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We study the dynamics of a thin liquid film on a compliant substrate in the presence of thermocapillary
effect. A set of long-wave equations are derived to investigate the effects of fluid gravity (G), fluid inertia (Re),
and Marangoni stresses (Ma) on the dynamics of the liquid film and the compliant substrate. By performing
linear stability analysis and time-dependent computations of the long-wave equations, we examine two different
cases: thin-film flows on a horizontally compliant substrate (β = 0, where β is the inclined angle) and down
a vertically compliant substrate (β = π/2), respectively. For β = 0, we neglect fluid inertia and identify two
different modes: (1) sinuous mode, where the deformations of liquid-air and liquid-substrate interfaces are in
phase, which is induced by the fluid gravity, and (2) varicose mode, where the deformations of two interfaces are
in phase opposition, which is induced by the Marangoni stresses. For β = π/2, we consider a weak fluid inertia
and only observe the varicose mode driven by fluid inertia and Marangoni stresses. However, because the gravity
direction is parallel to the substrate, the fluid gravity modifies the varicose mode, making the deformations of
two interfaces out of phase. In particular, we also seek the nonlinear traveling-wave solutions in the case of
β = π/2, revealing that fluid inertia and/or heating effect enhance the height and speed of the traveling waves.
In both cases, the introduction of a strong wall heating gives rise to large deformations of both the thin liquid
film and the compliant substrate.
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I. INTRODUCTION

Thin-film flows on solid substrates occur widely in engi-
neering and natural systems, such as flow-coating processes
in industrial environments [1], tear-film flows in biophysical
scenarios [2], as well as lava flows and gravity currents in
geophysical settings [3,4]. The liquid film coating a solid sub-
strate can be driven by gravity, surface tension, and thermo-
or solutocapillary force, which received intensive attention
because of their broad applications in heat and/or mass trans-
port processes, for instance, the heat exchangers, film con-
densers and evaporators, and film reactors [5]. Experimental
studies have demonstrated that rich dynamics are present
in such systems, for instance, the development of different
wave regimes [6], the occurrence of flow separation in the
capillary wave region [7], the breakdown of two-dimensional
(2D) wave trains into three-dimensional wave patterns [8,9],
and the formation of bound states due to the interaction of
solitary waves in forced film flows [10,11]. To understand
these nonlinear dynamical phenomena without resorting to the
direct numerical simulations of Navier-Stokes equations, var-
ious reduced-order models have been developed. For instance,
the lubrication model [12,13] and Benny-type model [14,15]
are used to study such kind of creeping flows, which are

*z.ding@damtp.cam.ac.uk

valid at small Reynolds numbers; the integral-boundary-layer
model [16,17] and the weighted-residual integral-boundary-
layer model [18,19] are employed for thin-film flows at mod-
erate Reynolds numbers.

However, most of previous studies focus on the thin-film
flows over rigid substrates, and few of them pay attention to
the case of thin-film flows over compliant substrates, where
the dynamics of liquid film is closely coupled with the defor-
mation of substrate. Actually, the interactions between fluids
and compliant materials are present in many situations and
have been widely studied [20], such as exploring the intrusion
of magma under the Earth’s crust [21], liquid drops deposited
on a flexible fiber array [22], deformation of elastic substrates
via three-phase contact line [23], suppression of the fingering
instability using an elastic membrane [24], wrinkling of thin
sheet at fluid interfaces [25], and wrapping liquid droplets
with elastic sheets [26]. In the case of the interactions be-
tween thin liquid films and compliant substrates, Halpern and
Grotberg proposed a consistent fluid model to account for the
underlying mechanisms that might cause the airway collapse
of the lungs and showed how the pulmonary surfactants affect
the collapse of airway [27,28]. Matar et al. showed that the
wall flexibility enhances the instability of the flow system, and
suggested a new route to improve the interfacial heat and/or
mass transport and mixing [29–32]. Recently, Howell et al.
used the lubrication theory to study the gravity-driven thin
liquid film on a flexible beam and showed how the length and
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stiffness of the beam determine the profile of the liquid film
and the flexible beam [33,34]. Zheng et al. investigated the
self-similar solutions in the buoyancy-driven viscous liquid
films on an elastic membrane, which showed excellent agree-
ment with the experimental results [35]. Peng et al. consid-
ered the dynamics of a viscoelastic liquid film falling down
a flexible substrate, showing that the viscoelasticity could
promote the traveling speed of solitary-like hump waves [36].

Heating thin liquid films from below introduces an addi-
tional effect, which is known as the thermocapillary effect
[37,38]. In practice, such Marangoni effects in thin-film flows
are very important in some nonisothermal systems such as
the fiber coating in industry [5]. A considerable number of
works have focused on the modeling of thin-film flows on
solid substrates with Marangoni effects [39–45], and some of
them also examined the interaction between the Marangoni
instability and the shear instability. For instance, Ruyer-Quil
et al. applied linear stability and nonlinear wave analysis to
investigate thin-film flows down a uniformly heated substrate
and to show that Marangoni instability and shear instability
reinforce each other in a nontrivial manner [46,47]. Recently,
Saprykin et al. also performed 2D and 3D computations
to investigate thin liquid films on topographical substrates
which are also uniformly heated, indicating that droplets
are vulnerable to form in the troughs of the topographical
substrate and the final morphology of droplets is determined
by the competition among the Marangoni effect, an additional
capillary pressure brought by the substrate curvature and in-
termolecular forces [48]. However, these studies only consider
the case of rigid substrates, and thin-film flows on compliant
substrates in nonisothermal environments, which involve both
the effects of wall flexibility and Marangoni stresses, have
not been explored yet, despite their wide presence in various
areas. For instance, in materials engineering, the Marangoni
effect is introduced to induce the formation of wrinkle patterns
at the surface of soft materials [49], and in cosmetics, the
nonuniform distributions of cosmetics coating on the soft
skins might be also caused by the Marangoni effect [50].
Nevertheless, how the Marangoni stresses affect the dynamics
of the thin liquid film and the underlying compliant substrate
is still an open question.

In this paper, by applying long-wave asymptotics, elasticity
theory, and Fourier’s law, we introduce a coupled model
to describe the dynamic response of thin-film flows over a
compliant substrate with an inclined angle β in the presence of
uniform heating, as shown in Fig. 1. We explore fluid gravity
and fluid inertia in addition to the Marangoni effect of the
liquid film to understand the behavior of this coupled system.
In Sec. II, we present the mathematical model which describes
the equations for the heated liquid film with those for the
deflection of the compliant substrate. In Sec. III, we consider
the case of a horizontal substrate (β = 0) and derive a set
of lubrication-type evolution equations. The linear stability
analysis and nonlinear simulations are carried out to study the
effects of fluid gravity and Marangoni stresses. In Sec. IV, we
further consider the case of a vertical substrate (β = π/2) and
obtain a set of Benney-type evolution equations which involve
a weak fluid inertia. In this section, apart from the linear
stability analysis and nonlinear simulations, we also examine
the effects of fluid inertia and Marangoni stresses on the
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FIG. 1. Schematic of a thin liquid film on an infinitely large,
heated, flexible, and impermeable substrate. x and y denote the
streamwise and normal directions; u and v denote the streamwise
and normal velocities, respectively. The substrate is uniformly main-
tained with a temperature Ts; the reference temperature and pressure
in air are T0 and p0, respectively. The instantaneous locations of
the substrate and the liquid film are denoted by y = s(x, t ) and
y = h(x, t ), respectively.

nonlinear traveling-wave solutions. In both cases, we compare
the results of nonlinear simulations with the predictions from
the linear stability analysis and/or traveling-wave solutions.
We draw our conclusions in Sec. V.

