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Bridging of liquid drops at chemically structured walls
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Using mesoscopic interfacial models and microscopic density functional theory we study fluid adsorption
at a dry wall decorated with three completely wet stripes of width L separated by distances D1 and D2. The
stripes interact with the fluid with long-range forces inducing a large finite-size contribution to the surface free
energy. We show that this nonextensive free-energy contribution scales with ln L and drives different types of
bridging transition corresponding to the merging of liquid drops adsorbed at neighboring wetting stripes when
the separation between them is molecularly small. We determine the surface phase diagram and show that this
exhibits two triple points, where isolated drops, double drops, and triple drops coexist. For the symmetric case,
D1 = D2 ≡ D, our results also confirm that the equilibrium droplet configuration always has the symmetry of
the substrate corresponding to either three isolated drops when D is large or a single triple drop when D is small;
however, symmetry-broken configurations do occur in a metastable part of the phase diagram which lies very
close to the equilibrium-bridging phase boundary. Implications for phase transitions on other types of patterned
surface are considered.
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I. INTRODUCTION

The study of fluid adsorption and droplet formation on
structured and patterned surfaces has received a great deal of
attention in recent years. This is in part motivated by practical
applications such as microfluidics [1] and superhydrophobic-
ity [2,3] and also, more fundamentally, by the many new types
of interfacial phase transitions [4–19] that can occur compared
to those at structureless and chemically homogeneous sur-
faces [20–23]. Consider, for example, a flat substrate (wall)
decorated with one or more stripes which have an enhanced
wettability, that is, a lower contact angle θ , compared to the
rest of the wall, which serves to preferentially nucleate liquid.
When the volume of liquid is fixed, such surfaces can induce
macroscopic morphological phase transitions associated with
the local breaking of translational invariance and Young’s
law [24,25]. In the grand canonical ensemble, that is, when the
volume of liquid is not constrained, morphological transitions
do not occur since the fluid density profile must have the
same symmetry as the confining external field induced by the
wall. However, in their place are a number of phase transitions
including the possibility of the formation of liquid bridges that
span between different striped regions when the gaps between
them are sufficiently small [26]. These are similar to bridging
transitions, that is, the local condensation of liquid, between
nanoparticles (spheres, cylinders, etc.) immersed in a solvent
reservoir [27–31].

In the present paper we study bridging transitions on a
chemically heterogeneous surface decorated with three iden-
tical stripes of width L that are completely wet (contact angle
θ = 0). This topography allows, in principle, for stable and
metastable droplet and bridging configurations which either
follow or break the symmetry of the substrate. Our motivation
is not only to show that bridging transitions must occur as
the distance between the stripes is reduced but also that
these occur in such a way as to suppress the possibility
of equilibrium spontaneous symmetry breaking associated
with different bridgelike coverings of the wall which occur
only in a metastable part of the phase diagram. However, as
we will see, the quantitative nature of the metastability is quite
surprising with repercussions for the structure of the phase
diagram. Our paper is arranged as follows: in Sec. II we use
simple scaling and interfacial Hamiltonian theory to predict
equilibrium droplet configurations on a dry surface decorated
with one, two, and three stripes which are completely wet.
We focus on systems with long-ranged dispersion-like forces
for which there are important finite-size contributions to the
surface free energy of drop configurations. For a surface with
three stripes we distinguish between symmetric and broken
symmetric droplet shapes and determine the location of dif-
ferent possible phase transitions between them. In this way,
we are able to predict the phase diagram when we vary the
distances D1 and D2 between the stripes. In Sec. III we con-
firm these predictions using microscopic density functional
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theory where we specialize to a perfectly dry wall patterned
with wet stripes. We finish with a discussion concerning
generalizations and repercussions for phase transitions on
periodically decorated substrates.

