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Effects of a kinetic barrier on limited-mobility interface growth models

Anderson J. Pereira,1 Sidiney G. Alves,2,* and Silvio C. Ferreira1,3

1Departamento de Física, Universidade Federal de Viçosa, Minas Gerais, 36570-900, Viçosa, Brazil
2Departamento de Estatística, Física e Matemática, Campus Alto Paraopeba, Universidade Federal de São João Del-Rei,

36420-000, Ouro Branco, MG, Brazil
3National Institute of Science and Technology for Complex Systems, 22290-180, Rio de Janeiro, Brazil

(Received 13 February 2019; published 19 April 2019)

The role played by a kinetic barrier originated by out-of-plane step edge diffusion, introduced by Leal et al.
[J. Phys.: Condens. Matter 23, 292201 (2011)], is investigated in the Wolf-Villain and Das Sarma-Tamborenea
models with short-range diffusion. Using large-scale simulations, we observe that this barrier is sufficient to
produce growth instability, forming quasiregular mounds in one and two dimensions. The characteristic surface
length saturates quickly indicating a uncorrelated growth of the three-dimensional structures, which is also
confirmed by a growth exponent β = 1/2. The out-of-plane particle current shows a large reduction of the
downward flux in the presence of the kinetic barrier enhancing, consequently, the net upward diffusion and the
formation of three-dimensional self-assembled structures.
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I. INTRODUCTION

A rich variety of morphologies can be observed during
far-from-equilibrium growth processes and many of them
with a potential for technological applications [1–4]. Growth
instability can induce three-dimensional mound-like patterns
in different types of films such as metals [5–7], inorganic
[8,9] and organic [10,11] semiconductor materials to cite only
a few examples. Such a growth instability has been mainly
attributed to the presence of Ehrlich-Schwoebel (ES) step
barriers [12,13] that reduce the rate with which atoms move
downwardly on the edges of terraces leading to net uphill
flows. Growth instabilities can also emerge from topologi-
cally induced uphill currents which depend on the crystalline
structure [14] or from fast diffusion on terrace edges [15,16],
among other mechanisms [1,2]. The existence of ES barriers
is supported by molecular dynamic simulations [17].

Discrete solid-on-solid (SOS) growth models constitute
an important approach to investigate the dynamic of kinetic
roughening and morphological properties of interfaces. The
rules are easily implemented in a discrete space (lattices) rid
of overhangs and bulk voids. The role played by ES barriers
has been investigated in models with thermally activated dif-
fusion [1,2], the Clark-Vvedenski (CV) model [18,19] being
one of the simplest examples, in which any surface adatom
can move according to an Arrhenius diffusion coefficient D ∼
exp(−E/kBT ) [3], where E is an energy activation barrier
to be overcome in a diffusion hopping. An ES barrier can
be included as an additional activation energy for diffusion
at the edges of terraces [2]. The effects of a step barrier
of purely kinetic origin, namely simple diffusion, were in-
vestigated in an epitaxial growth model with thermally ac-
tivated diffusion [20]. In this model, a particle performing
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an interlayer movement through steps with more than one
monolayer has to diffuse along the columns, perpendicularly
to the substrate, instead of attaching directly at the bottom or
top of a terrace. This kinetic barrier reduces downhill currents
and three-dimensional structures in the form of mounds are
obtained at short-time scales even in the case of weak ES
barriers where the conventional rule would not lead to mound
formation.

Simple models with limited mobility can be used to inves-
tigate kinetic roughening [3,4]. Wolf-Villain (WV) [21] and
Das Sarma-Tamborenea (DT) [22] models, introduced to in-
vestigate molecular-beam-epitaxy (MBE) growth, are bench-
marks of this class and have been intensively investigated
[23–32]. A variation of the CV model with limited mobility
has been considered [33,34] and many features of the original
model have been reproduced with this simplified version [35].
Effects of a step barrier were investigated in both WV [36]
and DT [37] models introducing two additional probabilities
for downward and upward interlayer diffusion with the former
larger than the latter, and mound formation was observed
in both models. WV and DT models without step barrier
were investigated in several lattices [14,38] and it was found
that the WV model can present topologically induced mound
morphologies on some lattices but not in others while no clear
evidence for three-dimensional structures was observed for
DT. In one dimension, it is widely accepted that both DT
and WV models asymptotically produce self-affine surfaces
belonging to nonlinear MBE [32] and Edwards-Wilkinson
[39] universality classes, respectively.

