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Drastic slowdown of the Rayleigh-like wave in unjammed granular suspensions
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We present an experimental investigation of Rayleigh-like wave propagation along the surface of a dense
granular suspension. Using an ultrafast ultrasound scanner, we monitor the softening of the shear modulus via
the Rayleigh-like wave velocity slowdown in the optically opaque medium as the driving amplitude increases.
For such nonlinear behavior two regimes are found when increasingthe driving amplitude progressively: First,
we observe a significant shear modulus weakening due to the microslip on the contact level without macroscopic
rearrangements of grains. Second, there is a clear macroscopic plastic rearrangement accompanied by a modulus
decrease up to 88%. A friction model is proposed to describe the interplay between nonlinear elasticity and
plasticity, which highlights the crucial effect of contact slipping before contact breaking or loss. Investigation
of this nonlinear Rayleigh-like wave may bridge the gap between two disjoint approaches for describing the
dynamics near unjamming: linear elastic soft modes and nonlinear collisional shock.

DOI: 10.1103/PhysRevE.99.042902

I. INTRODUCTION

The jamming transition is a general paradigm for under-
standing how complex fluids such as foams, emulsions, and
granular materials develop rigidity: when the density of ran-
domly packed particles is increased to a certain critical value,
the viscosity increases dramatically and the flow is arrested
[1–6]. Reciprocally, amorphous solids made of athermal par-
ticles like bubbles, droplets, and grains lose shear rigidity
and make a transition to a liquid state when the confining
pressure vanishes [7]. Numerical simulations of frictionless
particles show that an effective medium description fails near
unjamming due to nonaffine motion of particles and that the
critical scaling of the shear modulus is correlated to soft
modes [8–10]. Understanding the mechanical response across
this solidlike-to-liquidlike transition remains a major chal-
lenge for real granular matter because of the friction and the
strong nonlinearity at vanishing confining pressure [11–13]
where the particle packing does not tend to isostaticity [4,10].
Addressing this issue is also of great importance for industrial
applications and geophysical processes such as landslides
[14].

In both dry and water-saturated granular materials, force
transmission and elastic wave propagation strongly depend
on the inhomogeneous and metastable contact force network
[2,5,8]. As the confining pressure P decreases, the effective
medium theory [8], based on the affine approximation and
the Hertz-Mindlin contact law, predicts that in the linear
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regime both the bulk K and the shear G modulus scale as
∼P1/3. However, numerical simulations in frictionless sphere
packings reveal that G vanishes with pressure as ∼P2/3 due
to the nonaffine deformation [4,7–9]. Nonlinear responses
beyond linear elasticity have also been investigated by using
finite shear strain to study the transition from a jammed to a
flowing state [15–17].

Sound propagation in granular media provides a very effi-
cient and controlled way to perform dynamic measurements
that can be compared naturally with theory and simulations
based on elasticity. The long-wavelength coherent wave gives
access to the effective modulus, whereas the short-wavelength
scattered waves are sensitive to any rearrangement of the
contact force network [18]. In the linear regime, velocity
measurements of coherent sound waves allow monitoring of
the weakening of jammed media when the confining pres-
sure is decreased [8,19,20] or when a static shear is applied
[20,21]. High-amplitude ultrasound can act as a pump to
soften the jammed solid in a nonlinear regime as shown by us-
ing compressional waves [22–24]. Another dynamic approach
using shock waves has also been proposed to investigate the
unjamming transition in granular media [25,26]. In this highly
nonlinear regime, the dynamic displacement is larger than
the grain overlap induced by the confining pressure so that
elastic wave propagation becomes impossible, i.e., in sonic
vacuum [27]. Instead, solitonlike shocks travel via collisions
at a front speed depending on the particle velocity. Recently,
it has been reported that such shocks or impacts may induce
dynamic shear jamming in granular suspensions [28] or may
propagate in dense colloidal suspensions [29] in the presence
of saturating liquid.

In this work, we investigate the unjamming transition by
new measurements of high-amplitude Rayleigh-like waves
in a weakly jammed granular suspension. Unlike oscillatory
rheological measurements [17], these acoustic measurements
allow us to monitor locally the shear modulus softening as
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FIG. 1. Experimental investigation of the Rayleigh-like wave along the surface of a granular medium. (a) Sketch of the experimental setup:
the wave is excited by a rough plate in a water-saturated glass-bead packing. (b) The out-of-plane particle displacement (δz) and velocity at
the sample surface are inferred from the cross correlation of successive backscattered ultrasonic speckles acquired with an ultrafast ultrasonic
scanner. (c) Typical seismogram measured after the generation of a shear pulse centered at 300 Hz; the particle velocity is plotted versus the
time t and distance x from the source (see Appendix A for details). (d) Snapshot of the vector displacement field of the Rayleigh-like surface
mode calculated with free surface and clamped bottom boundary conditions in an inhomogeneous layer (see Appendix B for details).

the driving amplitude increases, along the wave path and
inside optically opaque dense granular suspensions, till the
onset of the plastic rearrangement of grains. We analyze these
nonlinear elastic responses using mean-field descriptions for
frictional sphere packings. Elastic waves are used here both
as a pump to fluidize the granular solid and as a probe of the
material softening.

