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Extreme contractility and torsional compliance of soft ribbons under high twist
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We investigate experimentally and model the mechanical response of a soft Hookean ribbon submitted to
large twist η and longitudinal tension T , under clamped boundary conditions. We derive a formula for the torque
M using the Föppl–von Kàrmàn equations up to third order in twist, incorporating a twist-tension coupling. In
the stable helicoid regime, quantitative agreement with experimental data is obtained. When twisted above a
critical twist ηL (T ), ribbons develop wrinkles and folds which modify qualitatively the mechanical behavior.
We show a surprisingly large longitudinal contraction upon twist, reminiscent of a Poynting effect, and a much
lower torsional stiffness. Far from threshold, we identify two regimes depending on the applied T . In a high-T
regime, we find that the torque scales as ηT and the contraction as η2, in agreement with a far from threshold
analysis where compression and bending stresses are neglected. In a low-T regime, the contraction still scales
as η2 but the torque appears T independent and linear with η. We argue that the large curvature of the folds now
contributes significantly to the torque. This regime is discussed in the context of asymptotic isometry for very
thin plates submitted to vanishing tension but large change of shape, as in crumpling.
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I. INTRODUCTION

Rods and filaments are fundamental structures which play
a key role in the mechanical behavior of many manmade
and biological materials, as well as large scale structures
in civil and aeronautic engineering [1–4]. At smaller scales,
individual slender structures are widely used in MEMS [5].
In the context of the locomotion at small Reynolds number,
the beating of filaments appears as a common propulsion
strategy shared by many small living organisms [6,7], yielding
nontrivial fluid-structure dynamics [8–10].

The understanding of the behavior of slender solids sub-
mitted to an external loading has played a pivotal role in
the development of the theory of elasticity, in particular, and
the foundation of continuum mechanics, in general [11]. One
of the earliest results in elasticity is due to Coulomb’s work
on the torsion of circular rods. He established the celebrated
formula for the torque M which develops in a rod submitted
to a twist rate τ [12]:

M = GJτ, (1)

where G is the shear modulus and J the twist moment which
only depends on the geometry of the cross section. Much later,
Saint-Venant developed a linear elastic theory for the torsion
of inextensible rods allowing one to derive an exact formula
for the twist moment for an arbitrary cross section [13].
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In Saint-Venant theory, the shape of the cross section and
the central line of the rod are assumed unchanged upon twist.
However, it is well known that an initially straight rod can
develop complex three-dimensional (3D) configurations com-
posed of loops and plectonems when twisted above a critical
value [3,14,15]. These configurations are found across a large
range of length scales and materials as in electrical cables,
in submarine communication cables, and in DNA [16–19].
Fundamentally, instabilities arise in slender structures because
of strong geometric nonlinearities which are dominant even
at small strain. Interestingly, a large part of the complexity
observed experimentally can be understood using nonlinear
rod models in the limit of vanishing small tension. These
inextensible rod models have been the subject of numerous
experimental and theoretical investigations.

A richer set of instabilities has been investigated for
inextensible ribbons [20,21]. A ribbon has an interesting
geometry (h � W � L) which is intermediate between a
circular rod (h ∼ W � L) and a thin plate (h � W ∼ L),
where h, W , and L are the thickness, the width, and the
length, respectively. As any rods, ribbons are highly flexible
and exhibit large shape change for relatively small applied
loads. However, as thin plates, they are subjected to a ge-
ometrical constraint which restricts the set of 3D shapes
accessible at a low energy cost. The origin of the constraint
is explained by Euler’s Teorema Egregium: a flat surface
forced into a shape with a nonzero Gaussian curvature (i.e.,
with two nonzero principal curvatures) necessarily develops
stretching. Since the energy cost for stretching (∼h) is much
larger than for bending (∼h3) as the thickness h goes to
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zero, inextensible deformations, when possible, are largely
favored.

However, in many situations, inextensible deformations are
not compatible with the loading conditions imposed at the
boundaries, as in the obvious case of a sheet under biaxial
tensile stress. Biaxial compression is a seemingly identical sit-
uation, but there is a fundamental difference: a thin sheet can
escape from the planar configuration and crumple. Therefore,
a large part of the stretching energy is released by out-of-plane
modes of lower energy, the remaining part being localized
in a complex network of folds [22,23]. The route towards a
highly heterogeneous stress distribution and localization of
the elastic energy as the thickness of the sheet goes to zero
has been studied intensively [23–27]. The folds are usually
modeled as linelike, singular elastic structures [28–30] which
result from the interaction of more fundamental pointlike sin-
gularities: the developable cones, or d-cones [31–33]. Except
at the core where plastic deformations occur [34], d-cones are
metric-preserving elastic singularities.

