts. Technically, it is possible to generate
multiple bubbles, or a bubble cluster, as reported by Cui et al.
[34], up to four bubbles were generated at the crossed joints
of thin copper alloy wires with energy from the discharge of a
capacitor. However, it is extremely challenging to get uniform
and evenly distributed bubbles due to the difficult setup in tra-
ditional techniques, though some efforts have been made [35].

Alternatively, Bremond et al. produced well-controlled
hemispherical surface bubbles by using a hydrophobic sur-
face patterned with microcavities [36]. It was observed that
during the cluster collapse the individual bubbles collapsed
aspherically and developed a jetting flow toward the cluster’s
center. By examining the evolution of bubbles, they found that
the pressure wave traveled at the speed of sound in the water.
Similarly, arrays of transient cavitation bubbles could also be
obtained by shaping a pulsed laser beam with digital hologram
and focusing it into a thin gap of liquid [37]. However, we note
that both experiments were based on two-dimensional config-
urations, or the bubble cluster distributed on a surface. The
real three-dimensional experiments have rarely been carried
out.

As a fast algorithm, with inviscid and incompressible as-
sumptions, the boundary element method (BEM) has been
developed and applied to study the bubble-wall and bubble-
bubble interactions [38,39]. For the bubble near a flat plate
in the presence of a shear flow, they found that the bubble
elongated during its growth with the increasing ratio between
the shear flow velocity and bubble collapse velocity. For a
cluster of bubbles, they reported that the collapse proceeded
from the outer bubble shells toward the inside, indicating a
cloud period of oscillation much larger than that of individual
bubbles. We note that both studies indicate the profound
nonspherical deformations caused by the confinement from
either the wall or the surrounding bubbles.

With the development of computing resources, direct sim-
ulations of the Navier-Stokes equations become possible for
the bubble dynamics studies, with different treatments for the
liquid-vapor interfaces, such as the volume of fluid (VOF)
[40] and level set methods [41,42]. Nevertheless, the direct
simulations of bubble collapse are still challenging due to
the fact that most existing numerical codes assume that the
liquids are incompressible, which makes the propagation of
pressure waves impossible to be correctly captured. There-
fore, the detailed bubble-scale dynamics of a cluster remain
poorly quantified. Recently, compressible-fluid multiphase-
flow equations were solved to investigate a cluster of gas
bubbles, including all mesh-revolved bubble-bubble interac-
tions and the nonspherical dynamics of each bubble within
the cluster, with a 50-bubble cluster considered adjacent to
a rigid wall [43]. Although the dynamics of gas bubbles is
different from that of cavitation bubbles, it is instructive to the
dynamics of cavitation bubble clusters.

In this paper, we present numerical simulations of a cluster
of cavitation bubbles, consisting of 27 individuals. A numer-
ical model is proposed, which considers the compressibility
of the liquid and the detailed bubble-bubble and bubble-wall
interactions. Our primary aim is to evaluate the impulsive
pressure induced by the pressure wave emitted by the bubble
collapse, and investigate the asymmetric collapses of the
bubbles.

II. NUMERICAL METHODOLOGY

A. Numerical model

We consider the fluid containing bubbles as a homoge-
neous two-phase mixture, which is simulated by the direct
numerical simulation (DNS) method. A transport equation
for the liquid volume fraction is adopted to capture the inter-
face between two phases. The viscosity, surface tension, and
compressibility of the fluid are also taken into account. The
governing equations can be expressed as follows:

dρ

dt
+ ρ∇ · U = 0, (1)

ρ
∂U
∂t

+ ρU · ∇U = ρg − ∇p + 2∇ · (μD)

− 2

3
∇(μ∇ · U) + σκN, (2)

dα

dt
= ∂α

∂t
+ U · ∇α = 0, (3)

where U and p are the velocity and pressure, respectively. D is
the strain rate tensor (D = [∇U + (∇U)T ]/2), k is the surface
curvature, σ is the surface tension coefficient, N is the unit
normal vector of the interface, and α is the volume fraction
of the liquid. ρ and μ are the density and viscosity of the
mixture, respectively, which are obtained by the weighting of
each volume fraction:

ρ = αρ1 + (1 − α)ρ2, (4)

