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Breakup of a leaky dielectric drop in a uniform electric field
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Electrohydrodynamic (EHD) breakup phenomena for a leaky dielectric drop suspended in another immiscible
viscous dielectric and subjected to a uniform electric field are examined using the leaky dielectric theory
and the explicit forcing lattice Boltzmann method, by taking into account full nonlinear inertia effects. The
breakup modes are first computed for varied conductivity of the drop fluid, as the viscosity ratio λ (=μin/μout)
is momentarily set to unity, that is, for the slightly conducting (R = σin/σout < 10), moderately conducting
(10 � R � 20), and highly conducting (R > 20) cases. For slightly conducting drops (R = 5) only one breakup
mode via two symmetrical necks persists for permittivity ratios 0.05 < Q = εin/εout < 3.0 and electric capillary
number CaE > CaE ,critical (ratio of electric and surface tension forces), despite significant length-scale variation
of mother and daughter drops. At higher Q (for increased drop permittivity) two necks move closer to the bulbous
midpart of the extended droplet, which helps enlarge two daughter drops. However, in the case of moderately
conducting drops (10 � R � 20) the number of necks increased to four for increased CaE . Accordingly two
pairs of symmetrical daughter drops are created because of recurrent fluctuations of the electrical shear stress and
centerline momentum flux. For highly conducting cases of R > 20, depending on CaE , three distinctly elongated
droplet states are formed prior to breakup, which results in the onset of three different breakup modes, namely, via
formations of lobed ends (CaE � 0.264), pointed ends (CaE � 0.68), and nonpointed ends (CaE > 0.83). While
being consistent with past measurements, here we precisely characterize the associated breakup mechanisms and
physics in terms of the interactive electric pressure, electric shear stress, and hydrodynamic pressure plus velocity
gradients. Since the EHD drop breakup is a dynamic process, on an elongated slender drop the activated locally
distinct driving forces, i.e., electric pressure at the end regions and tangential electric stress in the midsection,
effectively lead to neck formations by virtue of the created high centerline velocity gradient. Accordingly,
resulting variations of local extension rate and net mass flux toward drop ends or into intermediate bulbous
regions facilitate the multiple-mode drop breakup via the inertia effect, whereas the developed negative curvature
around a neck encourages capillary breakup. We also explicitly reveal the effect of the viscosity contrast λ, which
particularly influences the breakup characteristics over a broader range of conductivity ratios.
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I. INTRODUCTION

The dynamical characteristic and breakup of a liquid drop
in another immiscible liquid when exposed to an electric
field play important roles and are widely encountered in
many practical applications including ink-jet printing [1],
electrospraying and atomization [2,3], enhancing heat or mass
transfer between droplets and surrounding medium [4,5],
flow manipulation in microdevices [6], light scattering, and
birefringence and optical measurement of emulsions [7,8]. In
earlier works, two extreme limits were widely considered in
that a droplet is regarded as a perfect dielectric or a perfect
conductor suspended in an insulating medium. Thereby only
normal electric stress that acts on a drop surface is balanced by
the surface tension, and at equilibrium the droplet elongates to
a prolate shape in the direction of the applied electric field,
while two fluids remain motionless. The phenomenon has
been investigated [2,7,9,10] since the theoretical electrostatic
framework was established, exhibiting that beyond a critical
electric field strength the unstable drop breakup occurs. For
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the perfectly dielectric case (e.g., bubbles) the conical edges
and shapes are formed at the droplet ends [11–13] prior to
breakup, and then a series of small droplets is ejected from
pointed tips [11]. For a perfectly conducting (water) drop, first
Taylor [2] experimentally visualized the pointed tip formation
and calculated the cone angle. Subsequently, Torza et al. [14]
observed a new breakup mode of water drops in a uniform
electric field in which the drop stretches to form two bulbous
ends that remain connected by thin threads, and then gradually
disintegrate into two bigger daughter droplets and a series
of tiny ones. Recently, Ha and Yang [15] experimentally
examined the breakup of aqueous conducting drops that are
suspended in immiscible oil, and report a result consistent
with that of Torza et al. [14], whereby the bulbous end-
pinching mechanism leads to the droplet burst. However,
the pointed end jet type structure of Taylor’s [2] was not
found by Ha and Yang [15]. Afterward using the Stokes
flow approximation and the boundary integral method (BIM)
Dubash and Mestel [16,17] studied the onset of breakup
modes for a conducting drop in a viscous insulating fluid
subjected to varied electric field strengths, and showed that as
a droplet evolves up to breakup (above a critical field strength)
three characteristic shapes are formed prior to disintegration:
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namely, a lobed end, a jetlike pointed end, and a nonpointed
end, depending on viscosity ratio λ (=μin/μout) and electric
capillary number CaE (=E2aεout/γ , where E , a, εout, γ

denote magnitudes of uniform electric field, droplet radius,
permittivity of outer medium, and surface tension). Later,
following Dubash and Mestel’s [16,17] work, Karyappa et al.
[18] experimentally predicted the above three typical breakup
modes for conducting drops. For λ > 1 only the pointed end
mode is observed at all CaE above a critical value, whereas
for lower λ (<10−3) the drop breakup via lobe formation
occurred. Within 10−2 < λ < 10−1 the breakup modes transit
from the lobe formation to nonpointed ends to pointed ends,
with increased CaE . However, an in-depth understanding or
analysis of the precise roles of physically important interactive
forces still eludes researchers, and notably the evolution of the
breakup modes for a leaky drop is yet to be investigated or
characterized using the fully nonlinear theory.

Besides an ideal situation (perfectly dielectric or conduct-
ing drops), realistically, most fluids have finite conductivity
(well known as leaky dielectrics) as Taylor [19] noted. Due
to the unequal variation of electric current between inside
and outside, the significant net charge accumulates on a drop
surface. Consequently, in addition to electric pressure, the
tangential electric stress that acts on an interface drags the
surrounding viscous fluid to motion and imposes important
interfacial hydrodynamic stress and paired vortex dynam-
ics directed forcing. Accordingly, depending on the inter-
active electric and hydrodynamic stresses, apart from the
prolate deformation that was predicted by electrostatic theory
[2], oblate or even spherical drop shapes are also formed
[14,19]. Notably, Taylor’s electrohydrodynamic (EHD) theory
describes the physical phenomena in the limit of creeping
flow and small perturbation from sphericity; later a complete
framework (well known as the leaky dielectric model) for
investigating the finite conducting drops was proposed by
Melcher and Taylor [20]. However, when compared to the ex-
periments of Torza et al. [14], Vizika and Saville [21], and Ha
and Yang [15], Taylor’s theory quantitatively underestimate
the drop-deformation rate in a stronger electric field and is
able to predict qualitatively the resulting deformation behav-
ior. On the other hand, although Ajayi’s [22] extended theory
by taking into account higher-order corrections can better
predict drop deformation over a broader range of electric field
strength, the discrepancy between theory and experiment still
remains.

In past years various linearized theoretical investigations
have been performed to predict EHD behavior of a dielec-
tric drop. Based on the Stokes flow assumption and BIM,
Sherwood [12] studied the formation of various electric field
strength–dependent elongated stable droplet shapes (at λ = 1)
and their approach to the breakup modes for varying inner and
outer fluid permittivity and conductivity. Notably, Sherwood
[12] reveals the onset of two types of breakup modes for the
dielectric drops: formation of pointed ends (that occurs prior
to the tip streaming) for permittivity ratio (Q = εin/εout � 1)
much greater than unity, and formation of the bulbous ends
which remain connected by a thin thread for conductivity ratio
R = σin/σout � 1. Following Sherwood’s [12] work, Lac and
Homsy [23] studied various possible limiting approaches for
drop-breakup modes in the framework of the leaky dielectric

model and examined the effect of viscosity contrast on a
droplet’s stability. Nevertheless, due to the restricting Stokes
flow assumption [23] only stable deformation shapes or rates
prior to breakup could be predicted instead of precise breakup
process and crucial inner physics. Notably, for the considered
Stokes flows the time dependence acts only via the imposed
kinematic boundary condition on a drop. Meanwhile using the
creeping flow assumption and the boundary element method
(BEM) Baygents et al. [24] investigated the EHD interaction
of a pair of leaky dielectric drops in an aligned electric field.

Distinctively, by relaxing the creeping flow condition and
based on the steady Navier-Stokes equation, Feng and Scott
[25] numerically studied stable (nonbreaking) deformation
characteristics and electrically induced flow behavior for a
leaky dielectric drop, and examined the influences of inertial
force and drop viscosity. Recently, a number of numerical
methods [13,26–29] based on the Navier-Stokes equations
are proposed for computing deformation of a dielectric drop
in a uniform electric field. However, such studies mostly
address nonbreaking or limiting deformation scenarios below
a threshold that provides an overview of possible droplet
shapes in elongated states. Accordingly, despite academically
enriching diverse approaches, the precise inner physics lead-
ing to the unstable growth, the actual breakup pattern, and the
postbreaking evolution of a leaky drop by and large are still
unaddressed, as previous works concentrate on the limiting
approach to breakup. On the other hand, Ha and Yang [15]
experimentally report various breakup modes for dielectric
drops and growth of multiple pinching necks with increased
drop viscosity, but clearly left enough room for categori-
cal exploration of the driving inner physics that can unfold
the crucial roles of the locally active tangential and normal
electric stress and momentum flux or pressure gradient. As
a whole, comprehensive knowledge on the diverse breakup
mechanisms and governing inner physics for a leaky drop is
therefore still lacking. Importantly, Collins et al. [30] recently
examined the tip streaming mechanism for EHD jets, often
referred to as electrospray, and proposed that the tangential
electric stress can be vital for the tip streaming from drop
ends. It is noteworthy that the phenomenon exists only in
leaky dielectrics and did not occur when liquids are perfectly
conducting or perfectly dielectric. In addition, Nganguia et al.
[31] elaborate on the importance of the nonlinear inertial
effects on EHD interaction of a viscous drop and show that
interfacial distribution of the interactive electric stress plays
a critical role in accurate prediction of a droplet pinch-off,
whereas the linear Stokes flow approximation significantly
underestimates the active electric pressure at poles.