II. PROBLEM DEFINITION

We study the dynamics of Newtonian liquid films flowing
down a heated compliant substrate, as shown in Fig. 1. A two-
dimensional Cartesian coordinate system (x, y) is employed
to describe the dynamics, where x and y denote the stream-
wise and normal directions to the substrate, respectively. The
density ρ, dynamic viscosity μ, and thermal diffusivity k
of the liquid are assumed to be constant. The compliant
substrate is assumed to be infinitely long, thin, impermeable,
and isotropic, and the flow is heated by the substrate, which
is maintained at a constant temperature Ts. We also assume
that the surrounding air is passive and inviscid and neglect its
dynamics. The instantaneous shape of the substrate and the
height of the liquid film are denoted by y = s(x, t ) and y =
h(x, t ), and the initial stationary locations of the substrate and
the liquid film are y = 0 and y = h0, respectively. Therefore,
in s(x, t ) � y � h(x, t ), the dynamics of the heated liquid
flow is governed by the continuity and momentum equations,
and the heat transfer is governed by the energy equation as
follows:

∇ · u = 0, (1a)

ρ[ut + (u · ∇)u] = −∇p + μ∇2u + ρg, (1b)

Tt + (u · ∇)T = k∇2T, (1c)

where u = uex + vey, p, and T represent the velocity, pres-
sure, and temperature fields and g is the gravitational acceler-
ation. The symbols in the subscript denote the partial deriva-
tives with respect to the corresponding variables. Unless stated
otherwise, all the subscripts represent the partial derivatives.

We assume that the compliant substrate is sufficiently thin
so that its tension acts uniformly across the thickness of
the substrate [51]. The thermal stresses in the substrate are
negligible due to the uniform heating. In addition, the inertia
of the substrate is neglected because of the slow motion of the
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substrate [24,52,53]. Therefore, the balance of normal stresses
on the substrate, y = s(x, t ), gives [52]

ρshsds(
1 + s2

x

)1/2 st = −σs∇ · ns + ns · T · ns, (2)

where ρs, hs, ds, and σs are the density, thickness, damping
coefficient, and tension of the substrate; T = −pI + μ[∇u +
(∇u)T ] is the Newtonian stress tensor in the liquid; ns and
−∇ · ns are the surface norm vector and mean curvature of
the substrate, respectively.

In fact, Eq. (2) is a simplified forced membrane equation,
which couples the restoring force of the substrate with the
normal force imposed by the outer fluid, and this force balance
neglects the bending stresses. This model has been widely
applied to investigate the dynamics of liquid films inside
flexible tubes [27,28,54], as well as the stability of thin-film
flows on flexible inclines [29–32,36].

On the surface of the substrate, y = s(x, t ), we apply the
no-slip boundary condition

u = 0. (3a)

The kinematic condition on the surface of the substrate, y =
s(x, t ), is written as

v = st + usx. (3b)

On the free surface of liquid, y = h(x, t ), the stress balance is
written as

T · ni = ∇sσ − σ (∇s · ni )ni, (3c)

where ni and t i denote the unit normal and unit tangential
vectors of the free liquid interface, respectively. ∇s and −∇s ·
ni are the surface gradient operator and the mean curvature of
the free liquid surface, respectively.

The temperature on the substrate, y = s(x, t ), is imposed as

T = Ts. (3d)

On the free liquid interface, y = h(x, t ), the heat balance is
governed by the Newton’s law of cooling,

−λ∇T · ni = hg(T − T∞), (3e)

where λ and hg are the thermal conductivity and the heat
transfer coefficient of the liquid, respectively. T∞ is the
ambient temperature far away from the free liquid interface
and is chosen as the reference temperature T0.

On the free liquid interface, y = h(x, t ), the kinematic
condition is given as

v = ht + uhx, (3f)

where we assume the liquid is nonvolatile and the evaporation
is neglected.

To model the Marangoni effect on the free liquid interface,
y = h(x, t ), we assume a linear constitutive relation for the
surface tension σ , given by

σ = σ0 − σT (T i − T0), (4)

where σT is the surface tension constant, σ0 is the surface
tension at reference temperature T0, and T i is the temperature
at the free liquid interface. For most liquids, σT is positive,

where their surface tensions decrease monotonically with
increasing the temperature [43,55].

III. LIQUID FILM FLOWS ON A HORIZONTAL
SUBSTRATE: β = 0

We first consider a horizontal substrate where β = 0 and
assume Re � O(1). Therefore, the lubrication theory is ap-
plied to derive the evolution equations.

A. Scaling and asymptotic modeling

By scaling, we could eliminate all of the physical variables
from the differential equations and then obtain the dimension-
less governing system. We introduce the typical wavelength
L and the mean thickness of the liquid film h0 as the length
scales in the x and y directions, respectively. In addition, a
small long-wave parameter ε = h0/L = O(10−1) is intro-
duced into the system. Therefore, we adopt the following
nondimensional variables, denoted by asterisks [13],

(x, y) = L (x∗, εy∗), (u, v) = U (u∗, εv∗),

(h, s) = h0(H∗, S∗), t = L

U
t∗, (5)

p − pa = μU L

h2
0

p∗, T − T∞ = (Ts − T∞)T ∗,

where the velocity scale, U = μ/ρh0, given by the balance
between inertia and viscous drag.

After rescaling the dimensional governing Eqs. (1a)–(1c)
and dropping all ∗ superscripts from the variables for no-
tational clarity, we obtain the leading-order dimensionless
governing equations,

ux + vy = 0, (6a)

−px + uyy + ε−1Gsinβ = 0, (6b)

py + Gcosβ = 0, (6c)

Tyy = 0, (6d)

where G = ρgh3
0/μU L is the gravity number.

On the surface of the substrate, y = S(x, t ), the boundary
conditions at the leading order yield

u = 0, St = v, T = 1. (7)

The leading-order stress balance on the substrate, y = S(x, t ),
can be written as

BsSt = WsSxx + pw − p, (8)

where Bs = ρshsdsh3
0/μL 2 is a dimensionless damping num-

ber and Ws = σsh3
0/μU L 3 is the dimensionless tension co-

efficient, where smaller values of Bs and/or Ws indicate that
the substrate is more flexible and larger values of Bs and/or Ws

indicate that the substrate is more rigid [27]. On the free liquid
interface, y = H (x, t ), the leading-order boundary conditions
are reduced as

uy + MaT i
x = 0, p + WeHxx = 0, Ty + BiT = 0, (9)

where Ma = σT h0(Ts − T∞)/μU L is the Marangoni num-
ber, We = σ0h3

0/μU L 3 is the Weber number, and Bi =
hgh0/λ is the Biot number.
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The dimensionless kinematic condition at the free liquid
interface, y = H (x, t ), is given as

v = Ht + uHx. (10)

After solving the corresponding leading-order equations,
we obtain the distributions of leading-order velocity and pres-
sure fields, u and p, given by

u = 1
2 (px − ε−1Gsinβ )y2 + b1y + b2, (11a)

where

p = −Gcosβ(y − H ) − WeHxx, (11b)

b1 = −pxH + MaBi

[1 + Bi(H − S)]2
(H − S)x, (11c)

b2 = −1

2
pxS2 − b1S. (11d)

The leading-order solution of the temperature distribution
is

T = 1 − Bi(y − S)

1 + Bi(H − S)
, (12a)

where the temperature at free liquid interface, y = H (x, t ), is
given as

T i = 1

1 + Bi(H − S)
. (12b)

After substituting Eq. (11a) into the Eq. (10) which is in
the form of mass conservation

(H − S)t + ∂x

∫ H

S
udy = 0. (13)

We eventually obtain the evolution equations of (H, S), given
by

(H − S)t + [
1
6 (px − ε−1Gsinβ )(H3 − S3) + 1

2 b1(H2 − S2) + b2(H − S)
]

x = 0, (14a)

BsSt − WsSxx − WeHxx − Gcosβ(1 − H + S) = 0. (14b)

The solutions of Eqs. (14a) and (14b), H (x, t ) and S(x, t ),
describe the instantaneous shape of the air-liquid interface
and the instantaneous deformation of the compliant substrate,
respectively. In this section, we only consider the case of a
horizontal substrate (β = 0), and therefore, the gravity term
in the horizontal direction (ε−1Gsinβ) could be removed
from Eq. (14a), and the gravity term in the vertical direction
(Gcosβ) becomes G in Eq. (14b), respectively. By setting
S = 0, we could recover the lubrication-type equation derived
by Oron [56], who studied the dynamics of thin liquid films
on a heated solid substrate. In this section, we mainly focus on
the effects of fluid gravity (G) and Marangoni stresses (Ma) on
the dynamics of the liquid film and substrate, and therefore, in
most situations, we fix the Biot number (Bi), Weber number
(We), wall damping (Bs), and wall tension (Ws) as 1, 10, 1, and
10, respectively. The typical nondimensional numbers used in
this paper are from previous work by Halpern et al. [27,28]
and Kalliadasis et al. [5].

