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Linear motion of multiple superposed viscous fluids
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In this paper the small-amplitude motion of multiple superposed viscous fluids is studied as a linearized
initial-value problem. The analysis results in a closed set of equations for the Laplace transformed amplitudes
of the interfaces that can be inverted numerically. The derived equations also contain the general normal mode
equations, which can be used to determine the asymptotic growth rates of the systems directly. After derivation,
the equations are used to study two different problems involving three fluid layers. The first problem is the effect
of initial phase difference on the development of a Rayleigh-Taylor instability and the second is the damping
effect of a thin, highly viscous, surface layer.
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I. INTRODUCTION

The evolution of small-amplitude disturbances on inter-
faces between viscous fluids is a class of problems that
includes the Rayleigh-Taylor (RT) [1–3] and Richtmyer-
Meshkov type instabilities [4,5], as well as damped oscillatory
waves [6,7]. This study investigates the motion of interface
perturbations in the presence of multiple interfaces. The sys-
tems considered are subject to continuous acceleration, and
thus, depending on the configuration, each interface can be
RT unstable or stable and damped.

The RT instability occurs when a dense fluid is accelerated
into a lighter fluid. It plays a dynamically important role in
a vast number of natural phenomena ranging in size from
cellular level bioconvection [8] to nebula formation [9]. It
also occurs as a limiting factor in inertial confinement fusion
[10–12]. In spherical detonations, the RT instability occurs
together with the Richtmyer-Meshkov instability, which is
its impulsive analog. These two instabilities are the driving
mechanisms by which the detonation products are mixed with
ambient air [13]. Explosives with poor oxygen balance release
more energy as a result of this mixing. Further examples of
RT applications can be found in the extensive review of Zhou
[14,15].

The opposite case, where a light fluid is accelerated into a
denser fluid, is stable and typically results in damped oscilla-
tory wave motion [6,7,16]. These waves display a remarkable
range of scales, from large tidal waves and tsunamis down to
capillary waves driven by surface tension. The damping rate in
some of these systems is known to be significantly affected by
the presence of surface films and thin surface layers of another
fluid [17–20]. The enhanced damping of such surface layers
reduces radar backscatter, which makes it possible to detect

*magnus.vartdal@ffi.no
†a.n.osnes@its.uio.no

oil spills remotely [21,22]. Furthermore, viscous fluid surface
layers have been successfully used to model the damping of
ocean waves caused by the presence of ice [23].

Traditionally, the evolution of interface perturbations in
the linear regime has been investigated by means of normal-
mode analysis [6,7,24], which is well suited for studying the
asymptotic behavior of such systems. Normal-mode analysis
can, however, be impractical to use for capturing initial tran-
sients. Laplace transform based techniques are better suited
for this purpose, since they naturally account for the growth
of all modes. This is particularly true for stable configura-
tions where such transients are known to persist for a sig-
nificant amount of time. For the single interface case, such
initial-value problems have been investigated using Laplace-
transform-based techniques [16,25–30]. These problems are
commonly used as verification cases for multiphase flow
codes [31].

The presence of nearby interfaces, or a finite fluid layer
thickness, can have a substantial effect on the evolution of dis-
turbances, and such multilayer configurations have received
considerable theoretical attention [19,32–43]. These studies
cover both inviscid and viscous cases, but no exact linear
theory for an arbitrary number of viscous fluids is available.
One motivation for studying such multilayer configurations
is that they can be used as an approximation for the general
case with continuously varying density and viscosity [Eq. (41)
in [24]]. Examples of such multilayer approximations to
continuous density profiles, for the inviscid case, are found
in [32,33].