II. EXPERIMENT

Weakly jammed granular media under investigation are
made with glass beads of diameter d ≈ 250 μm, confined in a
rectangular box with a free surface [Fig. 1(a)]. The glass beads
settle down in water under gravity, which creates a dense
granular suspension (h ≈ 13 cm in height) with a packing
density φ � 0.6. A rough metallic plate (with a surface of
�o ≈ 10 × 10 cm2) glued with sand particles acts as a shear
excitation source. It is excited by a shaker with a four-cycle
tone burst centered at a frequency between 100 and 500 Hz.
The static load applied to the plate, W = P�o ≈ 6.5 N, can
be estimated from the mean confining pressure P � [φ(ρg −
ρw ) + (1 − φ)ρw]gL/2 ≈ 650 Pa, with ρg = 2500 kg/m3 and
ρw = 1000 kg/m3 the density of glass and water, respectively,
and L ≈ 10 cm. Oscillating shear force Fac and acceleration
aac are measured by a force sensor and an accelerometer,
respectively.

As shown in Fig. 1(d), the source excites a Rayleigh-like
surface wave [11,30] with a group velocity close to the shear
wave velocity VS (see Appendix B for details). To investigate
the propagation of this low-frequency surface guided mode
we used an ultrafast ultrasound scanner (Aixplorer) that was
originally developed in our laboratory to track tissue motion
induced by low-speed shear waves in the context of medical
imaging [31]. The same kind of scanner, which can acquire
images up to 200 times faster than conventional ultrasound
systems, was also used for rheology measurements in complex
fluids [32].

Figure 1(b) depicts a 192-element ultrasonic array (centred
at 4 MHz) placed in water close to the surface of the gran-
ular suspension and parallel to the propagation direction (x
axis). After the generation of the guided wave, the ultrafast

ultrasonic scanner acquires successive backscattered ultra-
sonic speckle patterns from the granular sample at a frame
rate of fRF = 16 kHz. The arrival time of a given speckle
pattern corresponds to a specific location of grains within the
medium. By cross-correlating in time the speckle observed
from one frame to the next (i.e., speckle interferometry [32]),
a speckle-tracking algorithm estimates the particle velocities
along the ultrasonic beam direction vz = δz/δt with δt =
1/ fRF [see Fig. 1(b) and Appendix A]. Figure 1(c) shows
a typical resulting seismogram at the surface of the bead
packing (z = 0) after a source excitation at a central frequency
of f = 300 Hz and with a low amplitude, Fac ∼ 0.19 N. The
measured particle velocity along the z axis is of the order of
vac ∼ 0.4 mm/s, which corresponds to a particle displacement
uac (=vac/(2π f )) ∼ 0.3 μm, i.e., much less than the particle
diameter. The group velocity of the short pulse is measured
via cross-correlation of the wave train, being VG ∼ 25 m/s.
This gives a dynamic strain γac(= ∂u/∂x = (2π f /V )uac) ∼
2 × 10−5, with V ∼ VG the phase velocity.

The main goal of this work was to monitor the shear
modulus softening near unjamming in a realistic granular
medium (i.e., frictional and optically opaque). When the
driving amplitude is increased, a significant increase in the
Rayleigh-like wave pulse time of flight is clearly observed
[Fig. 2(a)], corresponding to a slowdown of the group wave
velocity VG up to 30%–50% as shown in Fig. 2(b). Such a
velocity decrease is about 3 times larger than that observed
with compressional waves [23,24]. We also detect the gener-
ation of second and third harmonics whose amplitudes evolve
as a function of the propagation distance [Fig. 2(c)]. This
observation is different from those with shear shock waves
propagating in homogeneous soft solids (like gels), where
only odd harmonics are observed but without any significant
change in the wave velocity (<1%) [31].