The ribbon geometry has been an interesting and fruitful
playground to investigate the singular behavior of thin sheets
under more or less complicated loading conditions [35–37].
Most of the theoretical and numerical studies usually consider
stiff materials under mild tension, thus satisfying the condition
of inextensibility [38–41]. Interestingly, curvature condensa-
tion resembling a crumpled state has been investigated in the
context of the shape of Moebius bands [42]. In this case,
the folds network is ordered and is made of triangular facets
whose vertices meet slightly outside the band. But, again,
the shape remains entirely developable; thus no regions are
stretched which is markedly different from crumpling.

When the inextensibility constraint is relaxed, it has been
demonstrated recently that the morphology of a ribbon sub-
mitted to a twist can be changed dramatically by simply
varying the applied tension within the linear elastic response
[43–45]. Most of the morphologies can be organized in a
phase diagram with the twist and the tension as control param-
eters. This phase diagram exhibits a triple point at Tc, where
three phase boundaries meet. At sufficiently small twist, the
ribbon has a helicoid shape. For T > Tc, the helicoid is unsta-
ble against transverse wrinkling modes [45]. This instability
will not be addressed in the present work, as the applied
tension is always below Tc. For T < Tc, ribbons are unstable
against longitudinal wrinkling modes when twisted above
a T -dependent critical twist and, for small enough tension,
develop triangular facets connected by folds, reminiscent of
the morphology found in Moebius bands [46]. However, it
has been argued that, because of the small but finite tension,
ribbons do not have a developable shape but form a so-called
e-helicoid [47], which consists of the interaction of excess
cones, or e-cones [48]. E-cones are pointlike, singular, elastic
structures but, unlike d-cones, they do not preserve the metric.

In this paper, we explore the nonlinear mechanics of soft
(i.e., extensible) ribbons subjected to a moderate longitudinal
load and small to large twist. We essentially focus on the
longitudinal strain and torque response, thus providing new
insights compared to the more morphology-oriented inves-
tigations carried out so far. We show experimentally that
ribbons exhibit a strong nonlinear torque and strain response,
even for moderate twist rate. We develop a nonlinear torsion

model for soft ribbons based on the Föppl–von Kàrmàn equa-
tions which quantitatively capture the mechanical response,
up to a critical threshold above which a wrinkling instability
develops. In the last part of the paper, we analyze and model
the mechanical response at high twist in regimes where the
wrinkling instability plays a major role. Far from threshold,
we identify two regimes depending on the applied tension.
It is then argued that the transition between the two occurs
when the curvature of the wrinkles and folds is large enough
to contribute significantly to the elastic energy. Finally, these
regimes are modeled and interpreted in the light of recent
theoretical approaches addressing the morphology and me-
chanics of highly wrinkled thin plates far from threshold.

II. EXPERIMENTS

The schematic of the experimental setup is shown in
Fig. 1(a). An initially flat ribbon is twisted by an angle θ

and stretched longitudinally by a force F , using clamped
boundary conditions. The ribbon is composed of cellulose
acetate with Young’s modulus E � 2.1 GPa and Poisson ratio
ν = 0.35 ± 0.05. The thickness is h = 256 μm, width W =
35 mm, and length L0 = 331 mm. The force F is measured
by means of a load cell mounted on the upper clamp whose
vertical position can be adjusted to vary the distance L to the
bottom clamp. The clamp displacement is defined as �L =
L − L0 and is measured by means of a micrometer. When
�L = 0, the ribbon is in its reference configuration, thus not
stretched nor compressed. The torque M is measured by a
torque sensor placed at the lower clamp which can rotate
around the longitudinal axis but cannot translate in the vertical
direction. Two loading conditions are considered: (1) a fixed
load condition where F is kept fixed while �L(θ ) is a free
parameter; (2) a fixed displacement condition where �L > 0
is fixed and F (θ ) is a free parameter.

We performed uniaxial tensile tests with a mechanical
testing machine. The sample width and length are 2.54 cm
and 13.0 cm, respectively. The test is performed at a constant
speed 1.0 mm/s, which is small enough to prevent rate-
dependent mechanical response. The nominal stress σN as
a function of the strain is shown in Fig. 2(a). The material
response is linear elastic for a strain below 0.025. We find that
the ribbons are quasibrittle as evidenced by a complete failure
of the sample after little plastic deformations. The maximum
stress is σY = 60 MPa measured at a strain of 0.037.