Experimental investigations of unstable multilayer con-
figurations are challenging due to the difficulty of setting
up such systems. To the authors knowledge the only two
studies that have done this are the study of [44] and the
recent study of [45]. Only the latter study could control the
initial perturbations, enabling a comparison with the inviscid
multilayer theory of Mikaelian [36]. The experimental results
were later compared to a viscous three-layer solution (limited
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FIG. 1. Schematic illustration of the multilayered initial-value
problem. ai is the amplitude of the disturbance on interface i. Hi, ρi,
and μi, are the thickness, density, and dynamic viscosity of fluid i,
respectively.

to two viscous fluids and one free boundary) [43]. It was
demonstrated that the growth rate in the experiments were
significantly lower than predicted by viscous theory. A possi-
ble explanation for the discrepancy is the limited depth of the
cell used to conduct the experiments (around one-fourth the
wave length for the shortest wave length considered). A rough
estimate of the importance of the viscous effects associated
with the cell thickness reveals that they are, at best, of the
same order as those included in the theory. Due to the lack of
experimental data, and the approximations made by previous
theoretical studies, the knowledge about the properties of
unstable viscous multilayer systems is currently limited.

In this paper, we consider the small-amplitude motion of an
arbitrary number of superposed viscous fluids as a linearized
initial-value problem. To our knowledge, this is the first
study to approach the multilayer problem in this fashion. The
present work is an extension of the single interface analysis of
Prosperetti [16]. The procedure results in a closed set of equa-
tions, involving only the Laplace transformed amplitudes of
the interfaces, which can be inverted numerically. As in [16],
we assume, for simplicity, that no vorticity is present initially.
The derived equations also contain the general normal mode
equations for an arbitrary number of viscous fluids. As far as
the authors know this relation is also novel.

After deriving the equations we use them to study two
different three-layer problems. The first problem is the effect
of initial phase difference on the development of an RT
instability, and the second is the damping effect of a thin
highly viscous surface layer.

II. PROBLEM FORMULATION AND DECOMPOSITION

Consider a configuration of N+1 superposed incompress-
ible viscous fluids separated by N interfaces, where interface
i separates fluid i − 1 and i, as depicted in Fig. 1. Fluid
layer i has constant thickness, density, and dynamic viscosity
denoted by Hi, ρi, and μi, respectively. The coordinate system

is oriented such that the equilibrium position of each interface
is given by yi = constant, and gravity, denoted by g, acts
opposite the y axis. Initially, each interface is perturbed around
its equilibrium position in an arbitrary manner, but since we
restrict our analysis to the linear regime, these perturbations
can be decomposed into separate modes by means of a Fourier
transform. With this transformation, the equations describing
the interfaces can be expressed as

ηi(x, z, t ) = ai(t ) f (x, z) + yi, (1)

where ai is the amplitude of the disturbance, and f satisfies
the Helmholtz equation,

(
∂2

∂x2
+ ∂2

∂z2
+ k2

)
f = 0, (2)

where k = (k2
x + k2

z )
1
2 is the wave number of the disturbance.

In the remainder of the paper, subscripts are dropped for
convenience when no confusion can arise.

The motion of each fluid is governed by the linearized
Navier-Stokes equations,

∂u
∂t

= − 1

ρ
∇p + ν∇2u + g. (3)

Here, u is the velocity, p is the pressure, and ν = μ/ρ is
the kinematic viscosity of the fluid. At the interfaces, the
linearized kinematic and dynamic boundary conditions, in-
cluding the effects of surface tension, are enforced. In the
general case, the linearization requires that the amplitude
at each interface is small compared to both the wavelength
λ = 2π/k and the thickness of the surrounding layers, i.e.,
ai � λ, Hi, Hi−1.1

To solve Eqs. (1)–(3), the decomposition procedure found
in [16] is used. Some of the details of the procedure is
repeated here for the readers convenience. First, the pressure
and volume force terms are eliminated by applying the curl
operator to the linearized Navier-Stokes equation. This results
in

∂ω

∂t
= ν∇2ω, (4)

where ω is the vorticity of the fluid. Since the vorticity
is divergence free by definition, it can be represented by
a vector potential of the form ω = ∇ × (A + ∇ × B). This
decomposition is well suited for the present problem, since it
has been demonstrated that A and B can be reduced to single
component form by means of a gauge transformation [46].
The resulting vectors can be expressed as

A = [0, 	(y, t ) f (x, z), 0],

B = [0, G(y, t ) f (x, z), 0]. (5)