The available literature [2,3,7,8,11–18] thereby shows the
breakup of the perfectly conducting drops is relatively well
studied, and viscosity ratio λ has a key role [16–18] to
play in influencing different breakup patterns. Nevertheless,
a systematic investigation plus thorough understanding of the
breakup behavior or physics for the leaky dielectric drops
are still lacking. Accordingly, the objectives of the present
work are to (i) demonstrate the actual breakup mechanisms,
(ii) explain the relevant physics in the framework of leaky
dielectric fluids, and (iii) provide an inclusive overview of
various breakup modes over a wide range of electric proper-
ties. Additionally, the drop breakup is strongly influenced by
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FIG. 1. Schematic of a leaky dielectric drop of radius a sus-
pended in another immiscible leaky dielectric fluid and subjected to
a uniform electric field �E .

coupled interaction of electric field and induced fluid motion,
an unstable dynamic process. Inspired by the existing infor-
mation [12,15,18] on breaking of conducting drops and lack
of adequate results and clear understanding for leaky ones,
in this work, with integrated full nonlinear inertia effects, we
demonstrate different breaking patterns and governing physics
for the suspended leaky dielectric drops, and examine the
influence of varied viscosity contrast.

II. GOVERNING EQUATIONS
AND NUMERICAL METHOD

We consider an uncharged liquid drop (Fig. 1) of radius
a, placed in an immiscible fluid subjected to a uniform
electric field �E . The liquids inside and outside are assumed
incompressible (of equal density ρ), Newtonian, and leaky
dielectrics [20,23–29], and have viscosities μin, μout, permit-
tivities εin, εout, and conductivities σin, σout. The interface
separating two immiscible fluids has constant surface tension
γ . In the numerical framework adopted hereby we ignore the
impacts of the buoyancy effect; however, the full nonlinear
EHD interactions [26,31] are taken into account to reveal the
actual drop-breakup modes and the physics.

A. Leaky dielectric model

The leaky dielectric theory [19,20] is used here to model
the electrical response of a suspended drop in a surrounding
fluid medium. While ignoring the magnetic induction effect,
the EHD equations elaborated below become an accurate ap-
proximation. Since the propagation time for electromagnetic
waves is much faster compared to the characteristic timescale
of induced hydrodynamic motion, the small ionic charges are
assumed present only at the interface, and the concept of dif-
fuse (Debye) layers (volumetric charges) becomes irrelevant.
Accordingly, the electrical phenomena are governed by

∇ × �E = 0. (1)

Gauss’s law in a dielectric fluid of permittivity ε, when
written in terms of the electric displacement �D (=ε �E ), be-
comes the following [Eq. (2)]; wherein qv denotes the volume

density of free charge.

∇ · �D = ∇ · (ε �E ) = qv. (2)

In addition, the charge conservation equation is expressed
as

∇ · �J + dqv

dt
= ∇ · (σ �E ) + ∂qv

∂t
+ �u · ∇qv = 0, (3)

where �J = σ �E is the current density due to conduction,
σ is the electrical conductivity, d/dt denotes the material
derivative, and �u is the local fluid velocity. From Eqs. (2) and
(3), one can obtain

qv = qv,0e− σ
ε

t , (4)

where the subscript 0 denotes initial time, and a field variable
χ (σ or ε) corresponds to both χin and χout.

Equation (4) indicates that the charge density in the neigh-
borhood of a fluid particle decays with relaxation time te =
ε/σ . The hydrodynamic timescale for the motion is given
by tυ = ρR2/μ. Based on Melcher and Taylor’s theory [20],
for a conductive fluid with te � tv , any existing free charge
instantly accumulates at the interface and charge conservation
occurs faster than fluid response. Consequently, for the leaky
model, the free charge in bulk fluid is zero and the charge
is constrained to the surface; i.e., dqv/dt = 0, and Eq. (3)
becomes

∇ · (σ �E ) = 0. (5)

Moreover, in terms of the electric potential (V ), the electric
field strength can be written as

�E = −∇V. (6)

Combining Eqs. (5) and (6), the governing equation for the
electric field (potential) becomes

∇ · (σ∇V ) = 0. (7)

On a fluid-fluid interface the electric potential (V ) and
the tangential component of the local electric field ( �E ) are
assumed continuous, that is,

�t · �Ein = �t · �Eout,Vin = Vout, (8)

where �t is the unit tangent vector at the interface.
Note that, owing to mismatching electric properties of

inner vs outer fluid, the jump of the ( �En) normal component
of the local electric field generates surface charge q(�x) that is
calculated through Gauss’s law,

q(�x) = [[ε �En]] for �x ∈ S, (9)

where, [[·]] denotes jump across an interface S. In relevant
past works [23,26,28,31–33] two methods were employed
to describe surface charge development. One method takes
into account Ohmic currents from bulk and advection by
fluid flow and is governed [30,32,33] by the following charge
conservation equation,

∂q

∂t
+ [[σ �En]] + ∇S · (q�v) = 0 for �x ∈ S, (10)

where ∇S is the gradient operator and �v is the fluid velocity
on the surface. The second method neglects the unsteady
term and the surface charge convection [23–29,31]; Eq. (10)
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thereby reduces to the simpler surface condition, that is, the
continuity of the current,

[[σ �En]] = 0. (11)

The EHD phenomenon arises due to the persisting electric
stress at the interface. However, the electric forces are essen-
tially exerted on interfacial free charges and charge dipoles
rather than on the dielectric fluid. Therefore, the electric body
force ( �FE ) can be described [20,33] in terms of divergence of
the Maxwell stress, �σM = ε �E �E − ε

2 [1 − ρ

ε
( ∂ε
∂ρ

)]E2 I, where

I is the identity tensor, and �FE coupled with hydrodynamic
and surface tension forces drives the EHD flow in a medium
of continuously varying permittivity and bulk charges. The
electric force ( �FE ) per unit volume, as calculated by taking
the divergence of the Maxwell stress tensor, becomes

�FE = ∇ · �σM = qv
�E − 1

2
�E · �E∇ε + ∇

(
1

2
�E · �E ∂ε

∂ρ
ρ

)
.

(12)

Assuming incompressibility and inserting electric body
force together with surface tension force into the Navier-
Stokes equations, one obtains the governing equations [26,28]
for the EHD flow phenomena, known as the leaky dielectric
model. The relevant boundary conditions at the interfaces
are the continuity of velocity, �uin = �uout; and balancing the
jump in total stress and interfacial tension, i.e., [[�n · �T H ]] =
γ κ�n − [[ �n · �T E ]], where κ = [(I − �n �n) · ∇] · �n is the interfa-
cial mean curvature.

Over the past years the response of an isolated leaky
dielectric drop suspended in an immiscible leaky dielectric
medium and subjected to a uniform electrostatic field has been
widely examined [13,20,23–33]. Due to interactive interfacial
stresses, the drop experiences “prolate” or “oblate” deforma-
tion [34]. The resulting drop deformation D in terms of fluid
properties is expressed as [13,14,20,23–33]

D = L − B

L + B
= 9 fd

16(2 + R)2 CaE , (13)

fd = R2 + 1 − 2Q + 3

5
(R − Q)

(2 + 3λ)

(1 + λ)
, (14)

where L is the end-to-end length of a deformed drop measured
along the applied electric field, B is the maximum drop width

perpendicular to the electric field, and fd is the discriminating
function. For fd > 0, a drop deforms into the prolate form,
and when fd < 0 the drop assumes the oblate shape.

B. Numerical method and its implementation

1. Explicit forcing interparticle potential
lattice Boltzmann method

Recently Porter et al. [35] proposed an improved explicit
forcing lattice Boltzmann (LB) model, where the forcing term
is directly incorporated into the discrete Boltzmann equation.
In the present work, we implemented below the LB model of
Porter et al. [35] to simulate the EHD interactions, as it is
verified [34,36] to be substantially upgraded on various fronts
and is quite effective. The LB model is expressed as

f k
l (�x + �el�t, t + �t ) − f k

l (�x, t )

= − f k
l (�x, t ) – f k(eq)

l

(
nk,�ueq

k

)
τ k

+�t

(
1 − 1

2τ k

)(�el − �ueq
k

) · �Fk

ρkc2
s

f k(eq)
l

(
nk,�ueq

k

)
,

(15)

where f k
l (�x, t ) is the probability distribution function of the

kth component in the direction of the lth molecular velocity
(�el ) at �x at time t , and τk is the nondimensional relaxation
time. As evidenced below, the adopted D2Q9 [34,35,37]
model efficiently and accurately predicts the multiphase EHD
interactions. In the above, f k(eq)

l (nk,�ueq
k ) representing local

Maxwellian equilibrium distribution is given by [29,35–38]

f k(eq)
0 = αknk − 2

3
nk�ueq

k · �ueq
k ,

f k(eq)
l = (1 − αk )nk

5
+ 1

3
nk

(�el · �ueq
k

) + 1

2
nk

(�el · �ueq
k

)2

− 1

6
nk�ueq

k · �ueq
k , for l = 1 − 4,

f k(eq)
l = (1 − αk )nk

20
+ 1

12
nk

(�el · �ueq
k

) + 1

8
nk

(�el · �ueq
k

)2

− 1

24
nk�ueq

k · �ueq
k , for l = 5 − 8, (16)

and the discrete molecular velocity �el are expressed as

�el =

⎛
⎜⎝

�0, l = 0,[
cos (l−1)π

2 , sin (l−1)π
2

]
, l = 1 − 4,√

2
{
cos

[ (l−5)π
2 + π

4

]
, sin

[ (l−5)π
2 + π

4

]}
, l = 5 − 8

⎞
⎟⎠. (17)