Note that despite the important slowdown of the wave ve-
locity 	VG/VG [Fig. 2(b)], presumably due to the modification
of the contact network [23], we do not observe any visible
rearrangement of grain positions. A similar behavior was ob-
served in another kind of dynamic experiment where a dense
granular suspension was subject to a sinusoidal oscillation
with comparable shaking amplitude and frequency [33]. The
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FIG. 2. Nonlinear acoustic responses of a Rayleigh-like wave in a fragile granular packing. (a) Wave pulse recorded at x = 95.5 mm from
the source; the travel time of the surface wave increases with the shear driving force Fac. (b) Softening of the shear modulus G (or group
velocity VG slowdown) as a function of the driving force Fac in a case where no visible rearrangements of grains is observed. The solid line is
the prediction by the friction model. (c) Amplitudes of the fundamental (100-Hz) and of the second and third harmonics versus the propagation
distance after an excitation at Fac ≈ 2 N. The maximum is indicated by an arrow after smoothing (solid lines).

absence of plastic rearrangement of grains can be explained
as follows: on the one hand, the typical acoustic displacement
is relatively small compared to one grain diameter, i.e., uac <

5 μm ∼ d/50). On the other hand, the characteristic time for
rearrangement (measured by the time it takes for a grain to
move from one cage to the next one over a distance ∼d)
is large compared to the period of driving. More precisely,
we find that the fall time for the granular suspension is [34]
tfall[= η f /(Pgα)] ∼ 20 ms with the viscosity of water η f ∼
10−3 Pa · s, permeability parameter α ∼ 0.01, and confining
pressure Pg ∼ φ(ρg − ρw )gd ∼ 2.25 Pa (the layer at the top
surface is the most likely to be subjected to possible grain
motion [35]). For the vibration frequency range explored in
our experiments ( f = 100–500 Hz), the period of oscillatory
driving is To = 1/ f ∼ 4 ms, which leads to To smaller than
tfall (in water-saturated glass-bead packings). Under such con-
ditions, we expect that the grains in the granular suspension
do not have the time to move or rearrange to the new cages
before the applied vibration changes the driving direction.

Nevertheless, by further increasing the driving amplitude,
plastic deformation of the granular packing should become
possible. To detect it, we examine the change in ultrasonic
speckle patterns, i.e., B-mode images [31] (see Appendix A)
recorded before, during, and after the passage of the nonlinear
Rayleigh-like wave [Figs. 3(a) and 3(b)]. As the characteristic
length for rearrangement corresponds to the grain size d
[Fig. 3(c)], it falls in the spatial resolution of the ultrasound
used here λUS/2 ∼ 180 μm (λUS is the wavelength in water).
Figure 3(b) (right panel) shows the case of a change in the
speckle pattern for the large shear driving Fac ≈ 2.7 N (γac ∼
4 × 10−3) at the lower frequency of 100 Hz. Here the mea-
sured particle velocity reaches the very high value of vac ∼ 25
mm/s and the particle displacement, more than uac ∼ 40 μm,
becomes important compared to the grain size d ∼ 250 μm.
This observation confirms the occurrence of an unjamming
accompanied by a rearrangement of grain positions. The
plastically fluidized zone appears close to the driving source
within x ∼ 30 mm and along a depth z ∼ 7 mm as shown
in the right panel in Fig. 3(b). In the seismogram detected
at the surface of the bead packing [Fig. 3(c)], two slopes

are observed to be associated, respectively, with the fluidized
zone and the unjammed zone without plastic rearrangement of
grains. The wave velocity in the fluidized zone (x < 30 mm)
is reduced to 6 m/s!

III. DISCUSSION AND MODELING

A. Linear elasticity

We use the mean-field approach as a guide to interpret our
experimental data. According to the Biot/Gassmann theory
for a fluid-saturated granular porous medium [36], the satu-
rating liquid increases the bulk modulus of the medium and
couple compressional waves in the solid and liquid phases to
form a fast (VP) and a slow (VP2) mode but does not affect the
shear modulus (water responds little to shear forces) provided
that the elastic moduli of the solid skeleton (K and G) remain
unchanged. It only influences the shear wave velocity through
inertial effects, VS = (G/ρ)1/2, where the average density
is ρ � [φρg + (1 − φ)ρw]. Bourbié et al. (and Deresiewicz)
have also examined what happens to the Rayleigh wave at
the free surface of a saturated porous medium described by
the Biot theory [37]. It was shown that for the low-frequency
range (as considered here), one recovers the classic equation
of the Rayleigh wave velocity VR (depending on VP and VS),
whose property is mainly determined by the shear modulus
G (or VS). Nevertheless, for a granular packing, the elasticity
arises from the externally applied confining stress that forms
the contact network, i.e., the solid skeleton. The presence of
saturating liquid (water) may thus affect the shear modulus
of the granular skeleton, either by decreasing the effective
confining pressure via the pore pressure or by modifying
the contacts (network) between grains via lubricated friction
and/or viscous slipping [38].