1There are exceptions where the conditions of linearity are less
strict. For instance, a thin film on top of a thick fluid layer with wave
amplitudes larger than the film thickness (a � H ) can be treated
linearly if the waves are long [19].
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Introducing (5) into (4), and employing the Helmholtz Eq. (2),
we find the evolution equation for 	,[

∂

∂t
− ν

(
∂2

∂y2
− k2

)]
	 = 0. (6)

The evolution equation for G is on the same form.
While A and B are sufficient for a complete description

of the vorticity, an additional scalar potential φ is required to
represent the velocity. With this addition, the velocity can be
expressed as

u = A + ∇ × B − ∇φ. (7)

Introducing (7) into the vertical component of the linearized
Navier-Stokes equation (3), and employing (6) and (2), results
in a Bernoulli-type equation for the pressure,

p = −ρgy + ρ
∂φ

∂t
− μ

∂	

∂y
f + C, (8)

where C is a constant. Further specification of the pres-
sure requires knowledge about the scalar potential. The re-
quired equation for φ is obtained from the incompressibility
constraint,

∇2φ = ∇ · A = ∂	

∂y
f . (9)

Introducing the decomposition φ = �(y, t ) f (x, z) one finds(
∂2

∂y2
− k2

)
� = ∂	

∂y
. (10)

The general solution to (10) can be found using Lagrange’s
method of variation of parameters.

Up until this point, the analysis is identical to that presented
by Prosperetti [16] for the single interface case. The introduc-
tion of more interfaces does, however, alter the form of the
scalar potential, as the kinematic boundary condition,

∂�

∂y
= 	 − ȧ, (11)

must be enforced on each interface. Here, ȧ denotes the time
derivative of the amplitude. The complete expression for the
scalar potential is rather complicated, but for the remaining
analysis only the expression for the potential at the interface
locations are needed. At the interface locations the expression

simplifies to

�i(yi ) = coth(kHi )k
−1ȧi − csch(kHi )k

−1ȧi+1

−
∫ yi+1

yi

	i
sinh(k(yi+1 − y))

sinh(kHi )
dy,

�i(yi+1) = csch(kHi )k
−1ȧi − coth(kHi )k

−1ȧi+1

+
∫ yi+1

yi

	i
sinh(k(y − yi ))

sinh(kHi )
dy, (12)

where the subscript on � denotes which fluid layer the po-
tential is defined in. From the requirement of continuity of
tangential velocity at the interfaces it follows that

�i(yi, t ) = �i−1(yi, t ), (13)

with an identical relation for Gi. Substituting (12) into (13)
yields the condition,(

coth(kHi−1) + coth(kHi )
)
ȧi − csch(kHi−1)ȧi−1

− csch(kHi )ȧi+1

= k

( ∫ yi

yi−1

	i−1
sinh(k(y − yi−1))

sinh(kHi−1)
dy

+
∫ yi+1

yi

	i
sinh(k(yi+1 − y))

sinh(kHi )
dy

)
, (14)

which couples the velocities of adjacent interfaces. The conti-
nuity of tangential stresses yields the same equations as those
reported in [16], i.e.,

μi	i(yi, t ) − μi−1	i−1(yi, t ) = 2(μi − μi−1)ȧi, (15)

∂

∂y

(
μiGi(yi, t ) − μi−1Gi−1(yi, t )

) = 0. (16)

The continuity of normal stress can be simplified to

−pi + pi−1 − 2k2(μi�i + μi−1�i−1) = aik
2ζi, (17)

where ζi is the surface tension coefficient at interface i. Next,
the pressure is eliminated using (8) followed by the elimina-
tion of the scalar potential using (12). This yields evolution
equations for the amplitudes which only depend on the 	i

fields and the amplitudes themselves,

miäi + ciȧi + diai = csch(kHi−1)(ρi−1äi−1 + 2μi−1k2ȧi−1) + csch(kHi )(ρiäi+1 + 2μik
2ȧi+1)