B. Linear stability analysis

To begin with, we investigate the features characterizing
the onset of instability via the linear stability analysis. With a
constant thickness of the film, no deformation of the compli-
ant substrate, and no flow, the evolution Eqs. (14a) and (14b)
admit a uniform solution,

H̄ = 1, S̄ = 0. (15)

To this end, Eqs. (14a) and (14b) are perturbed around the
above base state by posing the expansion

[H, S] = [H̄, S̄] + [H ′, S′]. (16)

Therefore, we yield

(H ′ − S′)t − G

3
H ′

xx +
We

3
H ′

xxxx +
MaBi

2(1 + Bi)2
(H ′ − S′)xx = 0,

(17a)

BsS
′
t − WsS

′
xx − WeH ′

xx − G(−H ′ + S′) = 0. (17b)

Following a standard approach, we apply a normal mode
analysis, expressed by

[H ′, S′] = [Ĥ , Ŝ]exp(ikx + ωt ), (18)

where [Ĥ , Ŝ] are the Fourier amplitudes of the disturbances,
ω = ωr + iωi is the complex frequency, and k is the wave
number, respectively. The real part ωr and imaginary part ωi

represent the effective growth rate and frequency of the linear
instability disturbance, respectively. Finally, by substituting
Eq. (18) into Eqs. (17a) and (17b), we obtain the dispersion
relation

ω

(
Ĥ

Ŝ

)
=

(L11 L12

L21 L22

)(
Ĥ

Ŝ

)
, (19a)

where

L11 = −Wek2 + G

Bs
− Wek4 + Gk2

3
+ MaBik2

2(1 + Bi)2
, (19b)

L12 = −Wsk2 + G

Bs
− MaBik2

2(1 + Bi)2
, (19c)

L21 = −Wek2 + G

Bs
, (19d)

L22 = −Wsk2 + G

Bs
. (19e)
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FIG. 2. The dispersion curves ωr (k) showing the effects of (a) fluid gravity (G = 0.1, 0.2, 0.3, 0.4, 0.5) without Maranogni stresses (Ma =
0); (b) Marangoni stresses (Ma = 0.2, 0.4, 0.6, 0.8, 1) without fluid gravity (G = 0); (c) Marangoni stresses (Ma = 0, 0.1, 0.2, 0.5, 1) with
fluid gravity (G = 0.3). The km, ωr,m, and kc labeled in (b) denote the most dangerous wave number, maximal effective growth rate, and cut-off
wave number, respectively. Other parameters: We = 10, Bs = 1,Ws = 10, β = 0, and Bi = 1.

By requiring the matrix in Eq. (19a) to be singular, we
could obtain the dispersion curves ωr (k) which show the
effects of the gravity number (G) and Marangoni number
(Ma) on the linear stability, as shown in Figs. 2(a) and
2(b), respectively. These dispersion curves clearly illustrate
the most dangerous mode, km, and their associated maximal
effective growth rate, ωr,m, as well as the cutoff mode, kc. We
observe that increasing G and/or Ma result in the increase of
the maximal effective growth rate (ωr,m) and a shift of wave
numbers that associated with the maximal effective growth
rate(km) and cutoff wave numbers (kc) into larger values
[see Figs. 2(a) and 2(b)]. However, compared with the case
of thin liquid films without any heating effects (Ma = 0),
introduction of a relatively strong heating effect (Ma = 1)
makes the most unstable wave number km that corresponds to
the largest growth rate ωr,m shift into larger values, indicating
that the instability is taken over by Marangoni effect, as shown
in Fig. 2(c). Therefore, by introducing the Marangoni stresses,
we expect a shift from an instability characterized with a long
wavelength [see point A in Fig. 2(c)] into that characterized
with a relatively short wavelength [see point B in Fig. 2(c)].
To account for this observation, we consider the case of a
rigid substrate and the dispersion relationship becomes ωr =
k2[−G

3 − We
3 k2 + MaBi

2(1+Bi)2 ], where the most unstable mode and

the cutoff mode are obtained as km =
√

− G
2We + 3MaBi

4We(1+Bi)2

and kc =
√

− G
We + 3MaBi

2We(1+Bi)2 , respectively. We find that the

corresponding most unstable wavelength (2π/km) and cut-
off wavelength (2π/kc) decrease with increasing the values
of Ma, which indicates that the long-wave thermocapillary
instabilities could shift into instabilities with relatively short
wavelengths when a very strong Marangoni effect is present.
These results will be verified later by the time-dependent
simulations of the long-wave evolution Eqs. (14a) and (14b).

To have a clear view of the two destabilizing effects, we
further obtain the neutral stability curves in the kc-Ma plane
with varying G. The cutoff wave number kc is calculated by
setting ωr = 0 to be zero, given as

L11L22 − L12L21 = 0. (20)

We notice that when the values of Ma are very small (Ma <

1), the unstable regimes expand significantly with increasing
G; however, as we increase Ma into large values (Ma > 1),
the unstable regimes expand significantly with increasing Ma
rather than G (see Fig. 3). Therefore, according to these
observations, we hypothesize that two different regimes might
be present, which are mainly dominated by gravitational force
and Marangoni force, respectively.

C. Nonlinear simulations

To verify our hypothesis and further identify how the
fluid gravity and Marangoni stresses affect the spatiotemporal
profiles of the liquid film and substrate, we must consider
the full nonlinear evolution equations. The problem is further
reduced by assuming that the liquid film and the substrate are
large enough, and thus periodic boundary conditions could
be applied in a defined finite domain, x ∈ [0, L]. The spatial
solutions of Eqs. (14a) and (14b) are approximated by the

10-3 10-2 10-1 100 101
0

0.2

0.4

0.6

0.8

1

Ma

k

Stable

Unstable

Increasing G

FIG. 3. Neutral stability curves in the parameter space spanned
by Ma-k for G = 0, 0.3, 0.5, 1, and 2. Other parameters: We =
10, Bs = 1,Ws = 10, β = 0, and Bi = 1.
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FIG. 4. The profiles of liquid film H [upper (red) lines] and
substrate S [lower (green) lines] at t = 400, 800, 1200 with G = 0.3
and Ma = 0. Other parameters: We = 10, Bs = 1,Ws = 10, β = 0,
Bi = 1, and L = 100.

discrete Fourier series, in the form of

H (x, t ) =
N/2∑

−N/2

Ĥn(t )exp(2inπx/L), (21a)

S(x, t ) =
N/2∑

−N/2

Ŝn(t )exp(2inπx/L), (21b)

where Ĥn(t ) and Ŝn(t ) are the Fourier coefficients and N is the
Fourier mode. In this paper, we use 256 Fourier modes which
guarantee sufficient accuracy of solutions.

At initial time t = 0, a harmonic perturbation is imposed
on the free liquid interface H (x) and the compliant substrate
S(x) remains flat, given by

H (x, 0) = 1 + 0.1sin(2πx/L), (22a)

S(x, 0) = 0. (22b)

The resulting system, consisting of the ordinary differential
equations (ODEs) and the periodic boundary constraints, is
solved by an implicit Gear’s method in time with a relative
error less than 10−6 [57].

We observe two different regimes due to the presence of
gravity and wall heating, respectively, which is in consistent
with the predictions by the linear stability analysis. Typical
results showing the effect of the gravity (G = 0.3) on the pro-
files of the liquid film and the compliant substrate without any
heating (Ma = 0) at t = 400, 800, and 1200 are illustrated in
Fig. 4. We notice that when the Marangoni effect is absent
(Ma = 0), the deformation direction of substrate is the same
as that of the liquid film, which is caused by the fluid gravity
and the mode is termed as sinuous mode. However, with the
introduction of the heating effect (Ma = 2) and neglecting the
gravity (G = 0), a totally different phenomenon is present.
As the time increases, we observe that the deformation of the
substrate is in the opposite direction as that of the liquid film,
which is caused by the Marangoni stresses and this new mode
is termed the varicose mode (see Fig. 5). The characteristic
length of patterns induced by Marangoni stresses is smaller
than that induced by fluid gravity, indicating that the most
unstable wave number of Marangoni-driven flows is larger
than the case of gravity-driven flows, agreeing well with the
predications from linear stability analysis.
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FIG. 5. The profiles of liquid film H [upper (red) lines] and
substrate S [lower (green) lines] at t = 900, 1100, 1250 with Ma =
2 and G = 0. Other parameters: We = 10, Bs = 1,Ws = 10, β = 0,
Bi = 1, and L = 100.