II. INTERFACE HAMILTONIAN MODEL

To begin, we recall briefly the features of a drop nucleated
at a single stripe and in particular why, for systems with
dispersion-like forces, there is a logarithmic contribution to
the excess surface free energy. This is crucial when consid-
ering the quantitative aspects of the different bridging phase
boundaries when the substrate is decorated with more stripes.
Consider a planar wall in contact with vapor at chemical
potential μ close to saturation μsat at temperature T far
below the bulk critical value Tc. The wall is partially wet
by liquid, corresponding to contact angle θ , except along a
macroscopically long, deep stripe of width L, which is made
of a different material that is completely wet. The stripe
nucleates a liquid drop which remains of finite height hm,
even at saturation chemical potential, which depends on the
stripe width. Simple finite-size scaling arguments predict that
at saturation hm ∝ Lβco

s /νco
‖ where βco

s and νco
‖ are, respec-

tively, the critical exponents for the adsorption and parallel
correlation length characterizing a complete wetting phase
transition [20–22,26,32]. Similarly the surface free energy per
unit length of the stripe should contain a singular contribution
fs ∝ L1−(2−αco

s )/νco
‖ where now αco

s is the surface specific heat
exponent. For systems with long-ranged dispersion forces the
upper critical dimension for complete wetting d∗

co < 3, so that
in three dimensions the mean-field values of the critical ex-
ponents αco

s = 4/3, βco
s = 1/3, and νco

‖ = 2/3 are exact [33].

This predicts that the droplet height scales as hm ∝ √
L, while

the exponent for the free energy vanishes, suggesting that this
is a marginal case allowing for logarithmic corrections. These
scaling predictions contrast with the situation for systems with
short-ranged forces for which we anticipate hm ∝ ln L and
fs ∝ 1/L2.

These scaling considerations are completely in accord with
calculations based on a mesoscopic interfacial Hamiltonian
model

H[h] =
∫

dx

{
γ

2

(
dh

dx

)2

+ W (h)

}
, (1)

where h(x) is the height of the drop above the stripe which
extends from x = −L/2 to x = L/2, γ is the liquid-gas sur-
face tension, and W (h) is the binding potential. Translational
invariance is assumed for the drop height along the stripe, and
the binding potential at bulk coexistence is assumed to take
the same form, W (h) = A/h2, as for a uniform completely
wet substrate where A is the (positive) Hamaker constant.
This assumption is justified since the drop height is much
smaller than the length L. Since the region outside the stripe
is partially wet we may impose that the drop height is fixed
to a small, microscopic value at the edges x = ±L/2. In three
dimensions interfacial fluctuation effects at complete wetting
are near negligible and a mean-field treatment of interfacial
model suffices to determine the drop shape. Minimization

of (1) leads to the Euler-Lagrange equation [21]

γ
d2h

dx2
= W ′(h), (2)

which is easily solved for the drop shape. For wide stripes this
leads to the scaling solution

h(x) = hm

√
1 − 4x2/L2, (3)

where the midpoint height is determined as [26]

h2
m ≈ L

√
A

2γ
, (4)

in accord with the scaling prediction above. These mean-field
results are not altered by the inclusion of interfacial fluctua-
tions associated with the thermal wandering of the interface.
For example we can anticipate these induce a near negligible
interfacial roughness at the midpoint, which scales as

√
ln L,

which is much smaller than the equilibrium height hm. Evalu-
ating H[h] for the equilibrium profile shape determines that
the surface free energy per unit length of this single drop
behaves as

Fdrop(L) = γ L +
√

2Aγ ln L + · · · , (5)

which indeed shows the logarithmic correction to the surface
free energy. The fact that this contribution diverges with L
means it is not possible to define edge or line tension contri-
butions to the surface free energy of the drop. This is very dif-
ferent from the case with purely short-ranged forces for which
the analogous finite-size correction is of order 1/L. Returning
to the case of long-ranged forces, taking a derivative w.r.t. L
determines that the force of solvation induced by the drop on
the edges of the stripe is fsol = γ + O(1/L). The finite-size
correction to the surface tension here can be interpreted as
a critical Casimir force induced by the complete wetting of
the stripe, which is characterized by a large correlation length
associated with interfacial fluctuations which is limited only
by the value of the width L.