To understand qualitatively the slowdown of the Rayleigh-
like wave in dense granular suspensions when the driving am-
plitude is increased, we primarily focus on the shear modulus
of the solid skeleton modeled by the effective medium theory
[8,19] for (dry) random packing of frictional spheres. Based
on the affine approximation, the effective medium theory has
provided an adequate description of low-amplitude ultrasonic
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FIG. 3. Ultrasound imaging of grain motion during plastic gran-
ular rearrangement. Comparison of the ultrasonic speckle patterns
recorded before, during, and after the Rayleigh-like wave passage
after an excitation at 100 Hz by (a) a small force, Fac ∼ 0.03 N, and
(b) a large one, Fac ∼ 2.7 N. The latter induces the rearrangement of
grains localized in a zone close to the driving (right panel; white
rectangle). (c) Scenario of the unjamming accompanied by grain
motion via the dilatancy. The seismogram in the plastically deformed
zone reveals a group velocity of VG ∼ 6 m/s.

experiments in highly compressed granular solids [23], in sit-
uations where configuration-specific multiply scattered elastic
waves do not probe any significant rearrangement of the con-
tact force network. Such reversible sound-matter interaction
[18,23] is also consistent with previous works where the linear
elastic response was observed at frictional interfaces due to
pinned asperities [39]. For isotropic confining pressure P (or
load W ), the bulk and shear moduli of the granular packing
(i.e., solid skeleton) can then be related to the normal and
tangential contact stiffness kn and kt as [40] K ∼ φZkn and
G ∼ φZ (kn + 3kt/2), with Z the average coordination number
and φ the packing density of spheres [Fig. 4(a)]. For the
Hertz-Mindlin contact [8,40] the contact stiffnesses kn and kt

(∼kn) at low oscillation amplitudes are related to the contact
area (of diameter a) and thus to the static compression or
overlap uo (∼a2/2R) under a normal load w, kn ∼ a ∼ w1/3

[Fig. 4(b)]; accordingly, on the macroscopic scale, K and G
scale with pressure as ∼P1/3.

However, for oscillatory shear (acoustic) measurements
in weakly confined granular packings considered here, the

FIG. 4. (a) Confined elastic sphere packing (contact network)
under shear. (b) Hertz-Mindlin contact model. (c) Multicontacts
(asperities) formed between rough solid surfaces. (d) Scenario of the
unjamming accompanied by grain rearrangement.

affine approximation may break down even at a relatively low
amplitude of vibration due to induced slipping between grains
and/or rearrangement of grain positions [7,8]. Consequently,
the shear modulus can be overestimated by the effective
medium theory, which does not allow the grains to relax
via nonaffine motion [4,8]. Numerical simulations show that
the scaling of the linear shear modulus versus the confining
pressure shall be rewritten for both frictionless and frictional
packings as [3,4,9],

G ∼ K	Z ∼ kZ	Z, (1)

where k is a linear combination of kn and kt and 	Z =
Z − Ziso is the excess contact number (measuring the distance
to isostaticity), which is related to the excess packing density
by 	φ ∼ (	Z )2 with 	φ = φ − φiso [3,9]. Note that the
nonaffine relaxation barely modifies the bulk modulus, i.e., the
scaling remains K ∼ P1/3 for the Hertz-Mindlin interaction.
For a three-dimensional (3D) packing of frictionless spheres
(Ziso = 6 and φiso = 0.64), as grain overlap (compression)
uo and consequently 	φ scale as ∼P2/3, one has 	Z ∼
P1/3, hence leading to G ∼ P2/3 and VS ∼ P1/3. For frictional
spheres, the packing does not tend to the isostatic value
(Ziso = 4) at unjamming under vanishing P = 0, but to a
critical contact number, Zc > Ziso [3,10]. The precise value of
Zc depends on the friction between grains and the preparation
history. The fact that Zc remains larger than Ziso explains why
the shear modulus G does not vanish at P = 0 [Eq. (1)] and
why it is possible to have a linear response of guided surface
waves propagating along the free surface at small dynamic
strain γac < 10−5 in our granular suspensions [Fig. 2(b)] and
also in dry granular packings [11]. Furthermore, even in the
absence of an external load, compacted granular materials
always have internal stresses which build up from friction be-
tween the grains (i.e., interlock) and from constraints imposed
by the material boundary [20,41].
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B. Nonlinear elasticity in frictionless packings