It was reported that a kinetic barrier alone does not induce
mound morphologies in thermally activated CV-like models
[20] but, instead, they exhibit kinetic roughening with expo-
nents consistent with the nonlinear MBE universality class
[22,40,41]. Therefore, given the simplicity of limited-mobility
growth models and the non-trivial effects of topologically
induced uphill currents in DT and WV models, one would
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FIG. 1. Interfaces of the WV and DT models in d = 1 shown in left and right panels, respectively. Cases (a,d) without and with the kinetic
barrier considering (b,e) Ns = 1 and (c,f) Ns = 10 are shown. All the simulations were done on a lattice of size L = 210 for a deposition time
t = 104.

wonder how they respond to a barrier of purely kinetic ori-
gin. In order to fill this gap, we investigate WV and DT
models with the introduction of the kinetic barrier proposed
in Ref. [20]. We observed mounds in both models in 1+1
and 2+1 dimensions, being more evident for the WV model.
The surface coarsening ceases quickly with the saturation of
the characteristic surface length and regimes of uncorrelated
mound growth are asymptotically observed. Analysis of the
out-of-plane currents shows a large reduction of the downhill
flux of particles, enhancing surface instabilities and mound
formation.

The rest of the paper is organized as follows. The model
implementation details are presented in Sec. II. In Sec. III, we
discuss the results obtained in the simulations. Our conclu-
sions and some perspectives are drawn in the Sec. IV.

II. MODELS

In all investigated models, the particles are randomly de-
posited on a d-dimensional lattice of linear size L with pe-
riodic boundary conditions under the SOS condition. Results
presented in this work correspond to regular chains in d = 1
and square lattices in d = 2. Other lattices were tested and
the central conclusions remain unaltered. The height of the
interface at site i and time t is represented by hi(t ) and the
initial condition is given by hi(0) = 0 such that the initial
interface is flat.

In the WV model with a kinetic barrier investigated in the
present work, the growth rule is implemented as follows. At
each time step, a position i is randomly chosen. A location
i′ with the largest number of bonds that a new deposited
adatom would have is determined within a set containing i
and its nearest neighbors. If the initial position corresponds
to the largest number of bonds (i′ ≡ i), it is chosen as the
deposition place and the simulation runs to the next step. In
case of multiple options, one is chosen at random. Otherwise,
the particle tries to diffuse to the neighbor i′ with a probability

given by [20]

Pδh(i, i′) =
{

1, if |δh| < 2
1

|δh| , if |δh| � 2
, (1)

where δh = hi − hi′ . With probability 1 − Pδh(i, i′) the parti-
cle remains at the site i. It is important to mention that Eq. (1)
is obtained assuming that the adatom first moves to the top
kink of the terrace and then start a unbiased one-dimensional
random-walk perpendicularly to the initial substrate, stopping
the movement if it either arrives at the bottom or returns to
top of the terrace. The result is the solution of a non-directed
one-dimensional random walk with absorbing boundaries sep-
arated by a distance |δh| [42]; see Fig. 1 of Ref. [20] for
further details of this diffusion rule. This diffusion attempt is
successively applied Ns times departing from the last position
of the adatom. A time unit is defined as the deposition of Ld

particles.
The implementation of the DT model with kinetic barrier

is similar. The difference is that diffusion to the nearest neigh-
bors is performed only if the adatom does not have lateral
bounds and any neighbor with a number of bonds higher than
1 can be chosen with equal chance as the target site.