It is convenient to introduce the following nondimensional
quantities. The normalized twist rate is defined as

η = τW = θ
W

L0
. (2)

In the linear elastic regime where Eq. (1) applies (η � 1),
η is a measure of the characteristic strain developing in the
rod upon twist. Further, the longitudinal strain ε and the
normalized longitudinal tension T are defined by

ε = �L

L0
, (3)

T = F

EhW
, (4)
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FIG. 1. (a) Schematics of the experimental setup. A ribbon is twisted by an angle θ under fixed load F or fixed displacement �L. The
torque M and normalized longitudinal tension T = F/(EhW ) are measured as a function of the normalized twist rate η = θW/L. Under fixed
distance condition the nonlinear evolution of (b) M and (c) T are in excellent agreement with Eqs. (19) and (14), respectively. Under fixed
load condition, (d) M varies quasilinearly with η at large twist. (e) A large contraction �L < 0 is observed and is nonlinear with η. Theoretical
predictions given by Eqs. (19) and (13) (dashed lines) do not capture the evolution of the torque (d) and the contraction (e) at large η.

respectively. In Figs. 1(b) and 1(c), we show the evolution
of the torque M and tension T with η over a large range of
twist. The displacement �L, or equivalently ε, is kept fixed
at ε = 1.8 × 10−3. The shape of the ribbon is a stretched
helicoid which remains stable over the range of twist applied.
On the application of an initial strain, the ribbon deforms
longitudinally and develops a longitudinal tension T = ε at

FIG. 2. (a) Measured nominal stress σN versus strain of ribbon
during a uniaxial tensile test. The measured Young’s modulus is E =
2.1 ± 0.1 GPa. The material appears to be quasibrittle with little
yielding before failure. Maximum stress is σY = 60 MPa. (b) Pre-
diction for the evolution with twist of the maximum longitudinal
stress σ max

xx (at y/W = 1/2) normalized by σY using Eq. (12) un-
der fixed longitudinal tension T = 5 × 10−3. Plastic deformations
start to occur for η > 0.4 but are localized near the edges y > yL

(see inset). For y < yL , no plastic deformations are expected to occur.

η = 0 as seen in Fig. 1(c). No offset is observed in the torque.
Then, upon increasing the twist, we find that the tension
and torque increase nonlinearly with η, even for relatively
small twist η ≈ 0.1. The linear response expected at small η

could not be observed because it is below the accuracy of our
measurements.

The nonlinear increase of the torque can be seen as an
effective shear modulus Geff = M/(J τ ) increasing with the
twist. This behavior is analogous to a strain hardening effect
commonly observed in cross-linked polymers like rubber
submitted to a large shear [49]. The strain hardening is a
nonlinear material property whose microscopic origin is usu-
ally subtle and relies on a variety of processes depending
on the material considered. However, the ribbons used in
our experiment are loaded within their linear elastic response
and no significant plastic deformations occur when η < 0.4.
Therefore, the strain hardening observed here can hardly
be attributed to complex material nonlinearities. In parallel,
the ribbon develops a nonlinear tension which is coupled
with the twist. Such coupling has already been investigated,
but for very soft materials submitted to finite deformation
[50]. Later on, we explain these behaviors as resulting from
geometrical nonlinearities arising at high twist but small
deformations.

Next, we investigate the effect of the loading conditions.
The ribbon is now twisted under fixed load conditions with
T = 1.6 × 10−3. Note that, initially, the ribbon is stretched
to almost the same extent as previously, under fixed distance
condition. In Figs. 1(d) and 1(e), we plot the torque M and
the tension T , respectively. Initially, the M(η) curve increases
nonlinearly in a similar fashion as under a fixed distance
condition. But, at larger twist, we observe a change of trend
characterized by an almost linear increase. This change of
behavior coincides with a loss of stability of the helicoid
shape and signals that the change of morphology strongly
affects the mechanical behavior. We observed an effective
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strain softening corresponding to a lower torsional stiffness
or, equivalently, a lower effective shear modulus, compared
to the projected nonlinear behavior without instability (blue
dashed line). Similarly, in Fig. 1(e), we observe an enhanced
contractility of the ribbon (�L < 0) at large η.

Interestingly, the large contraction is reminiscent of the
Poynting effect [51] which corresponds to the tendency of
sheared materials to elongate or contract normal to the shear
plane. While a quantitative explanation of this effect is still
under debate, it is generally accepted that it occurs in a regime
of large deformation [52–54]. It is, however, remarkable that
a large Poynting effect can be observed in linear elastic
structures under small deformation but finite rotation.

III. SAINT-VENANT LINEAR TORSION THEORY

We now discuss the Saint-Venant torsion theory to high-
light the specificity of the mechanical behavior observed in
extensible ribbons. In Saint-Venant theory, materials have a
Hookean elasticity. Consistently, all the strains are small; thus
T � 1 and η � 1. The angle of torsion is also small θ � 1,
which implies that all the nonlinear terms in the definition
of the strain are neglected [55]. Finally, the rod is assumed
inextensible and infinite.