Compared with the case of a mild heating (Ma = 0.5), a
very strong heating (Ma = 5) on the liquid film gives rise to
the emergence of secondary and even higher-order patterns
surrounding the main patterns, as shown in Figs. 6(a) and
6(b). The physical mechanism of the Marangoni effect can be
explained by assuming that a liquid film is initially depressed
at a certain region due to a randomly external perturbation.
When this film is heated, this depressed region has a lower sur-
face tension compared with that of its neighbors. Afterward,
Marangoni stresses, induced by the surface tension gradients,
are generated and drive liquids from this hot region toward
its neighboring cold regions, accelerating instability of the
system [58]. Finally, due to the Marangoni stresses, the liquids
gradually accumulate into the cold regions, which results in
the increase of liquid mass in these local cold regions and
thus exacerbates the deformation of the compliant substrate.
Therefore, the deformation of the liquid films induced by the
Marangoni stresses further leads to the opposite deformation
of the compliant substrate.

When both the gravity and Marangoni effect are present,
where G = 0.3 and Ma = 2, we could observe the interaction
between the sinuous and varicose modes where a mixed mode
is present, as shown in Figs. 7(a)–7(d). In this case, at an early
stage, t < 300, the instability is dominated by gravity and the
main mode is sinuous mode [Figs. 7(a) and 7(b)]. However, at
a later stage, t > 550, the instability is taken over by varicose
mode, where the Marangoni effect starts playing an important
role and even smaller patterns emerge on the basis of sinuous
mode [Figs. 7(c) and 7(d)].

In addition, when we increase the wall damping and wall
tension coefficients from small values, where Bs = 1 and
Ws = 10, into very large values, where Bs = 103 and Ws =
104, we observe that the compliant substrate recovers as a
rigid substrate [see Figs. 8(a), 8(b), 9(a), and 9(b)]. Physi-
cally, the wall damping and wall tension from the compliant
substrate are to dissipate the kinetic energy, and therefore
larger values of wall damping and wall tension have stronger
dissipation ability and make the system more stable. Here we
first consider the effects of fluid gravity (G = 0.3, Ma = 0):
For the case of a very rigid substrate (Bs = 103, Ws = 104),
the initial perturbation in form of Eq. (22) gradually damps
and the liquid-air interface eventually becomes flat, which is
because of the stabilizing effects of fluid gravity and wall
rigidity, as shown in Fig. 8(b). In contrast, for the case of a
very compliant substrate (Bs = 1, Ws = 10), due to the wall
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FIG. 6. The profiles of liquid film H [upper (red) line] and substrate S [lower (green) line] with (a) Ma = 0.5, G = 0 at t = 9000; (b) Ma =
5, G = 0 at t = 370. Other parameters: We = 10, Bs = 1,Ws = 10, β = 0, Bi = 1, and L = 100.

flexibility, the fluid gravity plays a destabilizing role where
both the liquid-air and liquid-substrate interfaces deform in
the same direction, as shown in Fig. 8(a). However, if we
only consider the effects of wall heating (G = 0, Ma = 2),
for the case of a very compliant substrate (Bs = 1, Ws = 10),
the synergistic effect between wall flexibility and wall heating
gives rise to the opposite deformations of liquid-air and liquid-
substrate interfaces, in contrast to results of the case of a very
rigid substrate (Bs = 103, Ws = 104), as shown in Figs. 9(a)
and 9(b), respectively.

Moreover, the length of computational domain (L) also
has significant effects on the time-dependent numerical re-
sults [56]. Below a critical computational length, we could
not observe any instabilities (see Appendix B for detailed
discussions), indicating that thermocapillary instabilities with
short wavelengths are suppressed, which agrees well with the
predications from linear stability analysis. Therefore, in this
section, based on the deformation directions of the liquid-
air and liquid-substrate interfaces, we observe two different

modes including sinuous and varicose modes, which are
caused by the fluid gravity and Marangoni effect, respectively.

IV. LIQUID FILM FLOWS DOWN A VERTICAL
SUBSTRATE: β = π/2

We now turn to the case of thin-film flows down a vertical
substrate (β = π/2) with a small Reynolds number (Re � 1)
and reconstruct the nonlinear evolution equations.

A. Scaling and asymptotic modeling

In this section, we introduce a new scaling, as follows [5]:

(x, y, h, s) = h0(x∗, y∗, H∗, S∗),

(u, v) = h2
0

tν lν
(u∗, v∗), t = tν lν

h0
t∗, (23)

p − pg = ρlνh0

t2
ν

p∗, T − T∞ = (Ts − T∞)T ∗.

0 20 40 60 80 100

3

S,
H

(b)

2

1

0

-1

-2

-3

x

(a)

0 20 40 60 80 100

3

S,
H

2

1

0

-1

-2

-3

x

0 20 40 60 80 100

3

S,
H

(c)

2

1

0

-1

-2

-3

x 0 20 40 60 80 100

3

S,
H

(d)

2

1

0

-1

-2

-3

x

t = 0 t = 300

t = 550 t = 650

FIG. 7. The profiles of liquid film H [upper (red) lines] and substrate S [lower (green) lines] with G = 0.3, Ma = 2 at t = 0, 300, 550,
and 650. Other parameters: We = 10, Bs = 1,Ws = 10, β = 0, Bi = 1, and L = 100.
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FIG. 8. The profiles of liquid film H [upper (red) line] and substrate S [lower (green) line] for (a) the case of a very compliant substrate with
Bs = 1,Ws = 10 at t = 1000; (b) the case of a very rigid substrate with Bs = 103, Ws = 104 at t = 8000. Other parameters: G = 0.3, Ma =
0, We = 10, β = 0, Bi = 1, and L = 100.

where h0, tν = [ ν
(gsinβ )2 ]1/3, and lν = ( ν2

gsinβ
)1/3 are the mean

thickness of the film, viscous-gravity time, and viscous-
gravity length, respectively; ν = μ/ρ is the kinetic viscosity
of the fluid.

After rescaling the governing Eqs. 1(a)–1(c) and dropping
all ∗ superscripts from the variables, we obtain the dimension-
less governing equations

∇ · u = 0, (24a)

3Re[ut + (u · ∇)u] = −∇p + ∇2u + 1

sinβ
eg, (24b)

3Pe[Tt + (u · ∇)T ] = ∇2T, (24c)

where Re = gh3
0sinβ

3ν2 and Pe = RePr are the Reynolds number
and Peclét number with Pr = ν/k (Prandtl number), respec-
tively; eg = (sinβ,−cosβ ) represents the gravity direction.