The parameter αk in Eq. (16) is related to the speed of
sound in the D2Q9 model [37], and is given by (ck

s )2 =
0.6(1 − αk ). nk is the total number of density of the kth
component, defined by nk = ∑

l f k
l . Moreover, the mass den-

sity of the kth component, ρk = mknk = mk
∑

l f k
l , where

mk is the kth molecular mass. The kth component of
the fluid velocity �ueq

k at equilibrium state is therefore

determined by

�ueq
k =

(
s∑

k=0

ρk�uk

τk

)/(
s∑

k=0

ρk

τk

)
, (18)

ρk�uk =
∑

l

f k
l �el + 0.5�t �Fk, (19)
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where S + 1 represents the total number of components in the
multiphase system, and �Fk is the total force acting on the kth
component, including fluid-fluid interaction ( �F int

k ) and electric
( �F ele

k ) forces, as appropriate for this work.
For the interparticle potential model, the interactive force

between particles of the kth component at �x and the k̄th
component at �x′ is assumed [34,35,37] proportional to the
product of their effective number density ϕk (nk ), defined as
a function of local number density. Following past investiga-
tions [29,37,39], ϕk (nk ) is chosen here as nk . Therefore, the
total interaction force acting on the kth component at �x is
given by

−→
F int

k (�x) = −nk (�x)
∑

x′

∑
k̄

Gkk̄ (�x, �x′) nk̄ (�x′) (�x − �x′). (20)

In Eq. (20) above, Gkk̄ (�x,�x′) is the Green’s function
that satisfies Gkk̄ (�x,�x′) = Gk̄k (�x,�x′), the magnitude of which
controls the strength (gkk̄) of the interaction potential. For
the adopted D2Q9 lattice arrangement, we follow a method
similar to that proposed by Martys and Chen [40] to ob-
tain the required interaction potential by projecting the four-
dimensional face-centered hypercubic (4D FCHC) lattices
to the present D2Q9 format. Accordingly, the potential that
couples nearest and next nearest neighbors becomes

Gkk̄ (�x,�x′) =

⎧⎪⎨
⎪⎩

gkk̄, |�x − �x′ | = 1
gkk̄
4 , |�x − �x′ | = √

2

0, otherwise

⎫⎪⎬
⎪⎭ (21)

The whole fluid velocity (�u) is thereby expressed in the
following form,

�u =
∑

k ρk�uk∑
k ρk

, (22)

and the kinematic fluid viscosity is expressed as

υ = 1

3

∑
k

ρkτk

ρ
− 1

6
. (23)

Therefore, for the kth component, the viscosity is reduced
to

υ = 1
3τk − 1

6 . (24)

2. LBM approach for computing electric field
and treatment of interface

Notably, the electric potential equation, Eq. (7), is an
elliptic equation, while LBM is a method that essentially
solves the parabolic equation. Thus, the solution of Eq. (7)
is conveniently obtained (He and Li [41]; Guo et al. [42]) as
the steady solution of the following equation [Eq. (25)] in the
LBM timescale.

∂V

∂t
+ ∇ · (σ∇V ) = 0. (25)

Hereby, the new particle distribution function hl is intro-
duced [41,42] and expressed as

hl (�x + −→el �t, t + �t ) − hl (�x, t ) = −hl (�x, t ) − heq
l (�x, t )

τ h
.

(26)

The corresponding equilibrium distributions heq
l and the

relaxation time τh are expressed as

heq
0 = 4

9V, heq
l = 1

9V, l = 1 − 4, (27a)

heq
l = 1

36V, l = 5 − 8, τh = 3σ + 0.5, (27b)

where σ represents a combination of electric conductivities, as
described below. Based on Eqs. (26) and (27), Eq. (25) can be
recovered using the Chapman-Enskog expansion [43], while
the electric potential V is defined as

V =
∑

l

hl . (28)

Note that the influence of the electric field in EHD motion
activates through the Maxwell’s stress that develops due to
different fluid conductivity and permittivity and/or electric
field strength. In numerical algorithms solving two-phase hy-
drodynamics (see Kang et al. [39]), the sharp interface is often
treated as a diffused one spanning over a thin region (of three
grid sizes [28,39]), where physical properties continuously
and smoothly transit from a value of one phase to that of
another phase [34]. The electric force that exists only on the
interface is induced by the nonuniform electric properties (σ
and ε). In this context, to derive an equivalent electric volume
force representation [i.e., Eq. (29) given below] for Eq. (12)
the work of Tomar et al. [28] that follows the continuum
surface tension model of Brackbill et al. [44] is employed,
which effectively calculates the surface force in the transition
region of the inhomogeneous fluid system.

�FE = 0.5

{
∇

(
ε

σ 2

)
[σ ( �E · �n)]

2 − ( �E · �t )
2∇ε

}

+
[

(σ �E ) · ∇
(

ε

σ

)]
( �E · �t )�t, (29)

where the normal vector �n is defined as �n =
∇(ε/σ )/|∇(ε/σ )|; ε, σ are the dielectric permittivity and
conductivity in the transition region. To calculate the electric
force �FE for the transition region, the dielectric properties
need to be interpolated. For this, a weighted harmonic mean
[Eq. (30)] interpolation scheme [28] is suitably adopted here,
in which the electric field strength ( �E ) remains independent
of the interface thickness.

ρ

ε
= ρin

εin
+ ρout

εout
,

ρ

σ
= ρin

σin
+ ρout

σout
, (30)

and ρ(=ρin + ρout ) denotes the total density for the mixture.
Furthermore, to deal with two different fluids the electric

force �FE [Eq. (29)] is needed to split into two parts and be
properly applied for each set of fluid properties. We divide
this force according to the density-ratio as

�F ele
k = ρk

ρ
�FE , k = 1, 2. (31)

III. RESULTS AND DISCUSSION

Extensive simulations are now carried out in a two-
dimensional (2D) physical (32a × 28a) domain covered by
300 × 256 D2Q9 lattices, using the implemented periodic
condition (Fig. 1) for fluid motion in both x and y directions.
The EHD system that remains exposed to a uniform electric
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field is created by maintaining the (constant) higher and lower
electric potential at left (V+) and right (V–) boundaries of the
domain (Fig. 1), and the Neumann type spanwise condition
(∂V/∂y = 0) for electric potential is employed along the y
boundaries. The molecular mass (mk) is set to be 1.0. To
examine the influence of the electric field on the drop, the
densities of the drop fluid and surrounding fluid are considered
to be identical. Moreover, for the adopted explicit forcing
LBM model the interaction potential strengths are appropri-
ately [35] selected as g12 = g21 = 0.275, g11 = g22 = 0.0.

A. Computation of surface tension

To begin the investigation, we first calculate the surface
tension γ [37,39] of a drop suspended in another fluid, which
also helps to validate the adopted LB approach. For this, in the
absence of electric field, a circular drop (of radius a) of one
fluid is placed symmetrically in a domain filled with a second
fluid. At equilibrium, the pressure jump (pin − pout) across the
drop interface (in the absence of body force) is balanced by
the surface tension pressure, and the evolution of the drop is
governed [45] by Laplace’s law,

pin − pout = γ /a, (32)

whereas the pressure p for the whole fluid domain is expressed
as [37]

p = 1

3

∑
k

nk + 3

2

∑
kk̄

gkk̄nknk̄ . (33)

Using 300 × 256 square lattices, the initial density for
component 1 was set as 2.0 in the drop and 0.01 for the
outer fluid, whereas the density for component 2 was initially
set to be 0.01 for the drop and 2.0 elsewhere. Accordingly,
simulations for the multicomponent fluid flow with different
component densities are conducted with varied drop radius a
and the resulting pressure difference pin − pout is computed at
the steady state. Since the LBM is a dynamical procedure, the
static state for the drop is achieved through the time-evolution
of about 15 000 time steps. Figure 2 presents the computed
pin − pout for varied a, together with the fitted solid line
that obeys the Laplace equation [Eq. (32)]. Accordingly, the
computed slope, i.e., the surface tension, becomes γ = 0.27.
The linear fit, in Fig. 2, between computed pin − pout and 1/a
is clearly consistent with the Laplace equation.