− k2μi−1

(
	i−1(yi, t ) coth(kHi−1) − 2k

∫ yi

yi−1

	i−1
sinh(k(y − yi−1))

sinh(kHi−1)
dy − 	i−1(yi−1, t )csch(kHi−1)

)

− k2μi

(
	i(yi, t ) coth(kHi ) − 2k

∫ yi+1

yi

	i
sinh(k(yi+1 − y))

sinh(kHi )
dy − 	i(yi+1, t )csch(kHi )

)
. (18)

Here, mi = ρi−1 coth(kHi−1) + ρi coth(kHi ), ci = 2k2(μi−1

coth(kHi−1) + μi coth(kHi )), di = (ρi−1 + ρi )ω2
i , and ωi

can be recognized as the inviscid natural frequency for an
interface separating two infinite fluid layers,

ω2
i = ρi−1 − ρi

ρi−1 + ρi
gk + ζi

ρi−1 + ρi
k3. (19)

It is readily seen that, in the limit of infinite layer thickness
(kH → ∞) Eqs. (14) and (18) simplify to the corresponding
equations for the single interface case, and we obtain the same
set of equations as Prosperetti [16].

It should be noted that, just like the single interface case,
the evolution of the G component of the vorticity is decoupled
from that of the amplitudes and 	. Since we have limited
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our study to the vanishing initial vorticity case, G does not
enter in the evolution equations in any way. Therefore, it is
not considered further.

III. LAPLACE TRANSFORMED EQUATIONS OF MOTION

Unlike the single interface case, no closed form solution
of the above time domain equations have been found. It is,
however, possible to obtain a closed set of equations involving
only the amplitudes after Laplace transformation of Eqs. (6),
(14), (15), and (18).

Let an overbar indicate a Laplace transformed quantity, s
denote the frequency parameter and define

λi = (k2 + s/νi )
1
2 . (20)

Using this variable, the general Laplace transformed solution
of Eq. (6) can be expressed,

	i = Ai
sinh(λi(y − yi ))

sinh(λiHi )
+ Bi

sinh(λi(yi+1 − y))

sinh(λiHi )
. (21)

The tangential conditions on the interface, (14) and (15), yield
a set of equations for determining the coefficients Ai and Bi in
terms of ȧ:

γi−1Ai−1 + δi−1Bi−1 + δiAi + γiBi = k−1[(coth(kHi−1)

+ coth(kHi ))ȧi − csch(kHi−1)ȧi−1 − csch(kHi )ȧi+1], (22)

μiBi − μi−1Ai−1 = 2(μi − μi−1)ȧi, (23)

where γ and δ are given by

γi = 1

λ2
i − k2

(λi coth(λiHi ) − k coth(kHi )),

δi = 1

λ2
i − k2

(kcsch(kHi ) − λicsch(λiHi )). (24)

The solution to the above set of equations can be substituted
into the Laplace transformed normal stress equation (18),
resulting in

(mis
2 + cis + di )ai − csch(kHi−1)(ρi−1s2 + 2μi−1k2s)ai−1

− csch(kHi )(ρis
2 + 2μik

2s)ai+1

+μi−1k2(βi−1Ai−1 + αi−1Bi−1) + μik
2(αiAi + βiBi )

= 1

s
(mis

2 + cis + d )a0
i − d

s
a0

i + miu
0
i

− csch(kHi−1)
(
(ρi−1s + 2μi−1k2)a0

i−1 + ρi−1u0
i−1

)
− csch(kHi )

(
(ρis + 2μik

2)a0
i+1 + ρiu

0
i+1

)
, (25)

where a0
i and u0

i are the initial amplitude and velocity of
interface i, respectively, and αi and βi are given by

αi = 1

λ2
i − k2

(2kλicsch(λiHi ) − (
λ2

i + k2
)
csch(kHi )),

βi = 1

λ2
i − k2

((
λ2

i +k2) coth(kHi )−2kλi coth(λiHi )
)
. (26)

Equations (25), and (26) form a closed set of equations for the
Laplace transform of the amplitudes, which can be inverted to
find the evolution of the interfaces in time. The final step can-
not be handled analytically, and a numerical inverse Laplace
transform algorithm is required. For long time integration this
algorithm can be very sensitive to numerical precision issues.
In these cases we have employed arbitrary precision versions
of the Euler and Talbot algorithms. For a description of the
algorithms the reader can consult [47].