The dimensionless boundary conditions on the substrate,
y = S(x, t ), are

u = 0, v = St , T = 1, (25a)

BsSt = WsSxx − (p − cotβ ) − 2[Sx(uy + vx ) − vy], (25b)

where Bs = ρshsdsh0

μ
and Ws = σs

ρgh0
2sinβ

are newly defined di-
mensionless damping and dimensionless tension coefficients,

respectively. Here we consider the first-order model, and the
terms of O(S2

x ) with its higher order are neglected.
The dimensionless boundary conditions on the free inter-

face, y = H (x, t ), become

uy + vx + 2Hx(vy − ux ) = −MaT i
x , (25c)

−p − 2Hx(uy + vx ) + 2vy = We

(
1 − Ma

We
T i

)
Hxx, (25d)

HxTx − Ty = BiT, (25e)

where Ma = σT (Ts−T∞ )
ρgh2

0sinβ
, We = σ0

ρgh2
0sinβ

, and Bi = hgh0

λ
are

newly defined Marangoni number, Weber number, and Biot
number, respectively. The terms of O(H2

x ) and higher are
neglected. In this paper, we assume that surface tension is
strong, and We 	 Ma, such that the term Ma

We T i in Eq. (25d)
could be neglected. The dimensionless kinematic condition on
the free liquid surface remains unchanged as

v = Ht + uHx. (26)

Based on the long-wave assumption, the temporal and
spatial variations of the interfacial slope are very slow, where
we assume that ∂t,x ∼ ε � 1. Therefore, we could make the
following transformation:

(∂t , ∂x ) = ε(∂ t̃ , ∂ x̃ ), ∂xx = ε2∂ x̃ x̃, v = εṽ. (27)

3
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1
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-1
0 20 40 60 80 100x 0 20 40 60 80 100x
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H

FIG. 9. The profiles of liquid film H [upper (red) line] and substrate S [lower (green) line] for (a) the case of a very compliant substrate
with Bs = 1,Ws = 10 at t = 1250; (b) the case of a rigid substrate with Bs = 103, Ws = 104 at t = 1700. Other parameters: G = 0, Ma =
2, We = 10, β = 0, Bi = 1, and L = 100.
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For simplicity, we drop the tildes in Eq. (27), and Eqs. (24a)–
(24c) are restated as

ux + vy = 0, (28a)

3εRe(ut + uux + vuy) = −εpx + ε2uxx + uyy + 1, (28b)

3ε2Re(vt + uvx + vvy) = −py + ε3vxx + εvyy − cotβ,

(28c)

3εPe(Tt + uTx + vTy) = ε2Txx + Tyy. (28d)

The boundary conditions at y = S(x, t ) become

u = 0, v = St , T = 1, (29a)

εBsSt = ε2WsSxx − (p − cotβ ) − 2ε[Sx(uy + ε2vx ) − vy].

(29b)

The boundary conditions at y = H (x, t ) become

uy + ε2vx − 2ε2uxHx + 2ε2vyHx = −εMaT i
x , (29c)

p = −2εHx(uy + ε2vx ) + 2εvy − ε2WeHxx, (29d)

ε2HxTx − Ty − BiT = 0. (29e)

The kinematic condition on the free interface remains un-
changed.

We assume that Reynolds number is small where Re � 1.
In this section, to take the effects of surface tension, wall
tension, wall damping, and Marangoni effect into account,

we assume We = O(ε−2), Bs = O(ε−1), Ws = O(ε−2), Ma =
O(1), and Bi = O(1). To simplify, we assume Pr � 1 and
neglect the thermal convection.

Based on these assumptions and only considering the
first-order O(ε) dynamics, we further expand the variables
[u, v, p, T ] in power series of ε asymptotically, given as

[u, v, p, T ] = [u(0), v(0), p(0), T (0)]

+ ε[u(1), v(1), p(1), T (1)] + O(ε2), (30)

where [u(0), v(0), p(0), T (0)] and [u(1), v(1), p(1), T (1)] represent
the leading-order and first-order solutions, respectively.

After solving the equations at O(1), we obtain the leading-
order velocity components, pressure, and temperature as
follows:

u(0) = −1

2
(y2 − S2) + H (y − S), (31a)

v(0) = St − 1

2
(y − S)2Hx + (H − S)(y − S)Sx, (31b)

p(0) = −cotβ(y − H ) − ε2WeHxx, (31c)

T (0) = 1 − Bi(y − S)

1 + Bi(H − S)
, (31d)

where the corresponding leading-order temperature distribu-
tion at the free interface y = H (x, t ) is given as

T i,(0) = 1

1 + Bi(H − S)
. (31e)

The first-order O(ε) streamwise velocity and pressure field
are solved, respectively, as

u(1) = 3Re

[
(y − S)4

24
− (H − S)3(y − S)

6

]
(H − S)(H − S)x +

[
(y − S)3

6
− (H − S)(y − S)

2

]
(H − S)t

}
+

[(
1

2
y2 − Hy

)
−

(
1

2
S2 − HS

)]
(cotβHx − ε2WeHxxx ) + MaBi(H − S)x

[1 + Bi(H − S)]2
y, (32a)

p(1) = −(y − H )Hx − 2(H − S)(H − S)x. (32b)

The detailed derivation of leading-order and first-order solutions are given in Appendix A.
Furthermore, after substituting u = u(0) + εu(1) into the kinematic condition, which is written in the form of mass conservation

as

(H − S)t + ∂x

∫ H

S
u(0) + εu(1)dy = 0, (33)

we yield

(H − S)t + (H − S)2(H − S)x + ε

{
−Re

[
−9(H − S)6(H − S)x

40
− 5(H − S)4(H − S)t

8

]
− (H − S)3

3
(cotβHx − ε2WeHxxx ) + MaBi(H − S)2(H − S)x

2[1 + Bi(H − S)]2

}
x

= 0. (34)

To eliminate (H − S)t from the second term of O(ε) in Eq. (34), we introduce (H − S)t = −(H − S)2(H − S)x + O(ε), and
to simplify, we further define � = H − S as the dimensionless thickness of the liquid film. We obtain the evolution equation
describing the dynamics of the liquid film in the form

�t + �2�x + ε

[
2Re

5
�6�x + d3

3
(−cotβHx + ε2WeHxxx ) + MaBi

2(1 + Bi�)2
�2�x

]
x

= 0. (35)
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The evolution equation describing the dynamics of the compliant substrate is obtained by substituting p|y=S = p(0)|y=S +
εp(1)|y=S , u(0)|y=S , and v(0)|y=S into (29b) as

εBsSt − ε2WsSxx − ε2WeHxx + cotβ(� − 1) − ε�(2S − H )x = 0. (36)

To eliminate ε, we further rescale Eqs. (35) and (36) via the following transformation:

ε(∂t , ∂x ) → (∂t , ∂x ). (37)

We eventually yield

�t + �2�x +
[

2Re

5
�6�x + �3

3
(−cotβHx + WeHxxx ) + MaBi

2(1 + Bi�)2
�2�x

]
x

= 0, (38a)

BsSt − WsSxx − WeHxx + cotβ(� − 1) − �(2S − H )x = 0. (38b)

Therefore, we obtain a new set of evolution equations that also
accounts for the fluid inertia (Re), which are the extensional
Benney-type equations [14]. By setting S = 0, we could re-
cover the Benney-type equation obtained by Joo et al., who
studied the long-wave instabilities of heated falling films on
solid substrates [59]. Furthermore, by setting Ma = 0, we
could also obtain the Benney-type equation derived by Matar
et al., who explored the dynamics of isothermal falling films
on flexible inclines [31]. In particular, when Bs and/or Ws

becomes infinitely large, the compliant wall is also recovered
as a rigid wall. In this section, we mainly focus on the effects
of fluid inertia (Re) and heating effect (Ma) on the dynamics
of the liquid film and the substrate, where the effects of wall
damping (Bs) and wall tension coefficient (Ws) have been
discussed in detail by Matar et al. [31] and Peng et al. [36].

Therefore, in most situations, we fix Biot number (Bi), Weber
number (We), wall damping (Bs), and wall tension (Ws) as 1,
100, 10, and 100, respectively.

B. Linear stability analysis

Following Sec. III, we first study the linear stability proper-
ties via the standard linear stability analysis. Equations (38a)
and (38b) admit the following trivial steady solution:

[�̄, S̄] = [1, 0], (39)

which is perturbed with an infinitesimal disturbance [�′, S′],

[�, S] = [�̄, S̄] + [�′, S′]. (40)

After linearization, we obtain

�′
t + �′

x +
[

2Re

5
�′

x + 1

3
(−cotβH ′

x + WeH ′
xxx ) + MaBi

2(1 + Bi)2
�′

x

]
x

= 0, (41a)

BsS
′
t − WsS

′
xx − WeH ′

xx + cotβ�′ − (2S′ − H ′)x = 0, (41b)

where H ′ = �′ + S′.
A normal mode expansion is applied and thus the distur-

bances �′ and S′ are expressed by

[�′, S′] = [�̂, Ŝ]exp(ikx + ωt ), (42)

where [�̂, Ŝ] are the Fourier amplitudes of the disturbances,
and the linear wave speed is given as cL = −ωi/k.