Next consider two completely wet stripes, each of width
L, separated by a distance D. In this case two interfacial
configurations are possible [see Fig. 1(b)]. If the distance D
is large, the stripes are independent and isolated drops form
on them. The excess surface free energy associated with this
configuration is well approximated by 2Fdrop(L) + γwgD. The
last contribution here arises from the surface tension associ-
ated with the wall-gas configuration above the region between
the stripes. However, if the distance D is sufficiently small,
we may imagine that a single drop bridges between the stripes
with associated surface free energy Fdrop(2L) + (γwl + γ )D.
This approximation is justified if D 	 L, which is indeed the
case near the bridging transition. Matching these free energies
determines that these configurations coexist when the width
between the stripes is equal to

DB = 1

1 − cos θ

√
2A

γ
ln L + · · · , (6)

where we recall that θ is the contact angle above the nonwet
parts away from the striped regions and the higher order
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FIG. 1. Schematic illustration of possible isolated or bridging droplet configurations on a dry substrate (θ = π ) decorated with (a) one,
(b) two, or (c) three completely wet stripes of width L.

terms remain finite as L increases. Beyond the present mean-
field analysis we anticipate that sharp, first-order bridging
transitions are rounded due to fluctuation effects. However,
the scale of the rounding is small, of order exp(−γ Dhm/kBT ),
which, even for microscopic systems, is negligible away from
the bulk critical temperature [34].

Finally we turn our attention to the case of three identical
stripes separated by regions of width D1 and D2. To begin, we
consider the symmetric situation D1 = D2 = D, which will
be sufficient to determine the structure of the phase diagram.
Depending on the width D there are conceivably four possible
droplet configurations [Fig. 1(c)]. If D is large, isolated drops
cover the three wet stripes. From the considerations above it
follows that for D < DB two of the drops coalesce to form
a bridge over one of the dry regions. Clearly there are two
equivalent ways of doing this which break the left or right
symmetry of the substrate decoration (and underlying poten-
tial). However, this transition may or may not be preceded by
the coalescence of all three drops into a single drop which
bridges both dry regions, occurring at a distance D∗

B.
To determine D∗

B we again simply compare the surface
free energy of a single bridging configuration with the value
3Fdrop(L) + 2γwgD corresponding to three isolated drops.
Since we can anticipate that the value of D∗

B 	 L, we can
approximate the free energy of the single bridging drop as
Fdrop(3L) + (2γwl + 2γ )D. This implies that the value of D∗

B
at which there is coexistence of the three isolated drops and
the single triple drop is given by

D∗
B = DB + 1

1 − cos θ

√
2A

γ
ln

2√
3
. (7)

This result can also be obtained by solving the Euler-Lagrange
equation for the full interfacial model and matching solutions
at the boundaries between the striped regions.

At this juncture we make a number of points.
First, as expected, the values DB and D∗

B diverge as the con-
tact angle θ vanishes, so that the entire wall is completely wet.
Their values are smallest for θ = π , that is, a dry wall, where

there is the maximum penalty to the free energy of bridging
between the stripes. Although they diverge with L, the scale
of DB and D∗

B are set by the magnitude of the prefactor√
A/γ , which, away from the near vicinity of the bulk critical

temperature, is molecularly small. Thus, in general, bridging
occurs only when the stripes are microscopically close to
each other.

Second, as D∗
B > DB the coalescence of the three iso-

lated drops into a single drop as D is reduced must precede
the possible symmetry-breaking transition, which, if present,
must occur in a metastable region of the phase diagram. This
is in keeping with the general expectation that the equilib-
rium density profile of an inhomogeneous fluid must have
the same symmetry as the confining external potential. It
is intriguing, however, that the difference D∗

B − DB is small
and independent of L, implying that the symmetry-breaking
transition is only metastable. As L increases the locations
of the equilibrium (three drops to one) and metastable but
symmetry-breaking (three drops to a double drop) transition
get relatively closer to each other. In the next section we
shall show that even for microscopic systems the metastable
transition still lies very close to the true equilibrium transition.

Finally, having determined that D∗
B > DB it follows that

when the distances D1 and D2 between the stripes are unequal
the phase diagram should have five first-order phase boundary
lines and two triple points occurring for D1 
= D2, which lie
close to each other. At each triple point configurations corre-
sponding to three isolated drops, a double bridging drop with
an isolated drop and a single triple bridging drop all coexist.
The fact that D∗

B > DB rules out the alternative possibility the
triple points occur along the diagonal D1 = D2. The phase
diagram will be determined explicitly in the next section using
a more microscopic model DFT.