In the limit of infinite layer thickness (kH → ∞), the
above equations simplify considerably. Take, for instance, the
case of a bottom layer of infinite depth and let a1 represent
the lowest interface amplitude. The equations for a1 can be
simplified using the following relations: coth(kH0) → 1,

csch(kH0) → 0, B0 → 0, α0 → 0, β0 → (λ0 − k)/(λ0 + k),
δ0 → 0, and γ0 → 1/(λ0 + k). With these simplifications
all references to a0 disappear and the system is closed. For
a top layer of infinite extent similar relations apply, with
the exception that it is the A coefficient and not the B that
disappears in the top layer.

For the case of finite depth above a fixed wall, the tangen-
tial stress condition at the wall (23) can no longer be used. The
tangential velocity conditions reduces to

δ0A0 + γ0B0 = −k−1csch(kH0)ȧ1, (27)

as a consequence of �(y0) = 0 at the wall.
Another interesting limit is the interaction of a highly

viscous fluid with other fluids of very low viscosity. In the
limit of zero viscosity, the above equations become ill defined
because λ → ∞. However, if the initial vorticity is zero,
Kelvin’s circulation theorem ensures that vorticity remains
identically zero. This implies that A and B remain 0 for
the inviscid fluid. The continuity of tangential velocity, (22),
should not be applied at these interfaces.

It should also be pointed out that if all terms involving ini-
tial values are removed from (25), (22), and (23). The remain-
ing equation system represents the normal-mode equations for
the given initial-value problem. Within this interpretation s
represents the growth rate of the normal mode, and ai is the
associated eigenvector. The above equation is thus also useful
for evaluating the asymptotic behavior of the system directly.
In the limiting case of infinite fluid thickness the expression
for the growth rate reduces to that of the normal modes found
in [48]. Furthermore, we note that the initial behavior of the
system, also known as the irrotational approximation, is found
by setting A and B equal to zero in all fluid layers.

Finally, creeping flow approximations, such as the linear
theories presented in [34,37], can be obtained from the above
equation by neglecting inertia terms (mi = 0) and taking the
limit λi → k. This results in αi = −kHi coth(kHi )csch(kHi ),
βi = kHicsch2(kHi ), γi = (coth(kHi ) − kHicsch(kHi ))/2k,
and δi = (kHi coth(kHi )csch(kHi ) − csch(kHi ))/2k.

IV. RESULTS

A. Initial phase effects

One of the topics that motivated this work was the effect
of nearby interfaces on the evolution of a Rayleigh-Taylor
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FIG. 2. The amplitudes of the disturbances on the lower interface
for the case A = 0.9, ε = 10−3, and ar = 1, normalized by the
infinite layer thickness solution ap. The legend denotes the nondi-
mensional layer thickness h.

instability and in particular what a difference in initial phase
between the interfaces could result in.

For multilayer cases, the number of parameters needed to
describe a given configuration quickly becomes exceedingly
large. We have thus chosen to restrict our study to the case
of a single finite layer trapped between two semi-infinite
fluids, but even for this very limited case 12 nondimensional
parameters are needed to classify the problem. We therefore
further restrict our cases by neglecting surface tension effects,
assuming zero initial velocity, equal Atwood numbers for the
two interfaces, and equal kinematic viscosities for all fluids.
These assumptions reduce the number of nondimensional
parameters to four. We chose the following parameters: the
amplitude ratio, ar = a0

2/a0
1, nondimensional layer thickness

h = kH , Atwood number A = (ρ2 − ρ1)/(ρ2 + ρ1), and the
viscosity parameter ε = νk2/|ω2

1|
1
2 used in [16]. Of these

parameters the last two characterize the material properties,
and for these we have used a fixed set of three values each.
The chosen values, A ∈ (0.1, 0.5, 0.9) and ε ∈ (1, 0.1, 10−3),
represent the low, medium, and high end of each parameter
space. For all cases the viscous time scale from [49] (T =
(ν/A2g2)