We now discuss the nonlinear response of granular pack-
ings under finite shear beyond linear elasticity, either by
steady [16] and oscillatory shear [15,17] or by nonlinear
acoustics in this study. Our measurements show that the
shear modulus softening in our frictional granular packing
exhibits three regimes, depending on the dynamic strain γac.
In regime (i), at low amplitudes γac (�10−5), the wave ve-
locity is constant; regime (ii) corresponds to higher driving
amplitudes where the velocity decreases continuously without
visible grain rearrangement [Fig. 2(b)], down to the final
regime, (iii), accompanied by the plastic rearrangement of
grains [Fig. 3(c)]. To analyze these data, we first consider the
extension of the shear modulus scaling law [Eq. (1)] beyond
linear elasticity postulated by Otsuki and Hayakawa for a fric-
tionless soft sphere packing, G(	Z, γo) ∼ K	Zg[γo/(	Z )2]
(we express G as a function of 	Z instead of 	φ), as in [15].
Here g(x) is a scaling function with the asymptotic behavior
g(x) → constant when x → 0 and g(x) → x−1/2 when x →
∞. The former recovers the linear response [Eq. (1)], whereas
the latter allows accounting for the shear modulus softening at
large shear γo,

G(	Z, γo) ∼ K (	Z )2γ −1/2
o . (2)

This scaling of G with the amplitude γo of the oscillatory
shear can be explained based on an elastoplastic model, which
consists of an infinite number of connections in series with an
elastic element of equal shear modulus Go and a slip element
characterized by the drop stress s (avalanche process). The
stress of an individual element S̃(s, t ) = Goγ (t ) is a linear
function of the imposed strain γ (t ) = γo(1 cos(ωt )), but it
drops to 0 when exceeding the maximum value s due to the
breaking of the contact or bond [Fig. 4(a)]. The shear modulus
of the individual element is then calculated by G̃(γo, s) =
(−ω/π )

∫ 2π/ω

0 S̃(s, t ) cos(ωt )dt/γ and the global shear mod-
ulus is given by G(γo) = ∫ ∞

0 dsG̃(γo, s)ρ(s). Here ρ(s) ∼
s−3/2 exp(−s/sc) is the probability density of the stress drop
(with sc a characteristic stress), larger than the lower cutoff
stress drop so caused by the rearrangement of one grain. For
so/Go � γo � sc/Go, the shear modulus scales finally with
γo as G ∼ G1/2

o γ −1/2
o and is independent of ω. On the other

hand, Eq. (2) reveals a power law for the scaling of the excess
contact number 	Z (or packing density 	φ) different from
that of Eq. (1), which probably pertains to the rearrangement
of grains via shear dilatancy caused by large shear [16]. How-
ever, the shear modulus softening observed in our experiments
[Fig. 2(b)] is not necessarily associated with such plastic
rearrangement.

C. Nonlinear elasticity in frictional packings

To specify the nonlinear elasticity of G(γo) in realistic
granular media, we propose a heuristic model where we re-
place the above elastoplastic element with the Hertz-Mindlin
frictional contact [Fig. 4(b)]. This contact is relevant not
only between grains in granular media [Fig. 4(a)] but also in
tribology and solid friction between asperities [Fig. 4(c)]. Two
distinct kinds of nonlinearity come into play at the contact
area between two elastic spheres at high-amplitude vibration.

In the normal direction, the Hertz contact law provides a
relation between the oscillating force fn and the displace-
ment un, fn ≈ knun(1 + βun + δu2

n) when un � uo (with the
contact kept compressed). β = 1/(4uo) and δ = 1/(24u2

o)
are the quadratic and cubic nonlinear terms determined by
uo ∼ w2/3. It is presumably responsible for the harmonics
generation [23] [Fig. 2(c)] but hardly affects the normal
stiffness kNL

n (= fn/un) ≈ kn(1 + δu2
n), which corresponds to

an average value over one cycle of oscillation. The other non-
linearity stems from the tangential friction, where the Mindlin
theory predicts both a nonlinear elasticity and dissipation
from the hysteresis loop of force displacement [23,42]. This
hysteretic nonlinearity causes a weakening in the tangential
stiffness kNL

t (= ft/ut ) ∼ kt (1 f ∗
t /6μw), proportional to the

amplitude of the tangential oscillating force f ∗
t to lowest

order (μ is the interparticle friction coefficient). Therefore,
for moderate vibration un < uo and f ∗

t < μw, the shear stiff-
ness softening is dominant compared to the normal stiffness
softening [22]; it predicts a shear velocity decrease for a
moderately high shear f ∗

t < μw before reaching the yield of
sliding,

	VS/VS ∼ (1/2)	kt/kt ∼ f ∗
t /(6μw), (3)

which is about 10% for f ∗
t /w ∼ Fac/W ∼ 0.15 (with Fac ∼

0.8 N and W ∼ 6.5 N) and μ ∼ 0.2. Unlike the mechanism
of softening invoked in Eq. (2), the present slip-induced
softening can occur with the grains kept in contact during
oscillation (a > 0 and uo > 0). This scenario may partly ex-
plain our observation of the dynamic modulus softening up
to 	VS/VS ∼ 40% [Fig. 2(b)] without macroscopic rearrange-
ment of particles. Similarly, such slipping-induced softening
of the shear interfacial stiffness was also found between one
grain (granular layer) and a substrate by the shear ultrasonic
oscillation under a low confining pressure, i.e., gravity. The
necessary vibrational energy for rearranging the grains by
sliding is about 2 orders of magnitude smaller than the energy
barrier by jumping a surface asperity [42].