B. Validation of the explicit forcing LBM model

For comparison, at this stage we first compute stable equi-
librium deformation (D) of a leaky dielectric drop in another
immiscible fluid subjected to a uniform electric field that is
below the threshold of breakup (CaE < CaE ,critical). The liquid
properties inside and outside a drop are taken identical to
cases Q = 0.1, 1.37, 5.0, at R = 10 and λ = 1, those used
by Lac and Homsy [23]; in addition, the results for Q = 0.1
correspond to those of Nganguia et al. [31]. Following Feng
and Scott [25], the Reynolds numbers Re (=au/νout ) for EHD
flows are calculated based on the maximum interface velocity,

u = 9a εinE2
∞

10 μin
[| R

Q − 1 |/(2 + R)2 (1 + 1
λ

)]. Figure 3 shows the
computed CaE -dependent drop deformation D [Eqs. (13) and
(14)] using the present nonlinear flow model, and creeping

FIG. 2. Computed surface tension for a single drop by Laplace’s
law. The slope (surface tension) is 0.27.

flow solution of Lac and Homsy [23] and the Navier-Stokes
solution of Nganguia et al. [31]. Important to note in Fig. 3
is that the linear dependence of D and E2 (as CaE ∼ E2) in
the form of constant dD/dE2 slope [Eq. (9)] that satisfies
Taylor’s linear theory is valid for D < 0.1, and for D > 0.1 the
dependence reveals nonlinear behavior. In addition, dD/dE2

rapidly increases, especially for lower Q(=0.1, 1.37) cases
for which a slight increase of CaE causes a sudden drop elon-
gation, as drops transit from ellipsoidal to extended slender
two-lobed shapes. To be precise, a quick shape transition at
Q = 1.37 as shown in the inset (in Fig. 3) is detected for
a small increase of the CaE from 0.383 57 to 0.385 57. In

FIG. 3. Comparison of the present results, creeping flow solution
of Lac and Homsy [23], and Navier-Stokes solution of Nganguia
et al. [31] for the CaE -dependent stable drop deformation (D), as
permittivity ratio Q is varied at fixed R = 10, λ = 1. Computed dif-
ferent cases are Q = 0.1 (0.135 � Re � 0.46), Q = 1.37 (0.058 �
Re � 0.468), and Q = 5.0 (0.0684 � Re � 0.411).
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contrast, for Q = 5.0, the increasing trend of dD/dE2 appears
rather slow and the drop gently evolves from an ellipsoidal to
an elongated shape (when necks did not form) in the range
0.4 � CaE � 0.5. As Fig. 3 reveals, in the small deforma-
tion regime (for varied Q and CaE � 0.35) the simulated
D using the present nonlinear model is in good agreement
with the Stokes flow (BIM) solution of Lac and Homsy
[23] and the nonbreaking scenario (Q = 0.1) described by
Nganguia et al. [31]. Nevertheless, the slight deviation with
Lac and Homsy [23] occurs as a droplet undergoes larger
deformation, possibly influenced due to the fact [25,31] that
the BIM [23] ignores important inertial effects (for which
Re = 0), whereasthe lattice Boltzmann equation solved here
is equivalent to nonlinear Navier-Stokes equations. The recent
study by Nganguia et al. [31] clearly shows the discrepancy of
D originates from gradually enhanced inertial force (Re > 0)
with increased CaE ; although the effect depends on direction
of the interactive normal electric stress [31]. More precisely,
the locally developed positive electric pressure (pointed out-
ward) leads to larger drop deformation and a negative electric
pressure reverses the trend [31]. At Q = 0.1 (<1) the neg-
ative electric pressure (pointed inward) persists everywhere
[Fig. 5(c2)] except at poles, whereas all along positive electric
pressure [23] is induced at Q = 5. Therefore, it is rational
that in larger deformation regimes the simulated D (Fig. 3)
appears relatively larger than the Stokes flow solution [23] at
Q = 5, and smaller at Q = 0.1, due to added inertial effect.
However, the observed close variations of D (Fig. 3; Re > 0)
show that the adopted LBM model can correctly predict the
EHD deformation behavior of a suspended drop. In addition,
extensive validation of the model is presented in a recent
work [34], revealing virtual coincidence of LBM solutions
and those obtained by the level set [13] and volume of fluid
[28] methods.

C. Drop-breakup modes for varied conductivity at fixed λ = 1

In this subsection we analyze breakup characteristics of the
leaky drops with varied conductivity ratio (R) at λ = 1. Based
on the elaborated diverse breakup modes, leaky drops are clas-
sified into three categories, namely, highly (R > 20) conduct-
ing, intermediately (10 � R � 20) conducting, and slightly
(R < 10) conducting subclasses, and these terminologies are
followed throughout. For clarity, a phase diagram in (R, CaE )-
space is presented in Fig. 4, wherein the dashed line divides
the entire parameter space into stable deformation and unsta-
ble breakup regimes. In the unstable regime different breakup
modes are noted for varied parameter (R, CaE ) combination.
Following the transition patterns, the unstable regime is split
into several specific subregimes that facilitate breakup via a
single pair of necks (SPN), multiple pair of necks (MPN),
lobe formation (LF), pointed end (PE), and non-pointed end
(NPE), as illustrated in Fig. 4 and described below.

1. Breakup modes for a slightly conducting drop (R < 10)

Figure 5(a) presents the transient EHD deformation plus
breakup behaviors of a slightly conducting drop with field
properties R = 5.0, Q = 0.05, CaE = 1.3. It shows, follow-
ing EHD interaction, the suspended drop first transits to an
ellipsoidal shape at t = T (T = 100 lattice unit time) and then

FIG. 4. Phase diagram for the EHD drop deformation and
breakup in (R, CaE ) space; λ = 1, Q = 1.37. The dashed line is the
boundary between stable (lower region) and unstable deformation
regimes. SPN and MPN denote single and multiple pairs of pinching
neck. LF, PE, and NPE correspond to varying breakup modes via
lobe formation, pointed end, and nonpointed end, respectively.

keeps stretching in the form of a slender cylinder. During the
process clear formation of three bulbous regions take place
at t = 4.5T ; they are seen remaining temporarily connected
by two thinner necks. Subsequently the two slender, cylin-
der shaped daughter droplets pinch off (t � 5.5T ) from the
mother droplet, and move toward oppositely charged edges
(t � 7T ) and relax to ellipsoidal shapes, whereas the relaxed
similar sized mother droplet (e.g., at t = 9.5T ) becomes
eventually motionless by virtue of symmetrically imposed
interfacial stresses [Figs. 5(c1) and 5(c2)].

To get a better insight into this drop-breakup phenomenon,
Fig. 5(b1) shows important near-field flow characteristics at
t = 4.5T , as neck formation appears clear. In Fig. 5(b1), note
the significant variation of inertia that acts in different parts of
the transitioning drop (Re = 2.58) and the advection of two
dominating outward moving, out f low natured [34] vortex
pairs at left and right in the bulk fluid, which effectively
drives the two end regions to stretch oppositely and separate
away from the mother drop, via the imposed interfacial thrust.
Accordingly three distinct drop regions [Fig. 5(b1)] are clearly
formed prior to breakup (t = 4.5T ): the midsection 1.32 <

x < 1.68, and two symmetric end regions at left (x < 1.2)
and right (x > 1.8); they remain connected by two thin liquid
threads in neck regions 1.2 < x < 1.32 and 1.68 < x < 1.8.
Figures 5(b1) and 5(b3) reveal the persistence of the cru-
cial horizontal (u) velocity gradient along the centerline of
the stretched drop. Notably, distinctly from cases associated
with a perfectly conducting drop [15,18] or an insulating
dielectric drop suspended in an insulating medium, for the
leaky drop in addition to the electric pressure (normal elec-
tric stress) the induced surface charge generates significant
tangential electric stress that drives [19,20,33] the near-field
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hydrodynamics in Fig. 5(b1). For clarity, Figs. 5(c1) and 5(c2)
present the detailed variation of the interactive tangential and
normal electric stresses along the droplet surface [Fig. 5(b1)]
at t = 4.5T . Figure 5(c1) shows the antisymmetrical rapid
fluctuation and enhancement of the tangential stress near the
drop ends (x < 0.95 or x > 2.05), whereas precisely at the
end points it reduces to zero owing to the symmetric end
shape, clarifying that at the poles the droplet stretching is

driven by the positive (pointing from droplet to outer fluid)
electric pressure [Fig. 5(c2)] that attained the local maxi-
mum. Physically, the surface charge accumulates near two
tips (x < 0.95, x > 2.05) of a slender leaky dielectric drop,
where rapid growth and variation of tangential and normal
electric stresses occur [30]. Note in Fig. 5(c2) that at places
away from the drop ends the negative electric pressure is
generated for Q = 0.05 (<1), and the magnitude attains local

FIG. 5. (a) The time-dependent evolution and breakup process of the slightly conducting drop at R = 5.0, Q = 0.05, λ = 1.0, CaE = 1.3,
and Re = 2.58. (b1) Near-field instantaneous flow behavior around an elongated droplet during neck formation; t = 4.5T ; (b2), (b3) extracted
pressure and velocity distribution along the drop centerline at t = 4.5T ; (b4), (b5) profiles of cross-sectional u-velocity magnitude at x = 1.45
(representative of drop-midsection region) and x = 0.98 (represents drop-end region) at t = 4.5T . (c1), (c2) The nondimensional tangential
electric stress and electric pressure distribution on drop surface at t = 4.5T . The tangential electric stress directed toward the left is taken as
positive (Continued.).
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FIG. 5. (Continued.)

negative maximum precisely in two necks, at x = 1.26(IL1)
and x = 1.74(IR1). Moreover, as evident from Fig. 5(c1), in
two necks the tangential electric stress crosses the zero mark
at the in f lect ion (eventual breakup) points IL1(x = 1.26) and
IR1(x = 1.74), while in the vicinity its oscillatory perturbation
of opposite nature with high gradient is noteworthy. Impor-
tantly, for such an elongated droplet state the dominating sign
(positive or negative) of electric pressure away from the end
points depends on the permittivity ratio Q, which is noted to
be positive [Fig. 6(c2)] for Q > 1, and negative for Q < 1
[Fig. 5(c2)]. One may think that the negative electric pressure
plays a crucial role in droplet breakup, because it reduces the
effect of the surface tension. Nevertheless, the direction of
electric pressure (positive or negative) alone cannot determine
the occurrence of droplet collapse, as the breakup of a leaky
drop in elongation is a dynamic process that depends on
the created local extension rate [23,30,46] owing to strong
interaction between the electric field and the vortex induced
flow field [Fig. 5(b1)]. Note in this context in Fig. 5(c1)
the antisymmetric variation of the tangential electric stress
with respect to the droplet center (x = 1.5), and its near-tip
sudden reduction of magnitude to zero. Hereby, the tangential
electric stress directed toward the left is defined as positive.
However, the tangential electric stress alone cannot decisively
dictate droplet deformation; it acts to impact surrounding fluid
motion through the viscosity effect [30].