III. RESULTS

The one-dimensional simulations were carried out on
chains with up to L = 214 sites and evolution times of up to
t = 107. In the two-dimensional case, the simulations were
done in systems of sizes up to L = 210 and times up to t =
106. The averages were performed over 100 independent runs.

Figures 1 and 2 show interfaces obtained in simulations
in one- and two-dimensional substrates, respectively. Surfaces
for the original WV and DT models without and with (Ns =
1 or Ns = 10) kinetic barriers are compared. In both di-
mensions, the irregular morphologies without a characteristic
length observed in the original versions change to structures
separated by valleys that present a well-defined characteristic
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FIG. 2. Interfaces obtained using the WV and DT models in d = 2 are shown in top and bottom panels, respectively. The case without
(left) and with the kinetic barrier considering Ns = 1 (center) and Ns = 10 (right) are shown. All simulations were done on square lattices of
size L = 29 and a deposition time t = 104.

length. We also observe that an increase in the value of Ns

reduces valley deepness and increases the characteristic width
of the mounds. The effects of the kinetic barrier seem to be
stronger in two than one dimension. A remarkable change in
the profiles happens when just one hop to nearest neighbors is
allowed in the DT model with kinetic barrier, as can been seen
in Fig. 1(e). Surfaces become columnar with a high aspect
ratio (height/width). Such a behavior is reminiscent of the
very strict rule for diffusion in the DT model when a single
lateral bound is enough to irreversibly stick the adatom on
a site. In the WV case, where diffusion happens more read-
ily, mound morphologies with quasiregular structures emerge
more clearly.

A standard tool to characterize the morphology of in-
terfaces in growth process is the height-height correlation
function defined as [2,15,38]

�(r) = 〈h̃(x)h̃(x + r)〉x. (2)

Here, h̃(x) is the height interface at position x relative to the
mean height and 〈. . .〉x denotes an average over the surface.
The height-height correlation for r = 0 is related to the inter-
face width by √

〈�(0)〉 = w. (3)

Here, 〈. . .〉 denotes an average over independent runs. A self-
affine interface is characterized by a height-height correlation
function that goes monotonically to zero while those char-
acterized by mounds exhibit oscillatory behavior around 0.
In the latter case, the first zero of �(r), denoted by ξ , is a
characteristic lateral length of the mounds in the surface.

Figure 3 shows the height-height correlation function
for the WV model with kinetic barrier in one- and two-
dimensional substrates. The curves clearly exhibit oscillatory
behavior even for averages over 100 independent samples.
Conversely, the irregular oscillatory behavior observed for the
original WV model shown in the insets of Fig. 3 is lumped

after averaging. Therefore, interfaces obtained with kinetic
barrier are characterized by the formation of quasiregular
mound structures differently from those obtained using the
original model that exhibits irregular structures within the
intervals of size and time we investigated. These plots also
show a coarsening of the mounds represented by the first
minimum displacement at the early growth times.

The effect of the parameter Ns in WV model is shown
in Fig. 4. As indicated by the interface profiles shown in
Figs. 1 and 2, the characteristic lateral length increases with
Ns in both dimensions. The correlation function for the DT
model follows a qualitative similar dependence with Ns, as
can be seen in Fig. 5 where the effects of time and number
of diffusion steps in the correlation function of the DT model
are shown. However, the mounds are much less evident than
those obtained in the WV model. However, the correlation
functions still present the typical oscillatory behavior of
mounded structures that is preserved after the averaging over
100 independent samples. Besides, the typical widths of the
mounds in the DT model are much smaller than those of
WV. It is important to note that the correlation function of
the original DT model also presents an irregular oscillatory
behavior as does the WV model.