We denote u(x, y, z), v(x, y, z), and w(x, y, z) the com-
ponents of the displacement in the x, y, and z directions,
respectively. When a twist rate τ is applied to the rod, the
displacement field satisfying the equation of mechanical equi-
librium has the following form [13,56]:

u(x, y, z) = τφ(y, z), (5)

v(x, y, z) = −τxz, (6)

w(x, y, z) = τxy, (7)

where the warping function φ(y, z) is a harmonic function
satisfying boundary conditions consistent with a stress free
condition at the rod lateral surface. For a circular (isotropic)
cross section of radius R = W/2, the cross section remains flat
under torsion (φ = 0) and the twist moment Jiso = W 4π/32.
For a rectangular (anisotropic) cross section, the longitudinal
displacement is not zero (φ �= 0) and the cross section warps.
There is no simple analytical expression for φ and J , but, in
the limit W � h, the twist moment is given by [57]

Jani = 1

3
h3W = 1

3

(
h

W

)2

(h W )2. (8)

Comparing Jiso and Jani, a ribbon appears much more compli-
ant [by a factor (h/W )2] than an isotropic rod for the same
cross-section area.

With the parameters used in the experiment, twisting a
ribbon by η = 0.2 generates a typical torque M ≈ 10−3 N m,
according to Eqs. (1) and (8). From Figs. 1(b) and 1(c), we
clearly see that the Saint-Venant theory predicts a torque at
least one order of magnitude smaller than what is measured.
Further, the change of the ribbon length is not taken into
account in the original Saint-Venant theory because of the
inextensible condition. Even if a degree of extensibility is
incorporated, adding a term ε x in Eq. (5), this would result in
a positive strain ε = T > 0. This additional degree of freedom
in the kinematics would capture an initial positive offset of the

ε(η) curve but not the nonlinear trend and the change of sign
at large η. In the experiment, we observe a large contraction
which is an order of magnitude larger than the applied tension.
For example, when twisted by 1.5 turns, corresponding to
η ≈ 0.9, the ribbon does not break or yield, but contracts by
almost 10%. It is interesting to see that this value obtained
by a simple elastic ribbon is of the order of the performance
measured in artificial muscles [58].

IV. NONLINEAR TORSION MODEL OF SOFT RIBBONS

We will now develop a nonlinear model for the torsion of
ribbons using the Föppl–von Kàrmàn (FvK) equations which
describe the equilibrium configurations of thin elastic plates
under large deflections. The FvK equations are a set of nonlin-
ear, partial differential equations where the unknown fields are
the deflection of the midsurface w(x, y) in the z direction and
the planar stress σxx(x, y), σyy(x, y), and σxy(x, y) evaluated at
the midplane surface (z = 0) [3]. The FvK equations can be
derived formally as an expansion of the equations of equilib-
rium of 3D elasticity in power of the ratio of the thickness
over the width of the plate. This reduction of dimensionality
relies on a series of approximations. Chief among them are
(1) the small slope approximation implying that configura-
tions do not depart excessively from a plane, (2) some non-
linear terms in the Green-Lagrange strain tensor are neglected,
and (3) the cross section remains normal to the midplane upon
loading, which is also known as the Kirchhoff hypothesis.

Using the Kirchhoff hypothesis, we can obtain the in-plane
displacement at a distance z from the midplane. At linear
order in z, u(x, y, z) = u1(x, y) − z∂w/∂x and v(x, y, z) =
v1(x, y) − z∂w/∂y, where u1 and v1 are the in-plane displace-
ment along the x and y axis, respectively, evaluated at z = 0
[3]. We can now give the general form of the displacement
fields for a ribbon in the context of the FvK equations. For
a helicoid with a twisting rate τ , the deflection in the small
slope limit reads

w(x, y) = τxy. (9)

Thus, at linear order in z, we have

u(x, y, z) = u1(x, y) − τ zy, (10)

v(x, y, z) = v1(x, y) − τ zx. (11)

Comparing with the kinematics in the Saint-Venant theory,
we find that φ(y, z) = −z y. The longitudinal and transverse
displacements, u1 and v1, respectively, are two additional
terms which account for the in-plane stretching of the midsur-
face. To linear order in η, we have u1 = ε x and v1 = −νε y,
corresponding to a longitudinal displacement in response to
a load T and the corresponding contraction in the transverse
direction by a Poisson effect, respectively. In the following,
we will see that the FvK equations lead to new terms in the
stress and the displacement fields which are not just small
corrections to the linear solution.

Solving the FvK equations assuming the helicoid geome-
try, we obtain the stress components [43,44,59,60]:

σyy = σxy = 0, σxx/E = ε + 1
2η2(y/W )2. (12)
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Thus, for a stretched helicoid, in the small slope limit, there
are no shear and transverse stresses, at the leading order in
the ribbon thickness (h/W = 0). Using Eqs. (10) and (11),
shear stress of order O(h2/W 2) will arise and will contribute
to the bending energy of the plate, as we will see later on.
The longitudinal strain ε depends in general on η and T . For
a fixed load condition, the corresponding strain is

ε(η, T ) = T − η2

24
(13)

and, for a fixed displacement condition, the corresponding
tension is

T (η, ε) = ε + η2

24
. (14)

The in-plane displacements at z = 0 are given by

u1(x, y) = ε x + 1
2 η2(y/W )2 x, (15)

v1(x, y) = −νε y − ν

6
η2 (y/W )3 W. (16)

In Eqs. (15) and (16), we recover the Poisson effect at linear
order in ε and a nonlinear twist effect (∼η2) which arises from
the nonlinear terms in the strain tensor.