To better predict the physical mechanism leading to the
droplet breakup, Figs. 5(b2) and 5(b3) shows the crucial

changes of internal velocity (u) and pressure (p) along the
drop centerline, at t = 4.5T , as the neck formation is taking
place, providing clear insight for the nonuniform drop exten-
sion rates. First, note in the midsection 1.32 < x < 1.68 the
persisting significantly lower u, velocity [Fig. 5(b1)], having
a small axial gradient [Fig. 5(b3)]. Second, within two end
sections x < 1.2, x > 1.8 rather uniform but clearly higher
(u) velocity is maintained (negative on the left and positive on
the right side). Third, the phenomenally active higher velocity
gradient persists [Fig. 5(b3)] in transitional and developing
neck zones 1.2 < x < 1.32 and 1.68 < x < 1.8. The observed
high velocity difference [Fig. 5(b3)] between the midsection
and two end parts creates [30] the inertia-driven distinct local
extension rates for a drop in the elongated state, leading to
formation of neck regions. Moreover, the resulting net mass
flux [Fig. 5(b1)] toward the drop ends is contributed by the
persisting high velocity gradient in the necks; accordingly the
necks become more and more thin and subsequent pinch-
off [Fig. 5(a)] occurs at a certain point (for t > 5T ). In
the process, the created negative curvature around the necks
leads to the development of the local low pressure regions,
as clearly visible in Fig. 5(b2), which generates a bigger
inner-outer pressure difference to facilitate capillary breakup,
as explained by Collins et al. [30].

To clearly demonstrate the importance of imposed electric
stress in inducing the essential variations of the internal flow
mechanism that lead to breakup, Figs. 5(b4) and 5(b5) show
the cross-sectional |u| profiles at x = 1.45 (representative of
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FIG. 6. Influence of Q (>1) on the breakup of a slightly conducting drop. (a) The time-dependent evolution of the drop shape in the breakup
process at R = 5, Q = 1.37, λ = 1, CaE = 1.3, and Re = 1.9. (b1) Near-field instantaneous flow behavior around an elongated droplet during
neck formation, t = 5T ; (b2), (b3) extracted instantaneous pressure and velocity distribution along the drop centerline at t = 5T . (c1), (c2)
The nondimensional tangential electric stress and electric pressure distribution on drop surface at t = 5T .
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FIG. 7. Temporal evolution and breakup of an intermediately conducting drop at R = 10, Q = 1.37, λ = 1, CaE = 0.55, and Re = 0.65.

flow behavior in droplet midsection) and x = 0.98 (represents
an end region). As seen in Fig. 5(b4), the velocity curve
at x = 1.45 is strongly indicative of typical shear stress-
driven flow (parabolic velocity profile) whereby the minimum
velocity occurs at the droplet centerline (y = 1.28). Since
the pressure gradient balances the viscous stress in shear
stress-driven flows, in Fig. 5(b2) slowly decreasing p away
from the midsection and along the drop centerline is induced.
Accordingly the surface motion caused by interactive tan-
gential electric stress [Fig. 5(c1)] drives the internal fluid
to flow [30]. Distinctly, at x = 0.98, the maximum velocity
[Fig. 5(b5)] in the cross section occurs at the droplet centerline
(y = 1.28), showing that close to tip regions the significantly
higher normal electric stress [electric pressure, Fig. 5(c2)]
that is imposed by accrued charges effectively dictates the
internal fluid flow, which overcomes a visibly higher local
pressure gradient [Fig. 5(b2)]. Such issues have been noted
in a pioneering work by Collins et al. [30].

Now, with fixed R = 5 and CaE = 1.3, we increase the
permittivity ratio Q to 1.37 (>1) and examine its influence
on the drop breakup. At Q = 1.37, Fig. 6(a) shows the grad-
ual drop evolution and later breakup into markedly different
proportions with respect to those [Fig. 5(a)] at Q = 0.05. To
be precise, for Q = 1.37 the neck regions 1.24 < x < 1.38
and 1.64 < x < 1.78 [see Fig. 6(b1)] move significantly close
to the droplet center (x ≈ 1.5) producing two larger daughter
drops and one smaller mother drop for t � 6.5T , as noted
in Fig. 6(a). However, the breakup of a leaky drop depends
on the varying local extension rate determined by interaction
between the electric field and the induced bulk fluid motion.
To extract the physics leading to the breakup phenomenon at
Q = 1.37, we analyze an instantaneous droplet state at t =
5T [Fig. 6(b1)] following the neck formation. Figure 6(c2)
shows that, in this case, the positive electric pressure persists
on the whole drop surface, which could possibly inhibit the
occurrence of breakup (and neck formation). However, the

developed higher electric pressure at two tips still acts as
the decisive driving force that supports the drop elongation.
Accordingly, the resulting sudden increase or decrease of
axial flow as seen in Figs. 6(b1) and 6(b3) reveals the crucial
transitioning character of the internal flow; from the tan-
gential electric stress driving in the midsection (1.38 < x <

1.64) to electric pressure driving at the two tips (drop-end
regions; x < 1.24, x > 1.78). This occurs despite the fact that
the magnitude of tangential electric stress [especially in the
midpart, Fig. 6(c1)] is decreased significantly with increased
permittivity ratio (Q = 1.37); the corresponding [Fig. 6(b3)]
fluid velocity is also decreased. The presented distribution of
tangential electric stress in Fig. 6(c1) shows the inflection
points IL1(x = 1.31), IR1(x = 1.71), i.e., the eventual breakup
points (where τE crosses zero) at this higher Q(=1.37) have
moved closer toward the drop center, resulting in formation of
a smaller sized mother drop [Fig. 6(b1)].

2. Breakup modes for intermediately conducting
drop (10 � R � 20)

For the increased conductivity ratio R, more electric
charges accumulate on the drop surface. Accordingly, for a
given electric field strength, the resulting higher electric stress
reduces the critical electric capillary number (CaE ,critical) that
is required to facilitate the onset of drop breakup. To ex-
tract the related physics, we first compute two intermediately
conducting drop-breaking cases at R = 10, using varied CaE .
Figure 7 shows that the breaking behavior of an intermediately
conducting drop (R = 10) at a lower CaE = 0.55 is apparently
consistent with those for the slightly conducting drops (R = 5,
Figs. 5 and 6). However, the size of two daughter drops
(Fig. 7, at t � 6T ) clearly decreased (compared to slightly
conducting cases, Figs. 5 and 6), as a larger fraction of
mass stays in the midsection of an intermediately conducting
drop with 10 � R � 20. Moreover, quite distinctively from
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slightly conducting drops (R = 5, Figs. 5 and 6) that exhibit
breakup strictly via two necks (for CaE � CaE ,critical), Fig. 8
reveals that at an increased CaE = 0.83 the intermediately
conducting (R = 10) drop evolves through multiple pinching
necks and eventually breaks into multiple pairs of daugh-
ter drops. Notably, Fig. 8(a) shows symmetric formation
of four transitioning bulbous regions for 4T � t � 4.5T in
two sides, in addition to one formed in the central part, by
virtue of persisting locally nonuniform internal mass transport
[Fig. 8(b1)] at CaE = 0.83. At t = 4T the bulbous masses
remain connected [Fig. 8(a)] by thin necks, and at t � 4.5T
the resulting four daughter drops are seen to pinch off. Impor-
tantly, our simulated breaking pattern in Fig. 8 appears quite
similar to the experimental results reported by Ha and Yang

[15] in their Fig. 7 for λ = 0.874 (∼ 1), despite the adopted
nonlinear model being of 2D nature. As evidenced hereby, a
consistent but enhanced variation of the inertia [e.g., larger
velocity gradient, Fig. 8(b3)] driven local forcing for different
bulbous sections of the transitioning drop [Fig. 8(b1)] in
this case (R = 10, Re = 0.98, CaE = 0.83) leads to the ob-
served multiple neck formations and resulting faster breakup
(t � 4.5T ).

It is enlightening to examine the corresponding governing
physics, as the multiple neck formation takes [Fig. 8(a)]
place. First, Figs. 8(b2) and 8(b3) reveal detailed pressure and
velocity distributions along the droplet centerline at t = 4T .
Notably, Fig. 8(b3) shows clear persistence of locally higher
(u) velocity gradient within 0.9 < x < 0.98 and 1.14 < x <

FIG. 8. Impact of increased CaE and resulting multicomponent breakup of an intermediately conducting drop. (a) Time-dependent drop
shape evolution in the process of breakup at R = 10, Q = 1.37, λ = 1, CaE = 0.83, and Re = 0.98. (b1) The near-field flow behavior around
an elongated drop during neck formation at t = 4T ; (b2), (b3) extracted pressure and velocity distribution along the drop centerline at
t = 4T . (b4)–(b6) Profiles of cross-sectional u-velocity magnitude at x = 1.46, x = 1.04, and x = 0.78; t = 4T . (c1), (c2) Distributions of
nondimensional tangential electric stress and electric pressure on drop surface at t = 4T (Continued.).
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FIG. 8. (Continued.)