Figure 6 shows the time evolution of the interface width
for both models in one and two dimensions. The main panels
and insets present the results for the WV and DT models,
respectively, including or not the kinetic barrier. The interface
width is expected to scale as w ∼ tβ , where β is the growth
exponent [3]. The short time dynamics of both WV and DT
models is well described by the linear version of the MBE
equation [40,41]

∂h

∂t
= −ν∇4h + λ∇2(∇h)2 + η (4)

with λ = 0 where η is a non-conservative Gaussian noise
[40,41,43]. This result is confirmed in Fig. 6 where the
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FIG. 3. Main panels: Height-height correlation function for the
WV model with kinetic barrier at distinct times indicated in the
legends for (a) one- and (b) two-dimensional substrates. The number
of steps is Ns = 1. The averages were computed over Nav = 100
independent runs. Insets: Correlation functions averaged over Nav =
1 and 10 samples for the original WV model at time t = 105 showing
that the oscillations observed in single samples are not due to regular
structures.

short time behavior is consistent with the growth exponents
β = 3/8 in d = 1 and β = 1/4 in d = 2 expected for the
linear MBE universality class [3]. It is worth mentioning
that these models may undergo crossovers to different uni-
versality classes in the asymptotic limit, depending on the
dimension and model [29–31,39,44,45]. The curves in Fig. 6
are consistent with crossovers to different universality classes
at long times. One expects that original DT is asymptotically
consistent with the non-linear MBE equation with λ > 0
[31,32,46], for which β ≈ 1/3 and 1/5 in d = 1 and d = 2,
respectively,1 while crossovers to the Edwards-Wilkinson uni-
versality class with β = 1/4 in d = 1 and β = 0 (logarithmic

1The exponents β = 1/3 and 1/5 are predictions of the one-loop
renormalization group [40,41]. Two-loop calculations [47], however,
predict corrections where the growth exponents are slightly smaller
than these values.
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FIG. 4. Main plot: Height-height correlation function depen-
dence with the parameter Ns (indicated in the legends) for the WV
model with kinetic barrier in two-dimensional substrates at a time
t = 105. Inset: Same as the main plot for one dimension at a time t =
107. Curves correspond to averages over 100 independent samples.

growth) in d = 2 are expected for the original WV model
[30,39]. The simulations with the kinetic barrier, however,
depart from the original dynamics after a transient which
increases with the diffusion of particles. For long times, an
evolution consistent with an uncorrelated growth described by
∂h
∂t = η, characterized by a growth exponent β = 1/2 [3], is
observed. This observation can be rationalized as follows. At
long times, mounds interact weakly since the kinetic barrier
reduces drastically the inter-mound diffusion. Consider the
idealized case of plateaus of size L0 with infinity barriers at
their edges. A particle initially adsorbed on the top of a plateau
will never slide down to its bottom. So, the probability that this
plateau receives R particles after one unity of time (deposition
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FIG. 5. Main plot: Correlation function for the DT model in two-
dimensional substrates for distinct times shown in the legends and
fixed Ns = 10. Inset: Correlation function for DT model with kinetic
barrier in two dimensions at a fixed time t = 105 and different values
of Ns shown in the legends. Curves correspond to averages over 100
independent samples.
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FIG. 6. Time evolution of the interface width w for WV (main
panels) and DT (insets) models grown on (a) one- and (b) two-
dimensional substrates. Both simulations with the kinetic barrier
(using Ns values indicated in the legend) and the original version are
shown. In (a), dashed and solid lines are power-laws with exponents
3/8 and 1/2, respectively, in both main panels and insets. In (b), the
exponents of the dashed and solid lines are 1/4 and 1/2, respectively.

of L particles) is a binomial distribution

P(R) =
(

L

R

)
pR(1 − p)L−R 	 1√

2πL0
e− (R−L0 )2

2L0 , (5)

where p = L0/L is the probability that a particle is deposited
on this terrace and 1 � L0 � L is assumed in the Gaussian
limit in the right-hand side of Eq. (5). We argue that this
situation is similar to the weakly interacting mound observed
in our simulations.