Since we are imposing large rotation, it is safer to check
that the deformations are still in the linear elastic regime.
From Eq. (12), we find that the maximum stress is σ max

xx =
ε + η2/8. The evolution of the normalized maximum stress
σ max

xx /σY normalized by the yield stress is plotted against the
twist η in Fig. 2(b), for a fixed tension T = 5 × 10−3. We
find that, for η < 0.45, the stresses are smaller than the yield
stress indicating that the deformations are linear elastic. Thus
the nonlinear torsion theory based on linear elasticity is valid
over a significant range of finite twist. It is noteworthy that
the nonlinearities shown in Fig. 1(a) and Fig. 1(c) develop
for η < 0.45 well inside the range of the linear elasticity. For
η > 0.45, plastic deformations start to develop near the edges
for y > yY , where yY is obtained as a solution of the equations
σY /E = ε + (1/2)η2(yY /W )2. However, even at large twist,
the width of the plastic region remains only a fraction of
the ribbon width and, as such, should not dominate in the
energy balance. Thus we expect that the assumption of linear
elasticity remains relevant to explain the change of behavior
in Figs. 1(b) and 1(c).

To obtain the torque, we use an energetic approach defining
M as

M = ∂U

∂θ

∣∣∣∣
T

, (17)

where U = Us + Ub − ε T is the total energy of the ribbon
including the stretching energy Us, the bending energy Ub, and
the work of the load. The stretching energy is simply given
by Us/(EhW L) = 1/(2E )

∫
σ 2

xx dy/W , since the other com-
ponents of the stress are zero. For a helicoid, the mean cur-
vature is zero and the Gaussian curvature is K ≈ −τ 2. Thus
the bending energy can be easily calculated Ub/(EhW L) =
−(1 − ν) KB/(Eh), where B = Gh3/[6(1 − ν)] is the bend-
ing modulus which is expressed using G = E/(2(1 + ν))
[55]. After integration along the transverse direction, the total

energy reads

U

EhW L
= 1

1440
η4+ 1

24
T η2 − 1

2
T 2+1

6

G

E

(
h

W

)2

η2. (18)

Using Eq. (17) and Eq. (18), we obtain the expression of the
torque:

M(η, T )

EhW 2
= 1

3

G

E

(
h

W

)2

η + 1

360
η3 + 1

12
ηT . (19)

The torsional stiffness defined as C = M/τ is given under
fixed load condition by

C(η, T )

EhW 3
= 1

3

G

E

(
h

W

)2

+ 1

360
η2 + 1

12
T . (20)

The corresponding formula for the torque and torsional stiff-
ness for a fixed displacement condition can be expressed in
terms of ε and η by substituting in Eqs. (19) and (20) the
expression of T given by Eq. (14).

Let us now discuss the three terms in Eq. (20). The first
term is the linear Saint-Venant contribution. By comparison
with the two other terms, we find that the Saint-Venant model
is accurate for T � (h/W )2 and η � h/W . However, these
limits are easily reached for a ribbon with typical aspect ratio
h/W ∼ 10−2 yielding T ∼ 10−2 and η ∼ 10−2. This explains
why the linear regime is not easily observed in thin and
soft ribbon. The second term is a nonlinear contribution first
obtained by Green in the limit of small but finite η and T � η2

[59]. The second nonlinear contribution proportional to T has
been first considered by Buckley [61] and derived rigorously
by Biot [62] in the limit of small but finite T and η � √

T ,
a regime distinct to that considered by Green. Therefore,
our derivation captures three regimes in a unique formula.
It is noteworthy that both nonlinear contributions, previously
considered independently, play a significant role to the overall
torsional response of soft ribbon at large η.

To validate our model against experimental data, we mea-
sure the torque and contraction varying ε under fixed distance
condition. In Figs. 3(a) and 3(b), we plot the evolution of
the tension and the torque with the twist for three different
fixed strains: ε = 0.02 × 10−3, 1.0 × 10−3, and 2.0 × 10−3.
The combination of strain and twist is such that the ribbon re-
mains stable against a transverse wrinkling instability [45]. In
Fig. 3(a), the tension shows a vertical shift and quadratic evo-
lution with η. Excellent agreement is obtained with Eq. (13)
(dashed lines) without any fitting parameters. In Fig. 3(b),
we plot the corresponding data for the torque. Equation (19)
(dashed line) quantitatively captures the nonlinear increase
with the twist and the shift due to the coupling with the
tension. The prediction of the Saint-Venant model (solid line)
fails to capture not only the nonlinearities and the tension-
induced shift but also the overall magnitude of the torque.