1.32, in two unequally extended necks in the left half (x <

1.5), and the existence of symmetrically developed similar
velocity gradients in 1.68 < x < 1.86 and 2.02 < x < 2.1 in
the right half (x > 1.5). Figures 8(c1) and 8(c2) show the dis-
tributions of interactive electric stress on the drop surface (at
t = 4T ). Note in this case [Fig. 8(c2), R = 10] the generated
significantly higher electric pressure at two tips, with respect
to slightly conducting drops [Figs. 5 and 6, R = 5], which
effectively pulls two bulbous ends (x < 0.9, x > 2.1) to move
left or right with visibly higher velocity [Fig. 8(b3)], and facil-
itates the formation of necks. Such distinctive forcing features
persist despite the intermediately conducting (Fig. 8) drop
is placed in a relatively weaker electric field (CaE = 0.83)
than slightly conducting drops (CaE = 1.3, R = 5, in Figs. 5

and 6). Figures 8(b1) and 8(b3) show that two intermediate
nearly uniform flow regions 0.98 < x < 1.14 and 1.88 < x <

2.02 of visibly low velocity gradient are formed between
two end regions and the midsection, wherein the intermediate
bulbous shapes develop. On either side the dominating steep
velocity (u) gradient, by virtue of the high local extension
rate within the necks, drastically reduces the net mass flux,
which helps the creation of two inner daughter drops. Note
in this context the appearance of two addit ional inflection
points IL2 and IR2 in Fig. 8(c1), where the tangential electric
stress crosses the zero mark, whereas for slightly conducting
cases [Figs. 5(c1) and 6(c1)] they do not exist. To uncover
the driving flow mechanisms, Figs. 8(b4)–8(b6) show the
important cross-sectional u profiles. The u profiles at x = 0.78
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[Fig. 8(b6)] and x = 1.46 [Fig. 8(b4)] unambiguously reveal
that the dominating driving forces are the electric pressure
in the end regions (where |u|max occurs on the droplet axis),
and tangential electric stress in the midsect ion (as |u|max

occurs on drop interfaces). Between the left end region and
the midsection (x = 1.5) the noted formation of a u profile at
x = 1.04 [Fig. 8(d5)] similar to that at x = 0.78 [Fig. 8(d6)]
shows that the inertia dictates the local flow dynamics in the
intermediate bulbous regions.

3. Breakup modes for highly conducting drops (R > 20)

For highly conducting drops of fixed R = 30 we first exam-
ine their evolution for varied Q = 0.1, 1.37, 10.0. Notably,
at R = 30, the breakup behaviors presented in Figures 9
and 10 resemble that of widely reported [15–18] perfectly
conducting drops, in that permittivity ratio Q seems to have
little influence. Our computed critical CaE ,c’s that initiates
the onset of drop breakup in the above three cases are 0.219,
0.219, 0.227, respectively, which remain consistent to around
0.22 predicted by Lac and Homsy [23] for a highly conducting
dielectric drop, and 0.23 experimentally found by Ha and
Yang [15] for the NN1-16 (conducting) system. In addition,
Ha and Yang [15] and Feng and Scott [25] report that an EHD
drop can be treated as a perfectly conducting one for R >

105. Accordingly the investigated cases (at R = 30) in this
section are still dielectrics that satisfy the leaky model [20].
Figure 9(a) illustrates the simulated detailed drop-breakup
phenomenon at R = 30, Q = 1.37, λ = 1, CaE = 0.264. Note
that, for this highly conducting (R = 30) drop at low CaE ,
first, the final stretched length prior to breakup [Fig. 9(b1),
at t = 3.5T ] is significantly shorter compared to that at lower
R [Figs. 5–8]. Second, Fig. 9(a) shows the consistent growth
of the lobed ends prior to pinch-off that is experimentally
observed by Karyappa et al. [18]. Third, in previous works
[16–18] on perfectly conducting drops, the authors found
such a breakup mode [Fig. 9(a)] via lobe formation at small
viscosity ratio (λ < 0.1) and lower CaE (�0.3). However,
phenomenologically distinctive from the perfectly conducting
cases, for the leaky drop [30] the accumulated charges induce
crucial tangential electric stress on the surface. As Fig. 9(c1)
shows, at both ends the generated higher tangential electric
stress induces the growth of curved bulbous end shapes [30]
for the leaky drop, instead of pointed ends noted by Sherwood
[12] for a conducting drop. Additionally, at R = 30, an aug-
mented charge accumulation on lobe ends results in the cre-
ation of significantly stronger local electric pressure, as noted
in Fig. 9(c2), which is about four and two times higher, respec-
tively, than slightly (R = 5) and moderately (R = 10) con-
ducting drops placed in stronger electric fields [CaE = 1.3 in
Fig. 5(c2); CaE = 0.83 in Fig. 8(c2)], whereas the highly con-
ducting (R = 30) drop in Fig. 9 is placed in a weaker (CaE =
0.264) electric field. Note also that, at R = 30, a stronger
axial flow (u) is clearly created in the droplet, especially in
end regions, as Fig. 9(b3) shows. Moreover the bulbous end
shapes increase the local curvature around necks, resulting
in formations of local low pressure regions [Fig. 9(b2)] in
necks (x ∼ 1.12, x ∼ 1.88) that facilitate capillary breakup
[Fig. 9(a)]. However, upon the pinch-off that produced the first
pair of daughter drops (at t = 4.5T ), similar bulbous growth

and breakup processes are repeated, and the second and the
third pairs of daughter drops are generated [see Fig. 9(a) for
t � 5.5T ], until the interactive tangential and normal electric
stresses appear insufficient to further disintegrate the droplet.
Eventually, the mother or central drop relaxes and approaches
an asymptotic equilibrium shape, at t = 9T , whereas the
daughter drops move toward distant edges. As Figs. 9(b1)
and 9(b3) reveal, at R = 30, a stronger internal flow with
high gradient is created via the imposed significantly higher
electric stress [Figs. 9(c1) and 9(c2)], that causes the necks
to move outward and closer to droplet ends and leads to
small size daughter drop formation [Fig. 9(a)]. Noteworthy
in Fig. 9(b1) are the dominating outflow paired outer vortex
dynamics [34,47] near two bulbous ends, which effectively
facilitate the axial drop stretching via their consistent opposite
or outward directed induced motion. For additional clarity, the
invariances of the simulated [Fig. 9(a)] daughter drop ejection
and neck formation processes with implemented higher lattice
resolution are revealed in Appendix.

With increased CaE > 0.66, the lobes are noted to dis-
appear for a highly conducting (R = 30) leaky drop, and
such results seemed quite consistent with the theoretical
predictions of Sherwood [12]. Hereby, two types of drop
shapes developed prior to breakup: the pointed ends for
0.66 < CaE < 0.83 and the nonpointed end for CaE � 0.83.
Figures 10(a1) and 10(b1) elaborate the typical instantaneous
droplet deformation processes at CaE = 0.68 and 0.83 prior to
breakup that maintained convex or oval shapes until the local
highest curvature regions are developed at the drop ends. It
is noteworthy that quite similar drop transition patterns from
pointed to nonpointed ends are reported for the perfectly con-
ducting drops [16–18] with increased CaE . For Stokes flow
(using BIM) Sherwood [12] shows that at a large conductivity
ratio R > 28 (and Q = 1.0) two ends of a leaky drop become
pointed owing to enhancement of the normal electric stress at
the tips. Additionally an air bubble (that corresponds to a per-
fectly dielectric case, in which only electric pressure exists on
the interface) is reported [11] to develop the pointed ends prior
to breakup, when placed in an electric field. The mechanism
that leads to the formation of pointed ends is in fact dictated
by the locally developed sufficiently stronger electric pressure
near the tips. Notably, for the present leaky dielectric drops the
imposed higher electric field (CaE > 0.66) clearly augments
[Fig. 10(a2)] the near-tip electric pressure. Considering that
the drop breakup itself is a dynamic process, for balancing the
developed gradually higher electric pressure with increased
electric field strength (CaE ) and to stabilize the droplet a
sharper curvature is clearly formed [Fig. 10(a1)] in the high
electric pressure regions [30]. Once the rate of increase of
electric pressure exceeds the precision curvature change, the
breakup occurs. For clarity, Fig. 10(a2) shows important local
variation of the electric stress along the right upper-half drop
interface at the onset of breakup, showing that the largest
electric pressure is formed precisely at the tip, and thereby
a pointed end develops [Fig. 10(a1)]. However, for increased
CaE = 0.83, Fig. 10(b2) shows that the maximum electric
pressure is no longer located at the tip. Accordingly, on the
left and right, the symmetrically developed highest electric
pressure [e.g., at x = 1.67, Fig. 10(b2)] at the two largest
curvature areas [that moved slightly inward, Fig. 10(b1)] helps
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FIG. 9. (a) Transient evolution and breakup of a highly conducting drop at R = 30, Q = 1.37, λ = 1, CaE = 0.264, and Re = 0.145. (b1)
Near-field flow behavior around an elongated drop during neck formation at t = 3.5T ; (b2), (b3) extracted pressure and velocity distribution
along the drop centerline at t = 3.5T . (c1), (c2) Distributions of nondimensional tangential electric stress and electric pressure on the drop
surface at t = 3.5T .
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FIG. 10. Impact of varied CaE on modifying edge shape of a highly conducting drop. Deformed drop shape prior to onset of breakup,
near-field flow behavior, and distribution of imposed electric stress along the right upper-half surface at R = 30, Q = 1.37, λ = 1. (a1), (a2)
CaE = 0.68, Re = 0.374; (b1), (b2) CaE = 0.83, Re = 0.457.

to smoothen the tips, and create the open-jet-like local flow
structure.