In a weakly granular packing compressed by gravity, the
contact network is very inhomogeneous and the distribution
of the (normal) contact force w is exponential [8], ρ(w) ∼
exp(−w/wc), with wc a characteristic force. This would give
rise to the same distribution for the yield force fs = μw at
the grain contacts, similar to the above drop stress distribution
for the slip elements [Eq. (2)]. Under finite oscillatory shear,
the hertzian contacts (or bonds) of smaller diameters a ∼
w1/3 will first break down via slipping, which leads to the
softening of interfacial shear stiffness but keeps the contacts
overlapped. On the macroscopic level, the shear modulus
softening or the unjamming sets on without rearrangement of
the grain positions, and consequently both the coordination
number Z and the packing density φ remain almost unchanged
[Figs. 2(b) and 4(a)]. Apparently, this softening process in
a 3D sphere packing is comparable to what happens on a
multicontact interface under oscillatory shear [39] [Fig. 4(c)],
where the distribution ρ(δ) of the overlap δ or compression uo

(or diameter a) between two asperities is also exponential.
To further investigate this similarity, we follow Bureau

et al. [39] to extend the Mindlin model for a single con-
tact to the case of multiple microcontacts in which we
replace the asperities formed between 2D rough surfaces
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[Fig. 4(c)] by the bead contacts in 3D granular packings
[Fig. 4(a)]. When the interface or the granular medium is
loaded, the macroscopic shear force F (t ), or stress τ (t ), is
the sum of the contribution from all contacts ρ(δ). With
a macroscopic shear force (or stress) of the form F (t ) =
Fdc + Fac cos(ωt ), the shear displacement Ut (t ) [or strain γ (t )]
is analytically derived using the distribution ρ(δ) over one
cycle and the elastic response Uac (or γac) is then obtained
by Uac = (ω/π )

∫ 2π/ω

0 Ut (t ) cos(ωt )dt ≈ 2μλ[(Fac/2μW ) +
(Fac/2μW )2 + (5/4)(Fac/2μW )3], with λ a characteristic
elastic length. The softening of the apparent shear stiffness
by kt = Fac/Uac or shear modulus G = τac/γac may thus be
written as a function of the dynamic amplitude,

G/Go ∼ k/kto = 1/[1 + Fac/2μW + (5/4)(Fac/2μW )2],
(4)

where Go (kto) is the linear shear modulus (stiffness) at
small Fac. As expected for solid friction, the deduced shear
modulus and stiffness are independent of ω. The prediction
from Eq. (4) shows a reasonably good agreement with the
measured data, highlighting the crucial role of contact slip-
ping in the shear modulus softening and the onset of unjam-
ming [23,39,42]. The fitted friction coefficient μ ∼ 0.14 is
a bit low but comparable to other (dry) measurements (μ ∼
0.25) [42], suggesting a possible liquid-induced lubrication
effect.

D. Plastic rearrangement

Let us finally examine the shear modulus softening in the
unjammed state accompanied by the rearrangement of the
grain positions [Fig. 3(b)] produced at the strongest shear
driving γac ∼ 4 × 10−3. This nonlinear response is obviously
associated with the change in the packing density 	φ and, ac-
cordingly, in the coordination number 	Z ∼ (	φ)1/2. Figure
3(c) shows that the wave velocity decreases from an averaged
value of 17 m/s at 100 Hz to a smallest value of 6 m/s
in the fluidized zone close to the shear driving (<20 mm).
Such a huge velocity slowdown, 	VG/VG ∼ 	VS/VS ∼ 65%,
corresponds to a shear modulus weakening (G = ρV 2

S ) of
	G/G ∼ 88%! We believe that the grain rearrangement via
shear dilatancy [Fig. 4(d)] should also exist in the moder-
ate nonlinear regime [Fig. 2(b)] where the rearrangement of
grains may be too small (<d/5 ∼ λUS/10) to be detected due
to the resolution of ultrasound imaging (with possible contact
breaking). These experiments evidence that the nonlinear
shear response at finite acoustic strain is substantially plastic
in the vicinity of unjamming transition where nonlinear elas-
ticity cannot be decoupled from plasticity, a picture proposed
by the simulation for athermal amorphous solids [43]. Further
investigation of the shear modulus softening or unjamming
is needed to quantify the interplay between vibration-induced
contact slipping [Eq. (4)] and contact breaking (loss) 	Z < 0
observed in discrete-element-method simulations [44] (occur-
ring, however, with a dynamic strain about 2 orders of mag-
nitude larger due to the absence of the nonlinear tangential
Mindlin contact) or shear dilatancy 	φ < 0 accompanied by
grain rearrangement [Eq. (2)] and merge these two mecha-
nisms into a unique model.