μ = αμ1 + (1 − α)μ2, (5)

where subscripts “1” and “2” denote the liquid phase (water)
and the gas phase (vapor), respectively. When the mixture is
considered as a compressible medium, the equation of state
(EOS) of each phase should be supplied. However, the thermal
physics of vapor bubble is still not fully understood due to
the contribution from latent heat. As a simplification, the
Rayleigh-Plesset equation [11] assumes that the pressure in
vapor bubbles can be kept constant when modeling the motion
of spherical bubbles. Following this assumption, we set the
pressure and density within the vapors to be constant values.
The EOS for the liquid phase [44] can be expressed as

ρ1 = ρ10 + 1

c2
1

p, (6)

where ρ10 is the density constant, c1 is the speed of sound in
liquid. Here, we set ρ10 = 998 kg/m3 and c1 = 1500 m/s.

The pressure-based method has been widely used in water
flow computations. Typically, a pressure equation can be
derived from the continuity equation. However, as the com-
pressibility of liquid phase has been involved in the modeling,
the dependency of density and pressure should be supplied in
the derivation. Previously, our group has developed a robust
SIMPLE-like pressure-based algorithm for the computations of
compressible two-phase flows [45]. This algorithm is also
employed in this study.

In our simulations, the space discretizations are second-
order upwind for the convection terms and central differences
for the Laplacian terms, respectively. The time discretization
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is first-order implicit Euler. The preconditioned conjugate
gradient (PCG) method is used to treat the pressure equation
and the preconditioned biconjugate gradient (PBiCG) method
is used for the velocity equations.

B. Validation

To validate our numerical model, we first study a single
cavitation bubble. The computational domain is a cuboid with
dimensions of 48 mm × 48 mm × 30 mm. A bubble with a
radius of 2.02 mm is placed 2.29 mm above the central point
of the bottom of the computational domain. After carefully
carrying out self-consistency tests, we find that the grid with
a cell number 6,480,000 (180 × 180 × 200) and an initial
maximum time step size dt = 1e−7 s are sufficient to ensure
satisfactory independence of the results with respect to both
mesh and time discretizations. The grid is nonuniform Carte-
sian grid, which is refined around the bubble with 41 cells
distributed along the bubble diameter. The time step size is
adjustable during the simulations to meet the requirement of
local courant number Co = 0.35. The bottom of the computa-
tional domain is a solid wall, and the other boundaries are with
fixed constant pressure and zero gradients of the velocities
normal to the boundary surfaces.

Dimensionless bubble-wall distance, pressure, and time are
defined, respectively, as

γ = L

R0
, p∗ = p

p∞ − p0
, t∗ = t

tc
, (7)

where L is the distance between the bubble and the solid
wall, R0 is the initial radius of the bubble, p∞ is the far-field
pressure, p0 is the initial pressure (vapor pressure) inside the
bubble, and tc is the time span of bubble collapse obtained
from the solution to an unbounded spherical bubble [11], with
the formula

tc = 0.915R0

√
ρl

p∞ − p0
, (8)

where ρl is the liquid density, which is approximately equal to
ρ10 shown in (6) due to the very weak compressibility of the
liquid. We also define a dimensionless time span of collapse as
κ = ts/tc, where ts is the time span of bubble collapse obtained
from our numerical simulations.

In Fig. 1(a), we show the outlines of the bubble during
collapse, where γ = 1.13. During the first phase, from 0 to
123 μs, the confinement of the solid wall causes the bubble
to elongate slightly along the axis perpendicular to the wall.
It is followed by surface perturbations in the upper portion of
the bubble, resulting in a more rapid collapse of the upper
portion, and eventually forming a jetting flow toward the
wall. The present simulations are consistent with the previous
experiment, as shown in Fig. 1(b).