D. Influence of viscosity contrast

The preceding sections elaborate on drop-breakup phe-
nomena for varied electric properties (CaE , Q, R) at fixed
viscosity ratio λ = 1. While for small deformation [23–29]
the viscosity ratio (λ) has limited effect, Lac and Homsy
[23] studied the influence of λ on the stability of a leaky
drop using the creeping flow approximation. In the present
study, by taking into account the nonlinear inertial effects, the
impact of varied λ on the breakup pattern and physics for the
leaky drops is examined. For λ = 0.087, 5.0, 3.0, the detailed
breakup behaviors are presented here; results broadly agree
with recent measurements of Ha and Yang [15].

First, Fig. 11 shows physical evolution and breakup charac-
teristics of an intermediately conducting drop (R = 10, CaE =
0.89) that has significantly lower viscosity (λ = 0.087) than
the surrounding fluid, and displays patterns that are visibly
consistent with the measurements reported by Ha and Yang
[15] in their in Fig. 6 for the NH17 system. As Fig. 11(a)
reveals, prior to breakup at t = 7.5T , the drop shape in
elongation is characterized by the appearance of two fingertips
at the ends, and the pinch-off occurs via the quadratic curved

neck formations [46], in a way similar to one noted [Fig. 9(a),
CaE = 0.264] for a highly conducting drop at a lower CaE .
Distinctively though, after the first pair of daughter drops’
pinch-off, the mother droplet [e.g., for t � 10T , Fig. 11(a)] at
this lower viscosity ratio, λ = 0.087, continues to stretch fur-
ther and releases a sequence of daughter drops, and eventually
disintegrates (at t = 17.5T ) into a stream of small drops rather
than returning to a relaxed shape that is noted for a relatively
high viscous drop [λ = 1, Fig. 9(a)].

For drop (fluid) viscosity significantly higher than the
surrounding medium viscosity, i.e., at λ = 5, the breakup be-
havior or modes changed altogether. Figure 12(a) shows that
the transient shape evolution plus breakup for a highly viscous
intermediately conducting drop, at λ = 5 and R = 10, are
characterized by the visibly longer stretching and the multiple
neck formation (t = 4.5T ) prior to pinch-off, whereby two
long, thin threads connect the mother drop and two adjacent
daughter drops. Moreover, the breakup for the highly viscous
drop [Fig. 12(a), λ = 5] takes place significantly rapidly com-
pared to a lowly viscous drop of λ = 0.087 < 1 [Fig. 11(a)],
in which case much more viscous outer fluid dampens the
droplet stretching process. Noteworthy also is that, unlike
with λ = 0.087, for increased viscosity ratio λ = 5, following
pinch-off at t = 5T [Fig. 12(a)] of two pairs of daughter
drops, the cylindrical mother droplet relaxes gradually to an
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FIG. 11. Impact of reduced drop viscosity on breakup mode of an intermediately conducting drop. (a) Transient evolution of a drop in
the process of breakup at R = 10, Q = 1.37, λ = 0.087, CaE = 0.89, and Re = 0.015. Close-up views of the neck region and induced flow:
(b1) profile of the neck and generated velocity field prior to pinch-off, t = 14T ; (b2) shapes of a daughter drop and curved edge of the mother
drop following pinch-off, and near-field streamline pattern; t = 14.5T .

equilibrium status (t = 9.5T ). Remarkably, Doshi et al. [46]
also show that for increased drop viscosity the connecting
neck elongates to a long, thin thread type shape (instead of
a quadratic curve) as the breakup moment is approached.
For clarity, Fig. 12(b1) presents a close view of a neck plus
near-field flow behavior at λ = 5, in that a long, thin threadlike
neck is clearly formed between the mother droplet and the
adjacent daughter droplet on the left; which cconnects two
conical ends at t = 4.5T . While the neck gets gradually
thinner, the thread collapses at some point [e.g., at t = 5T ,
Fig. 12(a)] following the EHD interaction, and two daughter
drop pairs are released. Note, in the process, the formation of
two sharp high curvature conical ends on the mother droplet,
at λ = 5. At this stage, the resulting high negative surface
tension pressure, that is proportional to local curvature [46],
counters the positive electric pressure, which is small here,
as most of the charges are being taken away by daughter

drops. This leads to eventual relaxation of the mother drop
to an equilibrium shape (at t = 9.5T ), while the daughter
drops move toward distant boundaries. To reveal the detailed
physics, Fig. 12(b2) shows inner flow behavior at one such
sharp drop end, wherein a counter-rotating pair of inward
moving in f low natured [34,47] vortices clearly dominate to
manipulate the final relaxation status (t = 9.5T ). In contrast,
for a lowly viscous drop (λ = 0.087) as shown in Fig. 11(b1),
the neck clearly becomes short, which is analogous to a
quadratic curve shape, as revealed by Doshi et al. [46].
Around the relatively blunt neck [Fig. 11(b1)] the developed
larger negative curvature induces the negative surface tension
pressure that facilitates the capillary breakup, thus creating
significant radial flow in the neck region. Moreover, quite
distinctly from a highly viscous drop [Fig. 12(b2), λ = 5],
as Fig. 11(b2) shows for a lower λ = 0.087, the developed
round end curvature on the mother drop, upon the pinch-off
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FIG. 12. Multilobed evolution and breakup of an intermediately conducting highly viscous leaky drop. (a) Transient evolution of drop
shape in the process of breakup at R = 10, Q = 1.37, λ = 5, CaE = 0.67, and Re = 0.73. Close-up views of the neck region and induced flow:
(b1) profile of a longer neck and generated velocity field prior to pinch-off; t = 4.5T ; (b2) developed pointed edge shape of the mother drop
following pinch-off, while the streamline pattern reveals dominance of an in f low type near-edge vortex pair in the mother drop upon breakup;
t = 5T .

of daughter drops (at t = 14.5T ), is incapable of inducing
a gradual relaxation, as the required reversed flow near the
round end (of the mother drop) could not be created in this
case [that dominated for λ = 5, Fig. 12(b2)] accordingly a
series of end-pinching daughter drops is gradually produced
[see Fig. 11(a), 7.5T � t � 17.5T ].

However, the breakup behavior of a highly conduct-
ing drop (R > 20) is quite sensitive to the fluid viscosity.
Figure 13 shows that, for λ = 0.087 � 1, only one type of
end-pinching breakup mode persists at R = 30, Q = 1.37; this
is found independent of CaE . The breaking events hereby
evolve in a similar but faster process compared to an interme-
diately conducting drop [Fig. 11(a), R = 10]. Moreover, the
maximum stretched length prior to initiation of breakup (at
t = 2.6T , Fig. 13) for the highly conducting drop is shorter

than that of an intermediately conducting drop [at t = 7.5T ,
Fig. 11(a)]. On the other hand, for increased viscosity (i.e.,
λ > 2) of highly conducting drops (R = 30) two types of
breakup modes are detected as CaE is increased. For clarity,
Fig. 14(a) displays the lobed end-pinching mode at λ = 3,
R = 30, Q = 1.37, for a lower CaE = 0.4 (< 0.6), whereas
Fig. 14(b) shows formation of the pointed end shape at a
higher CaE = 0.6. Notably, the nonpointed end that emerged
at around λ ≈ 1.0 [Fig. 10(b1)] is no longer seen in these
cases.

Remarkably, for leaky dielectrics [19,20] in addition to the
prolate deformation, drops also deform to the oblate shape
[34,48]. In such a situation EHD properties satisfy a relation
Q/R > 1, and the two generated near-interface vortex pairs
drive bulk outer fluid from pole to equator [34]. Furthermore
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FIG. 13. Impact of reduced viscosity on the breakup pattern of a highly conducting drop. Time-dependent droplet evolution in the process
of breakup at R = 30, Q = 1.37, λ = 0.087, CaE = 0.61, and Re = 0.0047.

the charge relaxation time (∼εout/σout) of fluid surrounding
an oblate drop appears shorter than that of a drop-fluid
(∼εin/σin ), and a reversed surface charge distribution relative
to that for Q/R < 1 is induced, causing formation of the
electric dipole moment opposite to the applied electric field.
In this circumstance, as electric field strength increases up to a
threshold value for the applied uniform electric field, first the
spontaneous three-dimensional electrorotation occurs prior to
breakup [32,48–50]. Note that electrorotation of an oblate
drop originates from the charge convection on the interface.
Therefore, investigation of EHD behavior (electrorotation or
breakup) of an oblately deformed drop in a stronger electric
field requires altogether a different formulation, and is the
focus of our next work. The interested reader may, however,
refer to the existing slim volume of work [32,48–50] on
electrorotation plus breakup of oblately deformed drops as
placed in a strong electric field.