IV. CONCLUSION

In summary, we have investigated a Rayleigh-like wave
propagation in weakly jammed dense granular suspensions.
We monitored the unjamming transition by measuring the
softening of the shear modulus with increasing amplitude of
the oscillatory shear via the surface wave velocity slowdown.
Regarding the unjamming transition, two successive processes
were found when the driving was progressively increased:
contact slipping without any change in the packing density
(and of the contact number) on the micro- or nanometric
scale and plastic rearrangement of grains via shear dilatancy
on the macroscopic scale. Our measurements are consistent
with the nonaffine models in frictionless packings and agree
particularly well with the extension of the Mindlin friction
model on nonlinear elasticity, which evidences the important
effects of contact slipping without contact loss. This scenario
of unjamming by acoustic fluidization/lubrication [23,42,45]
should be helpful to better understand how transient seismic
waves trigger avalanches and earthquakes [22] in sheared
granular media.
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APPENDIX A: ULTRAFAST ULTRASOUND IMAGING

To investigate low-frequency Rayleigh-like wave propaga-
tion and its effects on granular packing, ultrafast ultrasound
imaging was used. Through ultrasound it is possible (i) to
image a cross-sectional plane of the granular packing (as
usually done in ultrasonography) and (ii) to measure the
axial particle velocity field associated with wave propagation
within the sample. To this end, the sample is insonified with
ultrasonic waves emitted from an ultrasonic array. Each of the
192 elements in the array emits simultaneously a two-cycle
short pulse centered at 4 MHz, thus generating a pulsed
plane wave that propagates in the xz plane in a direction
perpendicular to the surface of the sample [Fig. 5(a)]. This
plane wave is scattered off the beads and the corresponding
backscattered echoes are recorded by each element of the
transducer array [Fig. 5(b)]. The backscattered signal comes
from the superposition of the echoes coming from different
scatterers within the medium. Therefore, a beam-forming step
is necessary to construct an ultrasonic image, i.e., to relate
the arrival time of an ultrasound echo to a given position
within the imaging plane. In this work a standard parallel
beam-forming algorithm was used. Each point (x, z) in the
image is obtained by adding coherently all the contributions
coming from it. Toward that goal a time delay of the form
T (x, z) =

√
(z2 + (x − xi )2)/c is first applied to the backscat-

tered signals, where xi corresponds to the position of the ith
element in the ultrasonic array and c is the speed of sound
(=1500 m/s in water) [Fig. 5(c)]. Then the 192 time-delayed
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FIG. 5. (a) Ultrasound emission step: all elements in the array emit simultaneously a short pulse centered at 4 MHz, thus generating a
pulsed plane wave. (b) Ultrasound reception step: the backscattered echoes coming from different locations within the medium are recorded
by each element of the transducer array. (c) Beam-forming step: to relate the arrival time of an ultrasound echo to a given position within the
imaging plane, each point (x, z) in the image is obtained by adding coherently the backscattered signals originating from it. (e) Logarithmic
compression of the beam-formed image to increase the image contrast. A steel plate immersed in the granular medium appears as a strong
echo at z ≈ 17 mm and x ≈ 12 mm. (f) One snapshot of the axial particle velocity field associated with the Rayleigh-like wave propagation at
t = 9.8 ms after the generation of the wave. (g) Particle velocity as a function of the depth and time at x = 42.5 mm. (h) Axial particle velocity
field as a function of the time along x at the surface of the sample.

backscattered signals are summed. Finally, these two steps are
repeated for all points within the imaging plane to generate a
beam-formed image such as the one shown in Fig. 5(d).

This beam-formed image is a cross-sectional image of the
sample. With the application of a logarithmic compression to
increase the contrast, a steel plate immersed in the granular
medium appears as a strong echo at z ≈ 17 mm and x ≈ 12
mm [Fig. 5(e)], which shows that ultrasonic backscattering
is still dominated by single scattering. That is, the arrival
time of the speckle signal corresponds to a specific location
of the scatterers in space. Comparison between such images
recorded before, during, and after the shear wave passage was
used in this work to study grain rearrangement under a high
shear driving amplitude [see Figs. 3(a) and 3(b)].