1
3 ) is used to construct a nondimensionalized time,

τ = t/T .
First, we consider the case when ar = 1, i.e., when the

interfaces are initially in phase. At first glance, one might
think that the resulting time histories, for both interfaces,
would be bounded by the solutions for the asymptotic cases
of infinite layer height and negligible layer height, which have
analytic solutions [16]. This is indeed the case for the upper
interface between the two densest fluids. However, as seen in
Fig. 2, for the case A = 0.9 and ε = 10−3, the amplitude of
the lower interface initially grows faster than the asymptotic
case of negligible fluid height when h < 3, with a maximum at
h = 0.8 (for the range of h shown in the figure). We observe
the same nonmonotonic behavior for all the cases with A =
0.9 regardless of which viscosity parameter is used (results
not shown).

For the case ar = −1, the resulting motion is first for
the interfaces to move in opposite directions. Eventually,

FIG. 3. Critical amplitude ratio as a function of nondimensional
layer thickness for A = 0.1. Initial amplitude ratio (black) and nor-
mal mode ratio (gray). The legend denotes the value of the viscosity
parameter ε.

however, the motion becomes dominated by the interface
between the heavier fluids and both move together at the same
asymptotic growth rate. The change in direction for the lower
interface, which does not happen when ar = 1, indicates that
there should exist a minimal amplitude ratio for which a
reversal of motion of the lower interface does not occur. This
ratio is where a minimal growth rate of the disturbances is
realized, for a given set of A, ε, and h, since the interfaces
are moving apart and slowing each other down. We have
identified these critical amplitude ratios as a function of h
for all combinations of A and ε. The results were obtained by
iteratively searching for a solution where the growth rates of
the two interfaces were identical after 50 nondimensionalized
time units. This is sufficient for establishing normal-mode
behavior in most cases, and little variation in the results are
obtained by increasing the simulation time to 75 time units.
The results are found in Figs. 3–5. The wave number is
constant for all plots.

FIG. 4. Critical amplitude ratio as a function of nondimensional
layer thickness for A = 0.5. Initial amplitude ratio (black) and nor-
mal mode ratio (gray). The legend denotes the value of the viscosity
parameter ε.
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FIG. 5. Critical amplitude ratio as a function of nondimensional
layer thickness for A = 0.9. Initial amplitude ratio (black) and nor-
mal mode ratio (gray). The legend denotes the value of the viscosity
parameter ε.

The results show that the critical amplitude ratio varies
greatly with Atwood number. The ratio varies relatively little
with h for small Atwood numbers. At A = 0.1, see Fig. 3, the
difference is less than 10% between h = 0.1 and h = 5. The
difference is larger for the higher Atwood numbers, where an
approximate difference of 0.2 between h = 0.1 and h = 5 is
observed. Interestingly, the adjustments due to viscosity are
significant for all layer thicknesses, and for the most affected
cases the difference due to viscosity is almost 50% of the
effect of layer thickness.

The observed growth rate coincides with that of the small-
est unstable normal mode of the configuration. However, the
amplitude ratio (eigenvector) of the normal mode does not, in
general, coincide with the amplitude ratio of the initial condi-
tion. In Figs. 3–5 we have thus also plotted the corresponding
amplitude ratios of the normal modes. As a general trend, we
observe that the difference between the two ratios is quite
small. It increases with increasing viscosity and decreases
with increasing Atwood number. For ε = 0.001 the ratios
are indistinguishable in the plots. Furthermore, the effect is
largest for small layer thickness. This indicates that the role
of transients may become important for thin highly viscous
layers.

In Fig. 6, the growth rates (γ ), corresponding to the critical
amplitude ratios, normalized by the viscous time scale (T ),
are plotted as a function of h. The results for the different
Atwood numbers are almost identical in this scaling, with only
a slight steepening of the curves for higher Atwood numbers.
In contrast to the critical amplitude ratios, the dependence
of the normalized growth rate on the viscosity parameter is
not monotonic, as ε = 0.1 has the largest values of the set
tested here. One reason why a nonmonotonic dependence on
viscosity may be expected will be discussed at the end of the
next section.