V. TWISTED RIBBON, ORDERED CRUMPLING, AND
SELF-ORGANIZED ORIGAMI

As already shown in Figs. 1(d) and 1(e), large deviations
from the predictions are observed in the experimental data
for large twist. These deviations occur because the ribbon
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(a) (b)

FIG. 3. Nonlinear evolution of (a) the tension T and (b) the torque M with twist η under fixed distance condition for different imposed
prestrains ε = 2 × 10−5, 10−3, and 2 × 10−3. Quantitative agreement with theoretical predictions of the nonlinear torsion theory (dashed line)
given by Eq. (14) and Eq. (19) is obtained without adjusting parameters. For comparison, the linear Saint-Venant model (solid lines) is shown
in (b) along with nonlinear contributions to the torque (•, +).

develops a longitudinal wrinkling instability which strongly
affects the shape and the stress distribution.

The series of shape changes observed in ribbons due to
the longitudinal wrinkling instability are schematically rep-
resented in Fig. 4(a). This mechanical instability has been
studied in detail in previous works [30,43,44]. At small twist,
the base state of the ribbon is a stretched helicoid whose shape
is given by Eq. (9) and stress field by Eq. (12). Below a critical
tension Tc which scales linearly with h/W , a longitudinal
wrinkling instability develops for η > ηL. The instability is
driven by a longitudinal compression in the central part of the
ribbon. A linear perturbation analysis allows one to capture

FIG. 4. Schematics of the morphologies observed when twisting
a ribbon under constant load as a function of α = η2/T . The heli-
coid shape is stable below threshold for the longitudinal wrinkling
instability (η < ηL or α < 24). For α > 24, the helicoid is wrinkled
near threshold (NT), and far from threshold (FT), the ribbon shows
triangular facets. (b) Large deformation (black marks) are observed
at the folds between two facets. (c) Evolution of the facets aspect
ratio b/W with the tension.

the threshold [43,60]:

ηL =
√

24T + c(ν)(h/W ), (21)

where c(ν) ∼ 10 is a nondimensional prefactor weakly de-
pending on the Poisson ratio. It is convenient to introduce a
confinement parameter α defined as [44]

α ≡ η2

T
. (22)

The confinement parameter can be interpreted as the ratio of
the geometric strain over the mechanical strain. In our exper-
iment, we are in a regime where c(ν)(h/W ) � √

24T ; thus,
using Eq. (21), α ≈ 24(η/ηL )2. The confinement parameter
can then also be interpreted as a measure of the distance from
the threshold of longitudinal instability.

As the twist is increased above threshold (α > 24), the
width d of the wrinkling zone expands laterally towards the
ribbon long edges. Far from threshold (α � 24), the wrinkling
pattern exhibits a symmetry breaking along with a gradual
localization of the elastic energy leading to the formation of
a triangularly faceted helicoid [47]. It has been argued that
the singularities observed in an extensible ribbon under twist
are e-cone because they develop in a stretched region near
the edge. The resulting structure is thus called an e-helicoid
as opposed to a crumpled sheet where d-cones interact. As
shown in the picture in Fig. 4, we observe near the edge
localized plastic deformations at the intersection of two folds
while the rest of the ribbon undergoes reversible deformations.
These marks demonstrate the development of large strain in
localized regions, which is consistent with our predictions
for the onset of plasticity presented in Fig. 2(b), assuming
a perfect helicoid shape. In the following, we assume that
these plastic regions are sufficiently small and can be ne-
glected in a force or energy balance based on a linear elastic
response.

The e-helicoid is an interesting structure which forms
spontaneously as if one crumples an elastic sheet but the re-
sulting network of folds is highly ordered like in origami. The
morphology of this intermediate structure between origami
and crumpled sheet has been studied experimentally and
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(a) (b)Eq.13 Eq.19

FIG. 5. Nonlinear evolution of (a) the strain ε and (b) the torque M with twist η under fixed load condition for different imposed tension.
Quantitative agreement with theoretical predictions of the nonlinear torsion model (gray area) given by Eq. (13) and Eq. (19) only holds for
η < ηL (T ) where the helicoid is stable. Predictions underestimate the contraction and overestimate the torque when η > ηL , especially at small
T . The torque exhibits a linear dependence with η > ηL (solid lines) with a T -dependent slope. The arrows indicate the threshold for instability
given by Eq. (21).

theoretically, but their full understanding remains elusive
[30,43]. To the best of our knowledge, the effect of the wrin-
kling instability and the formation of facets on the torsional
and contractile response of ribbons has not been addressed ex-
perimentally and no explicit predictions for the corresponding
torque stiffness and contractile response are available.