To further validate our numerical model, we carry out a
series of simulations by varying the distance γ . The initial
radius of the bubble is set to R0 = 1 mm to make a direct
comparison with the formula derived by Rattray, which was
also used in Ref. [47]. This comparison in the time spans
of collapse with various dimensionless distances is shown in
Fig. 2, with a good agreement made between the analytic
solution and the present numerical simulations. Here, we
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159μs

161μs

163μs

(b)

0μs

123μs

152μs

160μs

163μs

165μs
167μs

(a)

FIG. 1. Outlines of the cavitation bubble at various stages of
collapse for (a) the present simulations and (b) experimental results
from Kling and Hammitt [46].

neglect the second-order term in the origin formula, then a
simple expression is obtained as

κ = 1 + 0.41
1

2γ
. (9)

γ

κ

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.51.00
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1.30
Analytic solution
Present simulations

FIG. 2. Relationships between the dimensionless bubble-wall
distance and the time span of bubble collapse. Solid line: the an-
alytic solution from formula (9). Symbols: the present numerical
simulations.
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FIG. 3. Schematic of the geometric configuration for the simula-
tions of 27 cavitation bubbles (side view).

Figure 2 clearly suggests that the time span is extended as the
bubble is closer to the solid wall, indicating the constricting
effect of the wall.

III. RESULTS

From the validation case in the last section, we understand
that the asymmetry of bubble collapse can be brought by
placing a solid wall, forming a jetting flow toward the wall.
It can also be caused by the presence of nearby bubbles. In
this section, we study the collapses of a cluster of cavitation
bubbles, or more specifically, 27 bubbles, which are placed
in a cubic region with three layers, and nine bubbles on each
layer.

The initial configuration of the bubbles is shown in
Fig. 3. All bubbles are initialized with the radius R0 = 1 mm.
The spacing between two adjacent bubbles is fixed at D =
2.4 mm, or a dimensionless value of D∗ = D/R0 = 2.4 for
most cases. The ambient liquid pressure is set to 101 325 Pa,
and the pressure inside the bubbles is 3169 Pa, therefore, the
time span of collapse for an unbounded bubble with R0 =
1 mm under these settings is tc = 92.3 μs.

In Fig. 4, we present the evolutions of the vapor volumes
and the wall center pressures as the bubbles collapse. The
distances, ranging from γ = 1.0 to 3.5, are considered. In
Fig. 4, the vapor volumes are scaled by the initial total volume
of the 27 bubbles. We observe that the bubble cluster with
a smaller distance from the wall collapses more slowly than
the large distance clusters, indicating the constricting effect
caused by the solid wall, which is consistent with the single
bubble cases. We also observe that the time span for a bubble
cluster is longer than that of a single bubble, by comparing
Fig. 4(a) with Fig. 2. This further delay is caused by the nearby
bubbles. Therefore, for multiple bubbles, the constrictions
from both the solid wall and the nearly bubbles play roles on
the process of collapse.

As we have learned from the previous experiments or
our numerical simulations on a single bubble, as shown in
Fig. 1(b), when the bubble collapses, intensive impulsive
pressure can be induced on the wall due to the jetting flows
caused by the nonspherical deformation of the bubble. When
considering compressibility of the liquid, pressure waves can
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FIG. 4. Evolutions of (a) the vapour volumes and (b) the pres-
sures at the center of the solid wall as the bubble cluster collapses, for
different distances. The inset in (b) presents the pressure evolution at
γ = 1.5 for a single bubble.

also be emitted as the bubble collapses to a minimum volume,
or ideally a singular point, and these waves will eventually
reach the solid wall. It is meaningful to examine the pressure
variations on the wall, which are shown in Fig. 4(b). Here,
the measuring point is located at the center of the solid wall,
which is just underneath the central bubble on the lowest
layer, as shown in Fig. 3. The peak value of the impulsive
pressure on the wall increases as the distance is reduced,
reaching up to a dimensionless pressure of 410 at γ = 1.0,
or an absolute pressure of 41 MPa. To make a comparison
with a single bubble, we show in the inset of Fig. 4(b) the
pressure evolution for the single bubble at γ = 1.5, with a
peak pressure of 20 observed. It shows that the impulsive
pressure for a bubble cluster is nearly four times the single
bubble case at the same distance from the wall. For example,
the impulsive pressure reaches a peak about 100, or 10 MPa in
absolute value, for a single bubble at γ = 1.0. This significant
difference in impulsive pressure between single bubble and a
bubble cluster indicates an apparent focusing of kinetic energy
and pressure associated with the inward progress of collapse.