Finally, by substituting the disturbance Eq. (42) into the
linearized Eqs. (41a) and (41b), we obtain the following
eigenvalue problem:

ω

(
�̂

Ŝ

)
=

(L11 L12

L21 L22

)(
�̂

Ŝ

)
, (43a)

where

L11 = −ik + 2Re

5
k2 − 1

3
(cotβk2 + Wek4) + MaBi

2(1 + Bi)2
k2,

(43b)

L12 = −1

3
(cotβk2 + Wek4), (43c)

L21 = 1

Bs
(−Wek2 − cotβ − ik), (43d)

L22 = 1

Bs
(−Wsk

2 − Wek2 + ik). (43e)

Therefore, we obtain the dispersion curves ωr (k) which show
the effects of Re and Ma on the linear stability, as illustrated in
Figs. 10(a) and 10(b), respectively. We observe that both the
maximum growth rate (ωr) and the cutoff wave number (kc)
increase with increasing Re and Ma, indicating the destabiliz-
ing roles of fluid inertia and Marangoni effects [see Figs. 10(a)
and 10(b)]. In addition, compared with the case of β = 0, as
we increase the Re and Ma, we do not see an obvious mode
shift, indicating that only one mode (in the scope of sinuous
and varicose modes found in Sec. III) is present in the case of
β = π/2 [see Figs. 10(a) and 10(b)].

To further illustrate the effects of fluid inertia and
Marangoni stresses on the linear stability, we obtain the
neutral stability curves in the kc-Ma plane with Re =
0, 0.2, 0.5, 1, and 2, as plotted in Fig. 11. We notice that when
the value of Ma is very small (Ma < 1), the unstable regimes
expand significantly with increasing Re. However, as we
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FIG. 10. The dispersion curves ωr (k) showing the effects of (a) fluid inertia (Re = 0.2, 0.5, 1, 1.5, 2) without Marangoni stresses (Ma =
0); (b) Marangoni stresses (Ma = 0, 0.5, 1, 2, 5) with fluid inertia (Re = 1). Other parameters: We = 100, Bs = 10,Ws = 100, β = π/2, and
Bi = 1.

further increase Ma into large values (Ma > 1), the unstable
regions expand significantly with increasing Ma instead of Re.
In all cases, kc and the areas of unstable regions increase as
Ma increases, further demonstrating the destabilizing effect
of Marangoni stresses.

C. Steady traveling waves

Traveling waves, which propagate with a constant shape
and downstream speed in a reference frame, are widely
present in falling liquid films. These steady waves with finite

amplitudes evolving from initial small disturbances are very
crucial to understand the nonlinear dynamics of thin-film
flows. Therefore, in this subsection, we explore the behavior
of these steady traveling waves. First, we introduce the fol-
lowing transformation:

ξ = x − ct, �(x, t ) = �(ξ ),

H (x, t ) = H (ξ ), S(x, t ) = S(ξ ), (44)

where c is the speed of the traveling waves. After substituting
Eq. (44) into the evolution Eqs. (38a) and (38b), we eliminate
the time dependence and obtain

−c�ξ + �2�ξ +
[

2Re

5
�6�ξ + �3

3
(−cotβHξ + WeHξξξ ) + MaBi

2(1 + Bi�)2
�2�ξ

]
ξ

= 0, (45a)

−cBsSξ − WsSξξ − WeHξξ + cotβ(� − 1) − �(2S − H )ξ = 0, (45b)

where H = � + S.
To fix the wave speed c, we impose a closed flow condition

in the form

1

L

∫ L

0
(� + S)dξ = 1, (46)

where L is the length of computational domain.
Solutions of �(ξ ) and S(ξ ) are approximated via discrete

Fourier series

�(ξ ) =
N/2∑

−N/2

�̂nexp(2inπξ/L), (47a)

S(ξ ) =
N/2∑

−N/2

Ŝnexp(2inπξ/L). (47b)

where N is the Fourier mode and �̂n and Ŝn are the Fourier
coefficients. The resulting system is solved via Newton it-
erations which could converge rapidly to the solutions with
a good initial guess. In addition, the numerical continuation

technique is applied to track the solution branch as the change
of parameter [57]. To start the continuation, a sinusoidal
solution with a small amplitude and a nearly cutoff wave
number kc is applied, where kc is obtained from the linear
stability analysis. In this paper, we only consider the fast
one-hump waves, because only the one-hump solution can
be recognized during the evolution of the wave families, as
theoretically demonstrated by Pumir et al. [60], and also
such dominant wave structures are more likely to be observed
experimentally.

However, we should notice that the presence of a strong
nonlinear term, 2Re

5 �6�ξ , due to inertia in Eq. (45a), will
result in no stationary traveling-wave solutions when Re is be-
yond a critical value [5,60]. Therefore, to identify the validity
domain of Eqs. (45a) and (45b), we also calculate the branches
of the single-hump solitary wave solutions. A typical result
showing the phase speed c as a function of Re with different
Ma is plotted in Fig. 12. When Re is beyond the critical value
Re∗ (see the turning points in Fig. 12), two branches including
a lower and an upper branches are present. In this situation, we
could not obtain any stationary solitary wave solutions due to
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FIG. 11. Neutral stability curves in the parameter space spanned
by Ma-k for Re = 0, 0.2, 0.5, 1, 2. Other parameters: We =
100, Bs = 10,Ws = 100, β = π/2, and Bi = 1.

the unphysical finite-time blowup of solutions of Eq. (38a) [5].
In particular, we consider the case of a very rigid substrate,
where Bs = 104 and Ws = 105, and adopt the identical values
for other parameters (Re = 2.0667, We = 874, Ma = 0, β =
π/2, and k = 0.011) from the work of Kalliadasis et al. [5].
The calculated Re∗ is 3.44 which is close to the value by
Kalliadasis et al., where Re∗ � 3.5 (see Ref. [5]), confirming
the validity of our numerical technique.

A set of representative results showing the effects of fluid
inertia on the traveling-wave profile of the liquid film, H (ξ ),
as well as the deformation of the compliant substrate, S(ξ ),
are shown in Fig. 13. We notice that increasing Re gives
rise to a large amplitude of the traveling wave and a strong
deformation of the substrate. In addition, the deformation
of the fluid interface and the substrate are in the opposite
direction, indicating that the varicose mode is present. The

c
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0.8
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Re

FIG. 12. The branches of single-hump solitary wave solutions
for the phase speed c with Ma = 0, 1, 2, 3, 4 and corresponding k =
0.03, 0.06, 0.08, 0.10, 0.12, respectively. Other parameters: We =
100, Bs = 10,Ws = 100, β = π/2, Bi = 1, and L = 2π/k.
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FIG. 13. Traveling-wave profiles showing the effects of fluid
inertia (Re = 0.4, 0.6, 0.8, 1) with Ma = 0. Other parameters
are We = 100, Bs = 10,Ws = 100, β = π/2, Bi = 1, k = 0.05, and
L = 40π .

heating effects on H (ξ ) and S(ξ ) are illustrated in Fig. 14.
The amplitudes of the traveling wave and wall deflection are
larger in the case of liquid films with heating (Ma > 0) com-
pared with those without any heating (Ma = 0), showing that
Maragoni stresses accelerate squeezing the liquids between
the free film interface and substrate. In addition, a stronger
heating leads to a larger amplitude of the steady waves, as well
as a more serious deflection of the flexible substrate compared
with the cases of a weak heating. For instance, in the case
of Fig. 14, compared with the case of Ma = 0.2, liquid
films with Ma = 1 shows a 7.8% increase in the maximal
hump height of the traveling waves and 60% increase in the
maximal deformation of the compliant substrate, respectively.
The enhancement of the Marangoni stresses on the instability
of varicose mode is similar with the results for the case of a
horizontal substrate with heating effects.
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FIG. 14. Traveling-wave profiles showing the effects of
Marangoni stresses (Ma = 0, 0.2, 0.5, 1) with Re = 1. Other pa-
rameters are We = 100, Bs = 10,Ws = 100, β = π/2, Bi = 1, k =
0.05, and L = 40π .
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FIG. 15. The maximal wave height of the nonlinear wave Hmax and the absolute value of the largest wall deflection |S|max showing the
Marangoni effect Ma with Re = 0.2, 0.4, 0.6, 0.8, 1. Other parameters are We = 100, Bs = 10,Ws = 100, Bi = 1, β = π/2, k = 0.05, and
L = 40π .