VI. RIBBON TORSIONAL STIFFNESS AND
CONTRACTILITY FAR FROM THRESHOLD

We turn to the torsional stiffness and contractility in
large twist regimes (α � 1) and investigate the effect of the
wrinkling instability. In Fig. 5(a), we plot the ε(η) curves
varying the tension T in the range 2 × 10−4 to 3 × 10−3.
We find that the contraction (measured positively) increases
nonlinearly with η and that all the curves lie systematically
below the predictions given by Eq. (13). The onset of devia-
tions from Eq. (13) is found to be T dependent which is fairly
well captured by the longitudinal instability ηL (see arrows).
Unlike the prewrinkling and near threshold (NT) regime, the
strong dependence of the contraction with the tension is a new
qualitative feature observed far from threshold.

In Fig. 5(b), we plot the corresponding M(η) curves for
the same applied tension as in Fig. 5(a). In the far from
threshold regime, we find the torques’ curves lie far below
from the predictions for a stretched helicoid (gray area).
The torque response is strongly dependent on the tension,
unlike what is predicted by Eq. (19). The deviations are the
largest for the smallest tension. Interestingly, a linear relation
M ∼ η is observed in the postbuckling regime with a slope
decreasing with the tension. We emphasize that this linear
response is not captured by Eq. (19) where a linear term with
η and T -dependent slope is present (∼T η/12). This term is
subdominant at large twist compared to the cubic term (∼η3).
Indeed, for η = 0.8 and T = 1.6 × 10−3, we have ηT/12 ≈
0.15 × 10−3 which is much smaller that the measured torque
M/(EhW 2) ≈ 0.6 × 10−3.

a. High-T regime. To model the torsional response and
contractility of the ribbon in the wrinkling regime (η > ηL),

we use a recent far from threshold (FT) approach which
has been proven particularly useful to predict the wrinkling
structure of an ultrathin sheet [63]. While a standard linear
stability analysis is valid for configuration sufficiently close
to threshold allowing one to take the prebuckling state as
a reference configuration [43], a FT approach assumes that,
in the limit of vanishing thickness, the wrinkles completely
relax the compression at no significant bending cost, thus
strongly affecting the stress field. Unlike previous tension
field theory [64], this approach provides predictions for the
extension of the unstable region and the morphology of the
wrinkles far from threshold. To allow a quantitative ana-
lytical approach in the case of twisted ribbon, an ansatz
for the stress field far from threshold has been proposed
[44]:

σ FT
xx /E =

{ 1
2 η2 (y2 − d2)/W 2, if |y| > d,

0, if |y| < d.
(23)

Outside the central wrinkled zone |y| > d where the stress
is zero, the stress field consists of a longitudinal tensile
component distributed as a parabola along the y axis, like
in the prebuckled state, thus satisfying the equation of in-
plane equilibrium. The wrinkled zone extension is set by
the condition of vertical equilibrium 〈σ FT

xx 〉y/E = T , where
〈.〉y represents the average along the y axis. Using Eq. (23),
we thus obtain an implicit relation between d , η, and T
[44]:

1 − 12

(
d (η, T )

W

)2

+ 16

(
d (η, T )

W

)3

= 24

α(η, T )
. (24)

The contraction is now given by [44]

εFT = −η2

2

(
d (η, T )

W

)2

. (25)

Equations (23), (24), and (25) are obtained for large, but
finite confinement parameters. To obtain simple scalings for
the torque and contraction, we now take the limit α → ∞.
Equation (24) becomes a cubic polynomial with d/W = 1/2
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as a double root. Thus, as α increases, the wrinkling structure
invades the entire width of the ribbon. Further, in this limit
and using Eq. (25), the contraction is given by

εFT = − 1
8η2. (26)

Because the stress in the wrinkled region is zero, narrow
bands under tensile stress develop near the edges and bear
all the load. Therefore, the longitudinal stress profile given
in Eq. (23) can be represented by two delta functions of
amplitude T/2 located at the two edges [44].

To obtain the torque M, we calculate the energy of the
ribbon far from threshold. The work of the load ∼T 2α is
dominant compared to the stretching energy T 2 √

α. Thus,
when α → ∞ and h � W , the total energy of the ribbon is
given by the work of the load −εFT T , yielding

UFT /(EhW L) = 1
8η2T . (27)

Using Eq. (17), the torque and torsional stiffness are

MFT /(EhW 2) = 1
4ηT, (28)

CFT /(EhW 3) = 1
4 T, (29)

respectively.
In the light of the predicted scalings, we now plot in

Fig. 6(a) the contraction normalized by the tension as a
function of the confinement parameter α. The gray area
(α < 24) corresponds to the regime where the ribbon has a
stable helicoid shape. In this regime, the evolution of the con-
traction is well captured by the near threshold (NT) analysis
(solid blue line) predicting that |ε|/T = α/24 [see Eq. (13)].
Then, we identify a transition from NT to FT for α ∼ 102.
This transition appears to be rather T independent. For α >

102, we find that the FT analysis provides a quantitative
prediction for the contraction.