B. Highly viscous surface layer

An interesting limit for the above equations is what hap-
pens when a fluid layer becomes very thin. It is well known
that, in the absence of surface tension, the effect of such a

FIG. 6. Normalized minimal growth rate as a function of nondi-
mensional layer thickness (h) for A = 0.1 (black), A = 0.5 (gray),
and A = 0.9 (silver). The legend denotes the value of the viscosity
parameter ε.

layer becomes negligible when the layer thickness is suffi-
ciently small [36]. However, if the viscosity is very high such
that μH is appreciable one expects the effect of the layer to
persist, and for sufficiently high viscosities the surface layer
is expected to behave like an inextensible film [7].

The effect of such highly viscous surface films has also
been studied in [19], where a dispersion relation for the stable
case was derived. Here, we study a similar configuration of
fluids, but for clarity the effects of surface tension is ignored.
The system under consideration consists of three fluids with
material properties similar to that of air, heavy oil, and water.
The top (air) and bottom (water) layers have infinite extents
while the middle layer has a finite thickness H . We consider
a wave with wavelength 0.02 m and assume that the two
interfaces start with identical initial amplitudes. The various
material parameters are found in Table I. The acceleration due
to gravity is set to g = 9.81 m/s2 and we nondimensionalize
time based on the inviscid natural frequency of the water-
air system (τ = ωt). As a baseline case we choose an oil
layer thickness of π−1 × 10−1 mm, which yields kH = 0.01.
We then vary the viscosity of the oil over several orders of
magnitude. The resulting surface elevations for the oil-air
interface are found in Fig. 7. As the viscosity is increased, the
damping rate increases monotonically towards the theoretical
predictions for inextensible surface films [19], as expected.

Next, we consider the effect of increasing the oil layer
thickness. This immediately results in a loss of the monotonic
increase in damping rate with increasing viscosity (seen as
early as kH = 0.03). This can be observed in Fig. 8, where the
time histories for layer thickness kH = 0.1 is found. In this

TABLE I. Baseline fluid layer parameters for the highly viscous
surface film case.

Layer 1 (water) 2 (oil) 3 (air)

H (m) ∞ π−1 × 10−4 ∞
ρ (kg/m3) 1000 900 1
ν (m2/s) 10−6 10−4 10−5
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FIG. 7. Amplitudes of the disturbances of the oil-air interface
for the highly viscous surface layer case with kH = 0.01. The
legend denotes the viscosity ratio of oil to water (ν = ν2/ν1). The
dashed lines are the damping rates corresponding to a pure air-water
interface and an inextensible film over water.

case, the most viscous oil layers still approach the inextensible
film limit, but both the curves representing viscosity ratio of
100 and 1000 are damped faster than this limit. This indicates
that, for these viscosities, sufficient shear is generated in the
middle layer to significantly contribute to the damping. As
the viscosity is increased further, however, the viscous layer
becomes too rigid and its damping contribution decreases.

If we further increase the layer thickness, the results no
longer converge towards the inextensible film limit when the
viscosity is increased. The damping rate of the perturbation on
the oil-air interface for this thicker layer is significantly higher
than the damping rate for the inextensible film. In the low
and high viscosity limits the damping increases with viscosity.
Between these two regimes there is, however, an intermediate
region where the damping decreases with increasing viscosity,
and thus there exists a local minimum in the damping rate.
This is seen in Fig. 9, which displays the time histories for
kH = 0.6, where we observe that the curve corresponding to

FIG. 8. Amplitudes of the disturbances of the oil-air interface
for the highly viscous surface layer case with kH = 0.1. The legend
denotes the viscosity ratio of oil to water (ν = ν2/ν1).

FIG. 9. Amplitudes of the disturbances of the oil-air interface
for the highly viscous surface layer case with kH = 0.6. The legend
denotes the viscosity ratio of oil to water (ν = ν2/ν1).

a viscosity ratio of 1000 has a lower damping rate than the
curves corresponding to ratios of 100 and 5000.