However, we notice that the position of ξ which corre-
sponds to the maximal deformation of substrate is not syn-
chronous (i.e., out-of-phase) with that of liquid film, which is
modified by the fluid gravity term [�2�ξ in Eq. (45a)] and
different from the case of β = 0. In addition, in all the cases
for β = π/2, we do not see the sinuous mode, which could
be observed in the case of β = 0. Actually, for the case of
falling liquid films, because the gravity direction is parallel
to the substrate, the component of gravitational force, that is
vertically toward the compliant substrate, is absent. In our
calculations, we do not observe obvious preceding capillary
ripples with short wavelengths (see Figs. 13 and 14), which is
due to the damping effect of small dimensionless wall tension
(here Ws = 100) on the amplitude of these interfacial capillary
ripples [36].

To have a clear view of how fluid inertia and wall heating
affect the behavior of traveling waves and the deformation
of compliant substrate, we plot the maximal hump height of
the nonlinear traveling waves Hmax and the largest absolute
value of the wall deformation |S|max as a function of Ma with
various Re, as shown in Figs. 15(a) and 15(b), respectively.
We observe that when the Ma is small, typically Ma < 0.5,
the Hmax and |S|max are strongly affected by Re, indicating
that the shear stresses strongly accelerate the instability in
this regime. However, as we increase Ma into large values,
typically Ma > 0.5, we find that the Marangoni stresses begin
to dominate the instability, where Hmax and |S|max increase
rapidly with increasing Ma, agreeing well with the predictions
of linear stability analysis. The corresponding nonlinear wave
speed c as a function of Ma with various Re is also obtained
and plotted in Fig. 16. In agreement with the results of the
maximal hump height, Re and Ma play destabilizing roles,
where c is promoted by increasing Re and/or Ma. We also
plot the dependence of linear wave speed cL on Ma in the
case of Re = 1, which is obtained from Eqs. (43a)–(43e),
and find that the linear wave speed cL is smaller than the
nonlinear wave speed c (see dashed line in Fig. 16), further
demonstrating that the calculated traveling waves belong to
the faster one-hump wave.

D. Nonlinear simulations

To examine the fully nonlinear spatiotemporal dynamics,
we must perform the time-dependent nonlinear simulations
of the full evolution systems. Following Sec. III, we apply
periodical boundary conditions in domain x ∈ [0, L] and use
the discrete Fourier series to approximate the spatial solutions
of Eqs. (38a) and (38b) in the form of

�(x, t ) =
N/2∑

−N/2

�̂n(t )exp(2inπx/L), (48a)

S(x, t ) =
N/2∑

−N/2

Ŝn(t )exp(2inπx/L), (48b)

where �̂n(t ) and Ŝn(t ) are the Fourier coefficients and N is the
number of Fourier mode.

10-2 10-1 100

Ma

1

1.1

1.15

1.2

c Increasing Re

Lc

1.05

FIG. 16. The nonlinear wave speed c showing the Marangoni
effect Ma with Re = 0.2, 0.4, 0.6, 0.8, 1. The linear wave speed cL

with Re = 1 is also plotted. Other parameters are We = 100, Bs =
10,Ws = 100, β = π/2, Bi = 1, k = 0.05, and L = 40π .
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FIG. 17. (a) Typical time-dependent calculations showing the
profiles of liquid film H and substrate S with the gravity term [by
retaining �2�x in Eq. (38a)] at t = 3200 (solid lines) and without
the gravity term [by removing �2�x in Eq. (38a)] at t = 240 (dashed
lines). (b) The temporal evolution of the energy norm E2 for the case
with the gravity term in a large timescale, t = 2 × 104. Other pa-
rameters are Re = 1, Ma = 1, We = 100, Bs = 10,Ws = 100, Bi =
1, β = π/2, and L = 100.

Initially, when t = 0, we apply an initially harmonic per-
turbation to the liquid film and the compliant substrate re-
mains flat, and thus

�(x, 0) = 1 + 0.1sin(2πx/L), (49a)

S(x, 0) = 0. (49b)

Moreover, to measure the energy transfer from base flow
into the disturbances, we also define an energy norm in the
following form:

E2 =
∫ L

0
�2dx. (50)

We explore the spatiotemporal evolution of interface
shapes of the liquid film and the compliant substrate in a com-
putational domain (L = 100) with Re = Ma = 1, as plotted
in Fig. 17(a). We observe that, at t = 2500, the initially small
amplitude sinusoidal wave in the form of Eq. (49a) evolves
into waves with a relatively large hump (Hmax � 1.18) and the
initially flat substrate in the form of Eq. (49b) deforms with an
amplitude of |S| � 0.08. Consistently with the traveling-wave
profiles, the deformation direction of the compliant substrate
is opposite with that of liquid surface and the x positions
corresponding to the peak of their largest deformations are
not synchronous. Actually, the nonsynchronous deformations
of the free liquid interface and substrate are induced by the
fluid gravity [the term �2�x in Eq. (38a)]. To confirm this
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3 410 ,  10s sB W= =

(b)
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E2
20 0.4 0.8 1.2 1.6

t ( )410×

1.003

1.001

10,  100s sB W= =
3 410 ,  10s sB W= =

FIG. 18. (a) The profiles of liquid film H and substrate S for the
case of a very compliant substrate with Bs = 10,Ws = 100 at t =
2000 (solid lines), and the case of a very rigid substrate with Bs =
103, Ws = 104 at t = 2000 (dashed lines); (b) the temporal evolution
of the energy norm E2 for both cases in a large timescale, t = 2 ×
104. Other parameters are Re = 1, Ma = 1, We = 100, Bi = 1, β =
π/2, and L = 100.

argument, we also perform the time-dependent simulations
of the modified Eqs. (38a) and (38b) without considering the
term of �2�x. We find that, after removing the gravity term,
the deformation of liquid interface and that of the substrate
are in the opposite direction synchronously [see dashed lines
in Fig. 17(a)], confirming that the out-of-phase behavior ob-
served in the varicose mode is caused by the fluid gravity [see
solid lines in Fig. 17(a)].

The temporal evolution of the energy norm E2 for the
case with the gravity term in a large timescale (t = 2 × 104)
is plotted in Fig. 17(b). We find that, at very early time,
t < 500, the value of energy norm E2 decreases with time.
Afterward, t > 500, the value of energy norm E2 gradually
increases and then oscillates with time. However, after a
very long time, t > 6000, the oscillation is damped and the
value of energy norm E2 levels off, indicating that the system
eventually evolves into a saturated steady state with a constant
energy norm [see Fig. 17(b)]. These results obtained via time-
dependent simulations in the case of β = π/2 are consis-
tent with the predications of linear stability analysis and the
traveling-wave solutions. In addition, to have a more general
understanding of our results, we also investigate the time-
dependent profiles of the liquid film and substrate for the cases
of compliant substrates with two different intermediate in-
clined angles (β = π/3 and β = π/6), which are presented in
Appendix C.

Finally, consistent with Sec. III C, we also compare
the time-dependent numerical results of a very compliant
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substrate with those of a very solid substrate. As we increase
the wall damping and wall tension coefficients from small
values, where Bs = 10 and Ws = 100, into very large values,
where Bs = 103 and Ws = 104, we could also find that the
compliant substrate recovers as a rigid substrate [see Fig.
18(a)]. Due to the strong damping effect in the case of a rigid
substrate, the deformation of the liquid-air interface is smaller
than that of a very compliant substrate, indicating the system
is more stable when the substrate is very rigid, which is further
supported by the temporal evolution of energy norm (E2) [see
Fig. 18(b)].

V. CONCLUSIONS

In this paper, we study the dynamic behavior of thin-film
flows over a uniformly heated, compliant substrate. Using
long-wave approximation, a simplified membrane model, and
Fourier’s law, we derive a set of partial differential equations
to describe the spatiotemporal evolution of the thin liquid
films and the profile of the wall deflection with the consid-
eration of thermocapillary effect. We consider two different
cases, thin liquid films on a horizontally placed substrate
(β = 0) and down a vertically placed substrate (β = π/2),
respectively.