It may be worth mentioning at this point that the motion
of liquid films in three dimensions (3D) can be influenced
due to Rayleigh-Plateau (RP) instability, particularly in the
absence of an electric field, whereby the pinching is driven by
surface tension and a minimization of area. In the present case
or geometry, such an instability is not possible. Nevertheless,
we can compare the length and timescales over which the RP
instability would develop and length scales of the presently
investigated EHD drops as breakup is approached. Notably,
Stone et al. [51,52] examined the breakup process of highly
elongated (non-EHD) liquid drops to test the feasibility or

presence of capillary wave instability and show that for drop
extension ratio L/a (L and a being final extended length and
radius of a drop) up to 15, no capillary wave instability occurs.
However, in the present study, the maximum extension ratio
(L/a) of an EHD drop is 13.5. Moreover, the timescale t =
110.2 that the capillary wave (instability) takes [52] to achieve
sufficient amplitude (0.01) is much larger than the timescale
t = 54.0 (as normalized using t ′ = aνρ/γ ; the same method
as in Stone et al. [52]) of the longest EHD end pinching
detected in our study (e.g., Fig. 6), and as the applied electric
field acts to expedite the end pinching. Accordingly, we
expect that also in 3D liquid columns the EHD end pinching
dominates over the RP instability.

IV. CONCLUSIONS

In this work, with incorporated full nonlinear inertial ef-
fects the detailed EHD breakup phenomena for the leaky
dielectric drops in another immiscible leaky dielectric outer
fluid are numerically investigated using the explicit forcing
LBM model. The CaE -dependent stable drop deformation up
to the threshold of breakup was previously studied using the
linear theory, that is, the creeping flow approximation. We
observe that the linear variation of drop deformation rate D
and E2 as predicted by Taylor’s first-order theory is valid in
a range of small deformation (D < 0.1). For higher deforma-
tion, dD/dE2 deviates from the linear nature and increases
nonlinearly and rapidly with CaE to reach a turning point at
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FIG. 14. Impact of increased drop viscosity on the breakup pattern of a highly conducting drop. (a) Transient drop evolution in the process
of breakup at R = 30, Q = 1.37, λ = 3, CaE = 0.4, and Re = 0.11; (b) deformed drop shape with conical ends that occurred prior to breakup
at higher CaE = 0.6 and R = 30, Q = 1.37, λ = 3, Re = 0.165.

which a slight increase of the electric field intensity causes
a sudden drop elongation (especially for lower permittivity
ratios Q = 0.1, 1.37), and the transitioning drop evolves
from an ellipsoidal shape to an elongated, slender two-lobe
shape.

Based on transition characteristics, first, at a fixed viscosity
ratio λ = 1, we demonstrate explicit breakup modes and gov-
erning physics for varied conductivity ratio R of a drop, i.e.,
for slightly conducting (R < 10), intermediately conducting
(10 � R � 20), and highly conducting (R > 20) cases, while
the adopted nonlinear model effectively provides clear phys-
ical insight into end-pinching breakup of an elongated state.
Since the EHD breakup is an unstable dynamic process led
by interacting electric field and induced fluid motion, for a
leaky dielectric drop as it evolves to a slender shape most
of the electric charges accumulate at two bulbous tips. Our
simulated results reveal that the dominant driving force for
EHD drop stretching is the generated high positive electric
pressure at the tips. Accordingly, the induced fluid in the drop
ends is pulled to move faster (via imposed electric pressure)
in opposite directions than that in an intermediate bulbous
section, wherein the tangential electric stress drives the drop
stretching mechanism despite its lower strength. The resulting
difference of local drop extension rates thereby leads to the
formation of necks, and the phenomenon is unambiguously
characterized via the detected rapid local increase of the
centerline velocity gradient and the symmetrical growth of
intermediate inflection points in the tangential electric stress

profile. Meanwhile, the generated negative curvature around
the necks creates local low pressure regions that facilitate
capillary breakup. Notably, a slightly conducting drop of
R = 5 (<10) displays the end-pinching breakup at a lower
Q = 0.05 (<1), which produces a single pair of daughter
drops. For higher Q = 1.37, while the size of the ejected
daughter drops appears bigger, the breakup pattern remains
invariable with CaE > CaE ,c. However, the intermediately
conducting leaky drops of 10 � R � 20 exhibit variable
breakup patterns with increased CaE , although at a lower
CaE = 0.55 (>CaE ,crit ic ) the global breakup feature remains
similar to that of a slightly conducting one (R < 10). For CaE

increased to 0.83 an intermediately conducting (R = 10) drop
reveals mult iple pinching neck formations, and the resulting
two pairs of symmetrical daughter drops are released in the
breakup process. Importantly, a highly conducting (R = 30)
leaky drop displays a breakup pattern that resembles that of
a perfectly conducting drop, and the fluid permittivity (Q)
has little influence. Notably, our simulated CaE ,critical’s for the
onset of breakup for three highly conducting leaky drops at
fixed R = 30 and with varied Q = 0.1, 1.37, 10.0 appear as
0.219, 0.219, 0.227, respectively, which remain closely con-
sistent to around 0.22, as predicted previously. However, here
we uncover three different types of transitional drop shapes
prior to breakup (at R = 30) and display the dominance of
three distinct breakup modes with increasing CaE : namely,
via formation of lobes (CaE � 0.66), pointed ends (0.66 <

CaE < 0.83), and nonpointed ends (CaE � 0.83).
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The viscosity ratio λ is noted to significantly alter both
the breakup pattern as well as near-tip flow physics. At high
viscosity ratio λ = 5, the transitional shape prior to pinch-off
of a moderately conducting drop (R = 10) is characterized
by the presence of the multiple necks, and the particularly
long, thin neck formation between a mother drop and the
two to-be-released adjacent daughter drops is detected, which
connects two conical ends of the mother drop. Following
pinch-off of two pairs of daughter drops the created sharp high
curvature ends in this case (λ = 5) lead an elongated mother

drop to relax to an asymptotic equilibrium shape, by virtue of
the imposed high surface tension pressure and induced forcing
that is effectively produced via the inward dynamics of two
in f low paired neck vortices. Distinctly, for a lowly viscous
moderately conducting drop of λ = 0.087 and R = 10, the
breakup event is as follows: First, a pair of shorter quadratic
curved or lobed necks develop prior to pinch-off, and the
resulting high radial pressure difference between inside and
outside fluid facilitates the capillary breakup. Upon pinch-off
of a pair of daughter drops the mother droplet experiences

FIG. 15. (a) Invariance of breakup sequence at R = 30.0, Q = 1.37, λ = 1.0, and CaE = 0.264 (with respect to Fig. 9) on a refined lattice
spacing, where, T ′ = 100�t ′ = 0.75T . (b1), (b2) Close-ups of grid resolution in the neck region for two different adopted lattices. (c) The
neck interface for two different lattices, as defined by Cin = 0.5 curves. (d) Coincidence of neck shape for two different lattices, at a near
threshold Cin = 0.85.
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fresh elongation and evolves via newly formed two-lobed ends
attached by quadratic curved necks, and gradually disinte-
grates into a stream of smaller drops due to recurrent release
of daughter drops. At λ = 0.087, the generated outward hy-
drodynamic thrust by accrued charges at the symmetric round
ends on the mother drop, upon the daughter drop’s pinch-off,
prohibits the mother drop from attaining an asymptotically
relaxed state.

In addition, the viscosity ratio λ significantly influences the
breakup behavior of a highly conducting (R = 30) drop. At
λ = 0.087 (�1) only one breakup mode via lobe pinching
persists for the highly conducting (R = 30) case, for CaE

exceeding a critical magnitude. On the other hand, at λ =
1, three different drop-breakup modes are detected, which
evolve through growths of lobed ends at a lower CaE = 0.264,
pointed conical type ends at an intermediate CaE = 0.68, and
nonpointed curved ends at higher CaE = 0.83. However, for
λ = 3(>2) the nonpointed end mode is suppressed, and the
lobed-end mode directly transits to the pointed conical-end
mode for increased CaE .
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APPENDIX: INVARIANCE OF DROPLET EJECTION
AND NECK FORMATION

Herein the lattice size–independent behaviors of neck for-
mation and droplet pinch-off via lobes are reexamined for the
case R = 30.0, Q = 1.37, λ = 1.0, CaE = 0.264, presented

in Fig. 9, by using a refined domain (�x′ = 0.75�x, �y′ =
0.75�y, �x, �y being the original lattice spacing) and keep-
ing all other relevant simulation parameters invariable in
order to display consistent interface deformation and breakup
processes. First, Fig. 15(a) shows a simulated drop-breakup
pattern for the finer lattice which reveals that the breakup
sequence converges to the one presented in Fig. 9(a), and end
pinching contributes to the breakup. Second, Figs. 15(b1) and
15(b2) show the close-ups of the neck region for two different
grid resolutions. We may add here that, in the interparticle
potential LBM model [34,35] the thickness [39] of a drop
interface that separates two immiscible fluids always occupies
three lattices (which is the same number of grids used to
define the interface in another method, such as VOF and
level set [13,28]), no matter how refined the grid or lattice
spacing is. To be precise, the neck region is identified here
in terms of 0.5 � Cin[=ρin/(ρin + ρout )] < 0.99 in xy space.
The axial neck length is determined by the x distance between
two neighboring points on the central line, where Cin = 0.99
occurs. Note that the axial length of the neck (15�x = 20�x′)
in two cases is equal [see Figs. 15(b1) and 15(b2)]. Third,
to clearly compare the simulated neck shapes under varied
grid resolutions, in Figs. 15(c) and 15(d) we plot contours
of two density fractions Cin = 0.5 (denotes the interface)
and Cin = 0.85 (detected near-threshold density fraction in
the neck). Importantly, the Cin-dependent widths (expressed
as a function of position) of the neck region in the two
cases exactly coincide [Fig. 15(d)] for Cin = 0.85 (a near-
threshold value), and the maximum local error is only 0.128%
[Fig. 15(c)] for Cin = 0.5. Accordingly, the lattice spacing
adopted in the study is sufficient to unfold the EHD drop-
breakup phenomenon.
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