The reason for the nonmonotonicity is that the vorticity
diffusion terms (terms containing 	) contribute to both the
stiffness and damping of the system. That this must be the
case is realized by considering the behavior of the irrotational
approximation for kH = 0.6. The resulting system is over-
damped (ci >

√
midi) above a viscosity ratio of approximately

400, and yet the interface oscillates even at a ratio of 5000.
This means that the vorticity diffusion must contribute an
excess stiffness great enough to alter the properties of the
system.

While the general functional dependence of the vorticity
diffusion terms is complex, we can illustrate the root of the
nonmonotonicity by considering the following decomposition
of the βi coefficients,

βi = 2νik2

s
coth(kH )+coth(kH )− 2νikλi

s
coth(λiHi ). (28)

These coefficients are multiplied by the expressions for Ai

and Bi, which have the form Ai = ci j (s)ȧ j . Here, ci j (s) is a
matrix which depends on s. However, the continuity of tan-
gential stress (23) ensures that ci j always contains a nonzero
constant component. (Note that, in the case of a viscous
fluid supported between two inviscid fluids, the continuity
of tangential velocity is no longer applicable, and ci j is a
constant matrix.) The constant component of ci j contributes
to the stiffness of the system when multiplied by the first term
on the right-hand side of (28), while the second term acts as a
pure damping term. The behavior of the third term depends
on λi. In the limit of high viscosity λi → k and the third
term cancels the added stiffness of the first. However, as kH
becomes small the viscosity needed to obtain this cancellation
increases exponentially, as coth(x) becomes singular at 0.
We thus have two competing effects where the combination
of layer thickness and viscosity can cause a nonmonotonic
dependence on viscosity.

As stated above, the general behavior of the vorticity dif-
fusion terms is complex. This is a result of tangential velocity
continuity (22), which introduces a nontrivial dependence of
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ci j (s) on s. Further investigation into this dependence is a
topic for future work.

V. SUMMARY AND CONCLUSION

In this paper, the motion of multiple superposed viscous
fluids has been studied as a linearized initial-value problem.
The main contribution is the development of a general closed
set of equations for the Laplace transformed amplitudes of the
interfaces. These equations can be inverted numerically. This
formula is an extension of the single interface analysis of [16]
to the multiple interface case. The analysis also contains the
corresponding normal-mode equations, which to the authors’
knowledge has not been previously published. After present-
ing the equations we summarized the simplifications needed
for including inviscid fluids, for the irrotational approxima-
tion, as well as for considering bottom and top layers of finite
and infinite depth.

The equations were used to study the effect of initial phase
differences between interface perturbations on the evolution
of a Rayleigh-Taylor instability and the damping effects of a
highly viscous surface layer. For the Rayleigh-Taylor case we
characterized the initial amplitude ratio for which the minimal
possible growth rate of the perturbations was attained as a
function of viscosity, Atwood number, and layer thickness.
This ratio was compared to the amplitude ratio of the corre-
sponding normal mode. The results showed that the difference
in ratios increased as the fluid layers became thinner and

the viscosity increased. This indicates that transients can be
important for such configurations.

For the damping of a highly viscous fluid layer case, we
demonstrated that for very thin surface layers an increase in
viscosity results in the system approaching the inextensible
film limit. However, as the layer thickness is increased the sys-
tem quickly loses the monotonic dependence on viscosity, dis-
playing a maximum in damping before approaching the limit.
For even thicker layers the nonmonotonicity persists, but the
system no longer approaches the inextensible film limit.

Both test cases revealed that the combination of finite
fluid layer thickness and a highly viscous fluid can lead to
nonmonotonic behavior of the interface perturbations as a
function of viscosity. Analysis of the equations revealed that
this nonmonotonicity is a result of the vorticity diffusion
contributing to both the stiffness and damping of the system.
Since these contributions scale differently, both with layer
thickness and viscosity, nonmonotonic behavior is possible. A
more comprehensive study of this nonmonotonicity is a topic
for future work.
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