We understand that it is very difficult to make direction
comparisons between numerical simulations and experiments
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FIG. 5. Evolutions of the bubble shapes for γ = 3.5 at a se-
quence of time instants of (a) t = 108 μs, (b) t = 202 μs, (c) t =
218 μs, (d) t = 234 μs, (e) t = 246 μs, and (f) t = 258 μs.

on the impulsive pressures, due to the different pressure mea-
suring facilities and different levels of accuracy of the sensors
in the experiments. Yukio et al. [48] attached a pressure
transducer to the wall covering an area with a diameter of
2.3 mm, which was larger than the induced bubbles, i.e., 1.0
and 1.7 mm considered in their experiments. Nevertheless, our
simulated peak values of the impulsive pressure coincidentally
fall into the range of their experiments, which is from 5
to 15 MPa. However, we should point out that the peak
value of the pressure impulse is very sensitive to the spatial
resolution in numerical simulations because the cavitation
bubble collapses eventually to an infinitely small point, which
causes singularity.

To get an intuitive understanding of the detailed dynamics
during collapse, in Fig. 5, we present the instantaneous bubble
shapes at a sequence of time instants for γ = 3.5. We note that
these time instants correspond to the dimensionless times of
t∗ = 1.17, 2.19, 2.36, 2.54, 2.67, and 2.80, respectively. The
last time instant is just before the vanishing of all bubbles,
referring to Fig. 4. The nonsynchronous collapse is apparently
observed among individual bubbles. As seen in Fig. 5(b),
the outermost bubbles are the first to be exposed to the
higher ambient pressure, thus the earliest to collapse, and the
centermost bubble is the last to collapse, as seen in Fig. 5(f).
This inward progress of collapse results in focusing of kinetic
energy and pressure to centermost bubble, which has been
quantitatively exhibited in Fig. 4.

It has been debated for many years whether cavitation
damage is caused by microjets or by shock waves or by
both [4]. In other words, which mechanism is the major
contribution to the intensive impulsive pressure on the wall,
as we have discussed for Fig. 4. Kimoto [49] declared that the
impulsive pressures from the collapse shock were two to three
times larger than those due to the microjets, though both may
contribute to the impulsive loading of the surface. However,
we note that the shock was actually induced by a remnant
cloud of small bubbles that continued to collapse collectively
after collapse of a single bubble in their experiments [49].

In Fig. 6, we present the velocity vectors projected onto the
symmetry plane at different time instants for γ = 3.5, corre-
sponding to Figs. 5(c)–5(f). The inward progress of collapse

FIG. 6. Velocity vectors within the symmetry plane for γ = 3.5
at different time instants of (a) t = 218 μs, (b) t = 234 μs, (c) t =
246 μs, and (d) t = 258 μs.

is exhibited more clearly in this figure. The asymmetrical dy-
namics of the bubbles surrounding the central one, particularly
the reentrant jetting is clearly observed. For example, if we
examine the uppermost bubble in Fig. 6(a), we can see that the
nonspherical deformation causes the upper side of the bubble
to accelerate inward more rapidly than the opposite side and
this results in the development of a high-speed reentrant
microjet which penetrates the bubble. As seen in Fig. 6(d),
at the late stage of collapse, since the centermost bubble is the
last to collapse, it actually determines the details of this jetting
and the actual potential for wall damage. However, since
the microjet’s function within a very local region (apparently
shown in Fig. 6), their damages to the wall would be very
limited, particularly in the cases when the bubble or the bubble
cluster is a certain distance away from the wall. That is why

FIG. 7. Evolutions of the bubble shapes for γ = 1.5 at different
time instants of (a) t = 214 μs or t∗ = 2.32, (b) t = 240 μs or t∗ =
2.60, and (c) t = 274 μs or t∗ = 2.97.
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FIG. 8. Pressure contours within the symmetry plane for γ = 1.5
at different time instants of (a) t = 220 μs, (b) t = 242 μs, (c) t =
256 μs, (d) t = 266 μs, (e) t = 274 μs, and (f) t = 282 μs. Blue
(dark gray) and red (light gray) colors denote low and high values
of pressure, respectively.

we can only identify a single primary peak in the pressure
impulse shown in Fig. 4(b). Another possible explanation is
that because the pressure wave propagates at a very high
speed, thus reaching the wall earlier than the jetting flows, it
is nearly impossible to distinguish the contribution from that
induced by the pressure waves.