The corresponding measurements of the torque as a func-
tion of α are shown in Fig. 6(b). Here, we plot the normalized
stiffness C = C/(Ehw3) over the tension. In the regime of
stable helicoid (gray area), the C(α)/T curve is well cap-
tured by the NT analysis (solid blue line) which predicts
C/T = α/360 + 1/12 [see Eq. (20)]. In the wrinkling regime,
the torsional response appears to be more complex than the
contraction response. For α > 102, the torque deviates from
the NT prediction but the trend is observed to depend on
the applied tension unlike the contraction response. More
precisely, the torque is found to globally decrease with T and
exhibits a weak dependence with α which can be captured
empirically by a power law C ∼ αp with a small exponent
p. The scaling C ∼ α1/6 is shown as a guide for the eyes. In
a first approximation, this dependence is however neglected;
thus we assume that a plateau C∞/T is reached at large α.
As shown in Fig. 7, the plateau decreases with T and reaches
asymptotically the value 1/4. Therefore, we find that the
FT analysis correctly predicts the torque [see Eq. (29)] for
sufficiently large tension.

This behavior can be interpreted as follows. In the high-
T regime, stretching energy most likely dominates bending
energy; thus the FT approach where the bending contribution
of the folds is neglected in the stress field provides an ac-
curate torsion model. However, at smaller tension, the stress
field may be qualitatively different from the proposed form

(a)

(b)

NT, 
FT, 

NT, 

FT, 

FIG. 6. (a) Evolution of |ε|/T with α for tensions T = 2.1 ×
10−4, 4.1 × 10−4, 1.6 × 10−3, and 2.3 × 10−3. We observe a tran-
sition from the scaling α/24 (blue line) to α/8 at α ≈ 102 consistent
with theoretical predictions given by Eqs. (13) and (26). (b) Evolu-
tion of the ratio of the normalized torsional stiffness C = C/(EhW 3)
over the tension T with the confinement parameter α for the same
tensions as in (a). In the postbuckling regime α > 24, we find that
C/T is mostly T dependent.

given by Eq. (23) as the large curvatures along ridges and
vertices now contribute significantly to the stress. The change
of regime from high to low tension is also observed with
the evolution of the triangular pattern, as shown Fig. 4(c).
When decreasing the tension, we found a transition at T ≈
1 × 10−2 where the aspect ratio sharply increases until reach-
ing a plateau b/W ≈ 2. Note that we do not observe a
significant influence of the twist on the triangle shape. No
higher value of b/W could be obtained by reducing further the
tension.

b. Low-T regime. In order to understand the crumpled state
at low tension, we introduce a specific form for the energy
recently suggested to model regimes where both the thickness
and the tension vanish [44]:

U = UFT + 1

2n
γ Bη2n, (30)
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FIG. 7. Evolution of the asymptotic value of C∞/T for α � 24.
At large T , C∞/T tends to the value 1/4, predicted by the FT
approach.

where γ is a numerical prefactor and n an adjustable exponent.
The first term is the contribution of the stretching energy in
the FT limit. The second term captures the contribution of the
bending energy originating from a focusing of the curvature
near the triangular tips. The value of n can be inferred by
inspection of the experimental data. For n �= 1, C/T would
have a significant dependence with η which is not observed;
therefore, we found that our data are best rationalized taking
n = 1 leading to

C

T
= 1

4
+ γ

B

T
. (31)

We can also note that the good agreement of the FT approach
to model the contraction, even at large α, indicates that the
extra bending terms added in Eq. (30) does not depend on the

tension leaving the scaling for ε unaffected. Taking γ ≈ 20,
data shown in Fig. 7 are well adjusted by Eq. (31).

VII. CONCLUSION

In conclusion, we characterized experimentally and mod-
eled the torque and contractile response of a soft Hookean
ribbon submitted to large twist. In a stretched helicoid regime,
a nonlinear torsional model based on the FvK equations
quantitatively captures the nonlinear evolution of the longi-
tudinal strain and torque with the twist. At large twist angle,
above a wrinkling threshold, the ribbon exhibits wrinkles and
folds responsible for a significant deviation from the helicoid
response. We identified two regimes depending on the tension.
In a high-T regime, the macroscopic response is dominated
by the external work of the load which can be quantitatively
captured by a far from threshold approach which neglects the
contribution of the folds. In a low-T regime, bending contribu-
tions originating from the localized curvatures strongly affect
the torsional response but not the contraction. This behavior
at low tension can be captured by an extra bending term in the
energy. This low T is interesting because the ribbon exhibits
an exceptionally large contractibility which may be useful for
actuation in MEMS or in artificial muscles. More work is
however needed to connect the global behavior with the local
response to go beyond a phenomenological modeling.
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