III. MICROSCOPIC DENSITY FUNCTIONAL THEORY

A. Microscopic model

Within DFT [35], the equilibrium state of an inho-
mogeneous fluid within the grand-canonical ensemble is
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FIG. 2. DFT results showing the dependence of the grand po-
tential on the stripe separation D for the symmetric situation when
D = D1 = D2. In keeping with the predictions of the interfacial
model as the distance D is reduced a single bridging transition occurs
from three isolated drops to a single triple droplet. Also shown is the
grand potential of a metastable symmetry-broken configuration with
one double droplet which lies close to the global minimum in the
vicinity of the equilibrium-bridging transition.

characterized by a one-body density profile ρ(r). In general,
the equilibrium distribution is obtained by minimizing the
grand potential functional

	[ρ] = F[ρ] +
∫

drρ(r)[V (r) − μ], (8)

where V (r) is the external potential. Here the intrinsic free
energy functional F[ρ] can be separated into an exact ideal
gas contribution and an excess part:

F[ρ] = β−1
∫

drρ(r){ln[ρ(r)
3] − 1} + Fex[ρ], (9)

where 
 is the thermal de Broglie wavelength and β =
1/kBT . As is common in modern DFT approaches, the excess
part is modeled as a sum of hard-sphere and attractive con-
tributions where the latter is treated in a standard mean-field
fashion [36]:

Fex[ρ] = Fhs[ρ] + 1

2

∫∫
dr dr′ρ(r)ρ(r′)ua(|r − r′|), (10)

where ua(r) is the attractive part of the fluid-fluid interaction
potential.

In our model the fluid atoms are assumed to interact
with one another via the truncated (i.e., short-ranged) and
nonshifted Lennard-Jones-like potential

ua(r) =
⎧⎨
⎩

0 ; r < σ

−4ε
(

σ
r

)6
; σ < r < rc

0 ; r > rc

, (11)

which is cut off at rc = 2.5 σ , where σ is the hard-sphere
diameter.

The hard-sphere part of the excess free energy is approx-
imated using the (original) fundamental measure functional
(FMT) [37],

Fhs[ρ] = 1

β

∫
dr 
({nα}), (12)

which accurately takes into account the short-range cor-
relations between the fluid particles. Here {nα} are six
weighted densities corresponding to fundamental measures
of a sphere [37]. Although other prescriptions of 
 within
modified versions of FMT are available [38], the original
Rosenfeld FMT functional is perfectly adequate to describe
the packing effects in the system under study.

The external field V (r) is exerted by a planar wall occu-
pying the volume z < 0. We specialize to the case θ = π for
which we recall that the predicted values of DB and D∗

B are
smallest. This is very easily achieved by assuming that the
wall is purely repulsive, except for three deep parallel stripes,
each of width L. The total potential of the wall can thus be
written as

V (x, z) =

⎧⎪⎨
⎪⎩

∞ ; z < 0

VL(x, z) + VL(x − D1, z)

+VL(x − D1 − L − D2, z) ; z > 0,

(13)

where VL(x, z) is the potential due to a single stripe located
at 0 < x < L and D1 and D2 are the distances between the
stripes. Here we also assume that the stripes are macroscopi-
cally long, so that the system possesses translation invariance
along the y axis.

We suppose that the stripes atoms are distributed uniformly
within their domains with a particle density ρw and interact
with the fluid particles via the Lennard-Jones 12-6 potential

φ(r) = 4εw

[(σ

r

)12
−

(σ

r

)6
]
. (14)

The net potential VL(x, z) is obtained by summing up the
wall-fluid pair potential over the wall volume of the stripe.
Therefore

VL(x, z) = ρw

∫ L

x−L
dx′

∫ ∞

−∞
dy′

∫ ∞

z
dz′

×φ(
√

x′2 + y′2 + z′2), (15)

which can be expressed in the following scaling form:

VL(x, z) = πεwρwσ 3

[
σ 9

z9
G9

(
x

z
,

L

z

)
−σ 3

z3
G3

(
x

z
,

L

z

)]
(16)

with

G9(ξ, η) = F9(ξ − η) − F9(ξ ) (17)

and

G3(ξ, η) = F3(ξ − η) − F3(ξ ), (18)

where

F9(ξ ) = 2

45

(
1 + 1

ξ 9

)
− 1

2880

128 ξ 16 + 448 ξ 14 + 560 ξ 12 + 280 ξ 10 + 35 ξ 8 + 280 ξ 6 + 560 ξ 4 + ξ 2 + 128

ξ 9(1 + ξ 2)7/2
(19)
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FIG. 3. Dependence of the grand potential on the separation
D = D1 = D2 − σ when the widths between the stripes are slightly
different. In this case two bridging transitions, first from three
isolated drops to a double bridging drop and then to a triple bridging
droplet, occur as D is reduced.

and

F3(ξ ) = 1

3

[
1 + 1

ξ 3
− 2 ξ 4 + ξ 2 + 2

2ξ 3
√

1 + ξ 2

]
. (20)

Minimization of (8) leads to the Euler-Lagrange equation

V (r) + δFhs[ρ]

δρ(r)
+

∫
dr′ρ(r′)ua(|r − r′|) = μ, (21)

which we solve iteratively on a two-dimensional grid (0, X ) ×
(0, Z ) where we set X = 200 σ and Z = 30 σ . The first
stripe is situated within the interval (xi, xi + L) where xi

satisfies 2xi + 3L + D1 + D2 = X . We impose the bound-
ary conditions ρ(x, zm) = ρb and ρ(0, z) = ρ(X, z) = ρπ (z),
where ρb is the reservoir gas density and ρπ (z) is a
one-dimensional density profile of the fluid near a hard
wall.

B. DFT results

Within the present model the bulk critical temperature
corresponds to kBTc/ε = 1.414. In our calculations we choose
a relatively large value for the stripe potential, εwρw = εσ−3,
which at temperature T = 0.95 Tc ensures that the stripes are
completely wet [9].

We next vary the distances between the stripes D1 and
D2 and solve the Euler-Lagrange equation (21) at bulk sat-
uration chemical potential βμsat = −2.94 corresponding to
bulk coexistence with associated densities ρl = 0.39 σ−3 and
ρg = 0.13 σ−3 of the liquid and gas bulk phases, respectively.
Near a first-order bridging phase transition the density profile
ρ(r) obtained from Picard’s iteration solution of the Euler-
Lagrange depends on the initial configuration ρi(r) of the
fluid. If multiple solutions are present, that with the lowest

FIG. 4. DFT results for different equilibrium density profiles illustrating the microscopic structure underlying possible bridging morpholo-
gies of adsorbed liquid droplets. Here the width of the wetting stripes is L = 50 σ , and the separations between them is (from top to bottom)
(i) D1 = 4 σ and D2 = 3.6 σ , (ii) D1 = 4 σ and D2 = 3.4 σ , and (iii) D1 = 3.8 σ and D2 = 3.6 σ .
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grand potential corresponds to the equilibrium configuration.
In order to converge to the isolated, double, and triple droplet
configuration we chose (1) ρi(r) = ρb exp[−βV (r)] where
the system is filled by a gas, (2) the same plus a slab of liquid
spanning two neighboring stripes, and (3) the same plus a slab
of liquid spanning all three stripes. The height of the slabs was
taken to be approximately a square root of their width.

We first discuss the “symmetric” model wall with equally
separated stripes: D1 = D2. Figure 2 shows the dependence of
the equilibrium grand potential as a function of D = D1 = D2.
As can be seen, in this case the system undergoes a first-order
phase transition at D ≈ 4 σ from three droplets into one triple
bridging droplet with two gaslike bubbles inside above the
dry regions. Also shown is a curve corresponding to the
grand potential of a metastable symmetry regime with two
droplets. While this is never a global minimum of the grand
potential the different branches of the free energy very nearly
cross. This confirms the prediction that DB∗ > DB and that
the distance between their values is very small. In contrast,
if we consider only a slightly “asymmetric” model with D =
D1 = D2 − σ , a double bridging droplet configuration can

be stabilized within a narrow interval around D = 4 σ (see
Fig. 3). The equilibrium density profiles illustrating all four
possible droplet configurations are shown in Fig. 4.