For β = 0, we derive a set of lubrication-type evolution
equations without taking the fluid inertia into account, and two
nondimensional numbers, gravity number G and Marangoni
number Ma, are introduced to describe the fluid gravity and
thermocapillary effect, respectively. To understand the effects
of fluid gravity and wall heating, we perform linear stability
analysis and time-dependent simulations of the fully nonlinear
evolution equations. Two different modes, termed as sinuous
mode where the liquid-air and liquid-substrate interfaces are
in phase and varicose mode where two interfaces are in phase
opposition, are identified, which are caused by fluid gravity
(G) and Marangoni stresses (Ma), respectively. For β = π/2,
we rederive a set of Benney-type long-wave equations with
considering a weak fluid inertia (Re � 1), and the effects of
Re and Ma are also examined by the linear stability analysis
and nonlinear dynamical simulations. In the case of β = π/2,
because the gravity direction is parallel to the substrate, only
the varicose mode caused by fluid inertia and Marangoni
stresses is observed. However, the presence of the fluid gravity
modifies the form of the varicose mode, making the defor-
mations of two interfaces out of phase. In particular, for
β = π/2, we also seek the nonlinear traveling-wave solutions,
revealing that fluid inertia and/or Marangoni effect enhance
the maximal hump height and phase speed of the traveling
waves. In both cases, the introduction of a strong wall heating
results in large deformations of both the liquid film and the
compliant substrate.

In conclusion, our results extend the study on the dy-
namics of thin film flows over heated compliant substrates
and thus enrich the understanding of the interaction between
liquid flows and compliant materials in nonisothermal envi-
ronments. Future work will focus on experimental verification
of the results presented in this paper as well as on exploring
the dynamics of thin-film flows down the heated compli-
ant substrate in the scope of flows at moderate Reynolds
numbers.
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APPENDIX A: DERIVATION OF LEADING-ORDER
AND FIRST-ORDER SOLUTIONS

In this work, we only consider the first order O(ε) dynam-
ics, therefore, Eqs. (28a)–(28d) become

ux + vy = 0, (A1a)

3εRe(ut + uux + vuy) = −εpx + uyy + 1, (A1b)

−py + εvyy − cotβ = 0, (A1c)

Tyy = 0. (A1d)

The boundary conditions at y = S(x, t ), Eqs. (29a) and (29b),
are reduced to

u = 0, v = St , T = 1, (A2a)

εBsSt = ε2WsSxx − (p − cotβ ) − 2ε(Sxuy − vy). (A2b)

The boundary conditions at y = H (x, t ), Eqs. (29c)–(29e), are
reduced to

uy = −εMaT i
x , (A2c)

p = −2εHxuy + 2εvy − ε2WeHxx, (A2d)

Ty + BiT = 0. (A2e)

The kinematic condition on the free interface remains un-
changed, given as

v = Ht + uHx. (A3)

The variables [u, v, p, T ] is expanded in power series of ε as

[u, v, p, T ] = [u(0), v(0), p(0), T (0)]

+ ε[u(1), v(1), p(1), T (1)] + O(ε2). (A4)

1. The leading-order solutions

We substitute Eq. (A4) into the governing Eqs. (A1a)–
(A1d) and the boundary conditions, Eqs. (A2a)–(A2e), and
obtain the leading-order governing equations, written as

u(0)
x + v(0)

y = 0, u(0)
yy = −1, p(0)

y = −cotβ, T (0)
yy = 0.

(A5)
The associated boundary conditions at y = S(x, t ) are written
as

u(0) = 0, v(0) = St , T (0) = 1. (A6a)

The associated boundary conditions at y = H (x, t ) are written
as

u(0)
y = 0, p(0) = −ε2WeHxx, T (0)

y + BiT (0) = 0. (A6b)
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Then, we obtain the leading-order velocity components,
pressure, and temperature as follows:

u(0) = −1

2
(y2 − S2) + H (y − S), (A7a)

v(0) = St − 1

2
(y − S)2Hx + (H − S)(y − S)Sx, (A7b)

p(0) = −cotβ(y − H ) − ε2WeHxx, (A7c)

T (0) = 1 − Bi(y − S)

1 + Bi(H − S)
, (A7d)

where the corresponding leading-order temperature distribu-
tion at the free interface y = H is given as T i,(0) = 1

1+Bi(H−S) .

2. The first-order solutions

Similarly, we could also extract the first-order governing
equations, written as

u(1)
x + v(1)

y = 0,

u(1)
yy = 3Re

(
u(0)

t + u(0)u(0)
x + v(0)u(0)

y

) + p(0)
x ,

p(1)
y = v(0)

yy , T (1)
yy = 0. (A8)

The associated boundary conditions at y = S(x, t ) are

u(1) = 0, v(1) = St , T (1) = 0. (A9a)

The associated boundary conditions at y = H (x, t ) are

u(1)
y = −MaT i,(0)

x ,

p(1) = −2Hxu(0)
y + 2v(0)

y , (A9b)

T (1)
y + BiT (1) = 0,

p(1) = −2Hxu(0)
y + 2v(0)

y , (A9c)

T (1)
y + BiT (1) = 0. (A9d)

Then the first-order streamwise velocity and pressure fields
are solved, respectively, as

u(1) = 3Re

{[
(y − S)4

24
− (H − S)3(y − S)

6

]
(H − S)(H − S)x +

[
(y − S)3

6
− (H − S)(y − S)

2

]
(H − S)t

}
+

[(
1

2
y2 − Hy

)
−

(
1

2
S2 − HS

)]
(cotβHx − ε2WeHxxx ) + MaBi(H − S)x

[1 + Bi(H − S)]2
y, (A10a)

p(1) = −(y − H )Hx − 2(H − S)(H − S)x. (A10b)
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APPENDIX B: THE EFFECT OF COMPUTATIONAL
LENGTH (L) FOR THE CASE OF A HORIZONTALLY

RIGID SUBSTRATE

The length of computational domain (L) is assumed to have
significant effects on the time-dependent numerical results
of evolution Eqs. (14a) and (14b) [56]. To study the effects
of computational length, following the numerical method in
Sec. III C, we consider a rigid substrate where Bs = 103,Ws =
104 and set four different computational lengths where L =
20, 50, 100, 200, respectively. We observe that when L = 20,
the initial perturbation in form of Eq. (22) is eventually
damped and becomes flat, indicating that the thermocapillary
waves with short wavelengths are suppressed (see Fig. 19),
which is consistent with the predications of linear stability
analysis.

APPENDIX C: TYPICAL RESULTS FOR THE CASES OF
SUBSTRATE WITH INTERMEDIATE INCLINED ANGLES

In the main text, we only consider the cases of horizontal
(β = 0) and vertical (β = π/2) substrates. To generalize our
results, we further consider the cases of compliant substrates
with two different intermediate inclined angles, where β =
π/3 and β = π/6. Following the numerical method in Sec. IV
D, we set β = π/3 and β = π/6, perform the time-dependent
simulations of the Eqs. (38a) and (38b), and thus obtain the
typical profiles of liquid-air and liquid-substrate interfaces,
respectively, as shown in Fig. 20(a). In addition, we also plot
the results for the case of a vertical substrate (β = π/2) into
Fig. 20(b), showing that the deformations of the substrates
for β = π/3 and β = π/6 are more serious than those of the
case of β = π/2, which is due to the existence of vertical
gravity component to the substrate in the cases of β = π/3
and β = π/6. In all cases, the profiles of liquid-air and liquid-
substrate interfaces behave as the out-of-phase varicose mode
because the parallel component of fluid gravity to the substrate
is always present. The corresponding temporal evolutions of
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FIG. 20. (a) The profiles of liquid film H and substrate S with the
inclined angles β = π/2 (solid lines), β = π/3 (dashed lines), and
β = π/6 (dotted lines) at t = 5000. (b) The corresponding temporal
evolution of the energy norm E2 for β = π/2 (solid line), β = π/3
(dashed line), and β = π/6 (dotted line) in a large timescale, t =
2 × 104. Other parameters are Re = 1, Ma = 1, We = 100, Bs =
10,Ws = 100, Bi = 1, and L = 100.

the energy norm E2 for the three cases in a large timescale (t =
2 × 104) are plotted in Fig. 20(b), showing that the amplitude
of energy norm in the case of vertical substrate is larger than
that of substrate with the intermediate inclined angle and the
system is more unstable.
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