The axial particle velocity field vz(x, z, t ) (=vac) associated
with guided wave propagation at a given instant t after the
source excitation can be obtained (at least for the first ∼10 mm
of depth) by correlating in time the speckle pattern observed

from one image St (x, z) to the next St+δt (x, z) (i.e., by speckle
interferometry) [32], with δt ∼ 1/ fRF and fRF = 16 kHz
the frame rate. In practice, the operation is performed after
quadrature demodulation of the RF backscattered signals. The
field of the axial particle velocity vz at a particular time
corresponding to the ne frame is then inferred from [46]

vz(x, z, n) = fRF

2

c

ω
atan

(
Q(n)I (n + 1) − Q(n + 1)I (n)

I (n)I (n + 1) + Q(n + 1)Q(n)

)
,

(A1)

with ω the central frequency of ultrasound and I and Q the
in-phase and quadrature-phase components of the demodu-
lated signal corresponding to pixel (x, z) in the image. As
an example, a snapshot of the axial particle velocity field is
presented at t = 9.8 ms in Fig. 5(f). The map of the particle
velocity as a function of the time at x = 42.5 mm shows the

FIG. 6. Three snapshots of the vertical component of the simulated particle velocity field during wave propagation for a 300-Hz excitation.
The dashed black rectangle corresponds to the imaging plane used in the experiments presented in Figs. 5(f)–5(h).
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FIG. 7. Particle velocity field for a four-cycle tone burst excita-
tion centered at 300 Hz in (a) a simulation and (b) an experiment
along with its double Fourier transform in (c) and (d), respectively.
(e) ω-k relation extracted from experiment (blue squares) and simu-
lation (black dots). The relation ω ∝ k3/4 is plotted by the solid red
line for reference.

ability to follow the wave propagation in depth [Fig. 5(g)].
Finally, Figs. 5(h) and 1(c) map the pulsed particle velocity as
a function of x and time t at the surface of the sample.

APPENDIX B: GUIDED ACOUSTIC MODES

Bonneau et al. [11] and Jacob et al. [30] have demonstrated
that wave propagation along the free surface of a granular
packing may be described by a superposition of localized
acoustic modes. To define which guided acoustic modes are

generated with our setup [Fig. 1(a)] we conducted a series
of numerical finite-element-method (FEM) simulations with
COMSOL Multiphysics, following an approach similar to that
proposed by Bergamo et al. [47]. We model the granular
packing in the long-wavelength limit (λLF 
 d) as a con-
tinuous elastic layer of thickness h = 130 mm. A gravity-
induced stiffness gradient was included in the FEM simu-
lations given by the scaling law VP,S = γP,S (ρgz)αP,S , where
VP,S is the compressional/shear wave velocity, γP,S is a depth-
independent coefficient, αP,S is the power-law exponent, ρ is
the bulk density of the medium, g is the gravity acceleration,
and z is the depth. For the simulations we used ρ = 1700
kg/m3, αS = 1/4, and αL = 1/6 as in Refs. [8,19]. Finally,
γS and γL were chosen equal to 5.25 and 14.8, respectively, as
reported in Refs. [30,48] as the best-fit parameters for a dry
granular packing. The boundary conditions were set as free at
the surface and clamped at the bottom. Experimentally, waves
are generated using a rough metallic plate acting all across the
layer sample [Fig. 1(a)]. Therefore, in the FEM simulations
a prescribed displacement was assigned to the plane x = 0
with the same temporal dependence used in the experiments:
a four-cycle tone burst centered at a frequency between 100
and 500 Hz.

Figure 6 shows three snapshots of the vertical component
of the simulated particle velocity field in the xz plane for a
300-Hz excitation. Two modes of propagation are generated
with our setup: a first mode localized near the free surface and
a second mode that propagates within the bulk of the sample
(modes 1 and 2, respectively, in Fig. 6). Due to the size of the
imaging plane used in the experiments, the particle velocity is
presumably dominated by mode 1 as can be verified in Fig. 7,
which shows experimental and simulated particle velocity
fields. Experiment and simulation are found to be in good
agreement. Furthermore, the presence of a single mode of
propagation may be observed in the corresponding double
Fourier transformation [Figs. 7(c) and 7(d)].

The dispersion relation [depicted on a log-scale in Fig. 7(e)
for both simulation and experiment] helps us to understand
the nature of this mode. With simulation it was also possible
to calculate the ω-k relation within the bulk of the sample
at z = 80 mm (mode 2 in Fig. 6). From this figure it is
possible to establish that ω reasonably follows a relation
proportional to k3/4 (an exponent of 0.79 was found by fitting
the experimental data in Fig. 7). Therefore, the mode detected
by our setup corresponds to the lowest surface mode described
in [30]. This type of localized surface mode is controlled by
the shear wave speed profile and is reminiscent of a Rayleigh
wave in an elastic homogeneous layer (i.e., without a velocity
gradient). Consequently, its propagation velocity is directly
linked to the shear modulus of the sample.
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