Finally, in Fig. 5 we show the phase diagram in the
D1-D2 plane. To determine this we performed an extensive
number of DFT calculations by varying the values of D1 and
D2 � D1 within the interval D1 ∈ (1 σ, 10 σ ). One can see
that the phase diagram separates into four adsorption regimes
with two triple points, which occur away from the diagonal.
Note, however, that the distance between the locations of the
triple points is less than one molecular diameter, consistent
with the prediction that D∗

B − DB is molecularly small. As is
evident, our microscopic DFT results confirm the predictions
of the mesoscopic interfacial Hamiltonian model for the phase
diagram structure. We are unable to verify the logarithmic
dependence on the width L, which would require much larger
systems; nevertheless, the value of DB ≈ 4σ is completely
consistent with the prediction (6) since A/γ ≈ σ 2. We stress
again, however, that it is the difference between DB and
D∗

B rather than their absolute values which determines the
topology of the phase diagram.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8

D
2 /

 σ

D1 / σ

FIG. 5. Phase diagram in the D1-D2 plane showing the stable droplet configurations at bulk coexistence. Two triple points, occurring for
D1 
= D2, connect five separate first-order phase boundaries. The triple points lie very close to each other, reflecting the small difference
between the equilibrium grand potential of the stable configuration and that of the metastable symmetry phase.
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IV. CONCLUSION

In this paper we have used a microscopic DFT model to
study bridging transitions on chemically patterned surfaces.
We have focused on systems with long-ranged dispersion
forces where there is a strong finite-size correction to the
droplet free energy. The results confirm the predictions of
simple interfacial Hamiltonian that bridging occurs only when
the distance between the stripes is microscopically small.
When the distance between the stripes D1 and D2 is varied
the lines of phase coexistence intersect at two triple points.
For the symmetric case D1 = D2 ≡ D our results also confirm
that the droplet configuration always has the symmetry of the
substrate corresponding to either three isolated drops when
D is large or a single triple drop when D is small. However,
it is perhaps surprising that symmetry-broken configurations
occur in a metastable part of the phase diagram which lies
molecularly close to the equilibrium-bridging phase transition
as predicted consistently both by the interfacial Hamiltonian
model and DFT.

It is natural to speculate that very similar results occur
when the number of stripes is increased. In particular, when
the distance between the stripes is equal, the only possible
configurations correspond to isolated drops (when D is large)
or a single drop bridging across all the gaps (when D is
microscopically small). As the number N of stripes increases,
so does the height hm of the single bridging droplet; at bulk
coexistence we anticipate that hm ∝ √

NL, since the size of
the drop is approximately NL in width (the dependence on D
may be dropped as D 	 L). It follows that in the thermody-
namic limit corresponding to a periodic array of completely

wet and partially wet or dry stripes, at bulk coexistence, there
are only two equilibrium configurations: If D is large, there is
a bound phase corresponding to isolated drops which sit above
the wet regions. However, when D is microscopically small,
these coalesce causing the liquid-gas interface to unbind from
the surface. The simple interfacial Hamiltonian analysis of
Sec. II predicts that this transition occurs when D takes a

value DB =
√

2A
γ

ln L
(1−cos θ ) or equivalently when the fraction

of the surface covered by the stripes is f = 1 − O(ln L/L).
Since the liquid-gas interface unbinds from the substrate at
this point it follows that we may interpret this as a first-order
wetting transition induced by the chemical patterning of the
substrate. The logarithmic dependence on L here, induced by
the strong Casimir-like term in the drop free energy, corre-
sponds to a correction of the prediction based on Cassie’s law,
which would require that the transition occurs when D = 0
or equivalently f = 1. Off coexistence this first-order wetting
transition would also give rise to an associated prewetting line
corresponding to thin-thick transitions in the adsorption of
fluid when D < DB. We intend to study this prediction for the
periodic substrate using microscopic DFT in future work, as
well as bridging transitions when drops are adsorbed on a sur-
face decorated with circular patches requiring a 3D analysis.
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