As the bubble cluster is closer to the wall, as shown in
Fig. 7 for γ = 1.5, a markedly different sequence of collapse
is observed, in contrast to Fig. 5 for γ = 3.5. Here, the central
bubble nearest to the wall is the last to collapse, as seen in
Fig. 7(c). This sequential collapse can also been identified
from the pressure fields, as shown in Fig. 8. We note that high
pressure generates as an individual bubble nearly vanishes.

To investigate the pressure propagation in space, in Fig. 9,
we present the radial distributions of pressure on the wall
along the symmetry line crossing the measuring point used
for Fig. 4. It is clearly seen that the peak value decreases
as the pressure wave travels away from the central point,
behaving as a typical characteristic of spherical waves. It is
straightforward to estimate the speed of wave propagation,
for example, in a simple manner, by measuring the distance
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5 t=284 μs
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FIG. 9. Radial distributions of the pressure on the wall for a
sequence of time instants (γ = 1.5).
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FIG. 10. Evolutions of the pressures at the center of the solid wall
as the bubbles collapse for different bubble-bubble spacings with a
fixed bubble-wall distance of γ = 1.2.

between two adjacent peaks from Fig. 9. As the wave travels
from r = 1.299 mm at 284 μs to r = 14.053 mm at 292 μs,
resulting in a traveling speed of 1594 m/s, around the speed
of sound used in Eq. (6).

Moreover, we also investigate the variations of impulsive
pressure with the bubble-bubble spacing. As shown in Fig. 10,
at a fixed bubble-wall distance γ = 1.2, the peak pressure
does not change much as the bubble-bubble spacing is reduced
from D∗ = 3.6 to 2.4, until the bubbles are very closely
deployed, e.g., D∗ = 2.2 and 2.0. We note that the bubbles
are actually attached to their adjacent bubbles for D∗ = 2.0,
according to the definition in Fig. 3. It also suggests that the
constricting effect brought by the nearby bubbles is not as
significant as that brought by the solid wall.

IV. CONCLUSIONS

In this paper, direct numerical simulations (DNS) have
been performed to study the collapse of multiple cavitation
bubbles or a bubble cluster, with 27 bubbles considered. A
transport equation for the liquid volume fraction is adopted
to resolve the interface between two phases. It is assumed
that the bubbles are filled with vapor with constant density
and pressure, while the liquid outside of the bubbles is com-
pressible and its compressibility is represented by a state
equation. This simplified numerical model has been proved
to be feasible and efficient to the study of bubble collapse,
particularly when there are multiple bubbles grouped into a
cluster.

In our simulations, we concentrate on the peak value of
the pressure impulse imposed on the constricting wall. As
we have discussed, this impulsive pressure is induced, for the
greater part, by the pressure wave emitted from the bubble
collapse. The impulsive pressure varies with the bubble-wall
distance and bubble-bubble spacing, in which the bubble-wall
distance plays the most significant role. At a fixed bubble-
bubble spacing D∗ = 2.4, a maximum pressure of 41 MPa
is found when the bubble cluster is very close to the wall,
which is consistent with the previous experiments, at least
in the same order of magnitude. We have pointed out that a
direct comparison with experiments in the absolute value of
impulsive pressure is very difficult since the bubble collapses
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eventually to a minimum cavity volume, or ideally a singular
point, which requires an extremely fine spatial resolution in
the numerical model.

By examining the evolutions of bubble shapes and flow
fields, the inward progress of collapse is clearly exhibited,
and we identify two distinctly different sequences of collapse
between small and large bubble-wall distances, demonstrating
a significant constricting effect from the wall. At a large
bubble distance, the centermost bubble of the cluster is the
last to collapse, while at a small bubble distance, it is the
central bubble nearest to the wall which collapses lastly.
This difference can also explain the more intensive impulsive
pressure for the smaller bubble-wall distances.

We have provided a numerical approach to investigate
the collapse of a bubble cluster, presenting the detailed

evolutions of bubble shapes and flow fields, and the impulsive
pressure on the wall has been evaluated. The underlying
physical mechanism of bubble collapse is still poorly un-
derstood, which is worth further investigations. More fac-
tors should be considered in future studies, for example,
phase transition and detailed resolution of flow inside the
bubble.
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