In addition, as can be seen in Fig. 7, the characteristic
lateral lengths of simulations with kinetic barrier saturate after
an initial transient in values that increase with the parame-
ter Ns while the models without barrier present coarsening
with ξ ∼ t1/z [3]. The saturation implies that the aspect ra-
tio (height/width) of the mounds remains increasing with
time and the surface does not present slope selection form-
ing columnar growth. This property is also reflected in the
asymptotic interface width scaling as w ∼ t1/2. As explained
previously, it can be interpreted as an uncorrelated evolution
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FIG. 7. Characteristic length of mounds ξ for WV (main plots)
and DT (insets) models with and without the kinetic barrier in
(a) one- and (b) two-dimensional substrates for different values of
the parameter Ns indicated in the legend.

of the columns, in which the 1/2 exponent comes out. The
results shown in the insets of Figs. 6 and 7 corroborate that
the DT model presents the same behavior of the WV model
despite of the mounds are less evident in the former.

Instability and mound formation can be investigated con-
sidering the surface currents [48,49]; see [50] for details. In
this work, we investigated the out-of-plane component of the
current defined as [51]

Jz = 1

N

∑
(i, j)

sgn(δh)D(i, j)Pδh(i, j), (6)

where sgn(x) = 1 for x > 0, sgn(x) = −1 for x < 0, and
sgn(0) = 0 is the definition of the sign function, Pδh(i, j) is
given by Eq. (1), and D(i, j) is the rate of hopping attempts
from site i to j and depends on the investigated model. The
sum runs over all N pairs of nearest neighbors of the lattice.
Let ni be the number of lateral bonds of site i and nmax

i the
largest number of bonds among the nearest neighbors of i. For
the WV model, D(i, j) is given by

D(i, j) =
{

1/qWV
i , if n j = nmax

i and ni < nmax
i

0, otherwise
, (7)
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FIG. 8. Evolution of the out-of-plane current for (a) WV and
(b) DT models grown in one-dimensional substrates. Models with
the kinetic barrier using Ns = 1, 2, and 10 steps (indicated in the
legend) and the original version are shown.

where qWV
i is the number of nearest neighbors with nmax

i
lateral bonds. We can express D(i, j) for the DT as

D(i, j) =
{

1/qDT
i , if n j > 0 and ni = 0

0, otherwise
, (8)

where qDT
i is the number of nearest neighbors with at least one

lateral bond. The quantity Jz is the average interlayer diffusion
rate per site.

The currents for simulations in d = 1 are presented in
Fig. 8. All versions in both 1 + 1 and 2 + 1 dimensions are
characterized by a current with a downward (negative) flux
with the intensity decreasing monotonically. Considering the
last decade of time, we estimated the current J∞ for t → ∞
using a regression with a simple allometric function in the
form

Jz = J∞ + at−γ , (9)

where a and γ are parameters. In all cases with step barrier,
we obtained asymptotic small negative currents with a non-
universal value of γ . The results can be seen in Table I. The
absolute currents for the standard models are considerably

TABLE I. Parameters J∞ obtained in the regression using the
Eq. (9) in the last decade of data of the out-plane current curves
(t > 106 for d = 1 and t > 105 for d = 2).

d = 1 d = 2

WV DT WV DT

Ns = 1 −0.0015 −0.0033 −0.042 −5 × 10−5

Ns = 2 −0.0019 −0.011 −0.052 −3 × 10−4

Ns = 10 −0.020 −0.014 −0.053 −5 × 10−4

Original −0.048 −0.023 −0.050 −0.030

larger than in the cases with a barrier. The values for the
DT model with a barrier are very small indicating that this
current could be actually null in the asymptotic limit as
observed in thermally activated diffusion models with ES step
barriers [51]. In the case of the WV model, the current values
may indicate the same asymptotic behavior, but our present
accuracy does not allow a conclusion on this issue.

IV. CONCLUSIONS

In this work, we investigate the effects of a purely kinetic
barrier caused by the out-of-plane step edge diffusion [20] on
limited-mobility growth models. The cases of studies were
the benchmark models of Wolf-Villain [21] and Das Sarma–
Tamborenea [22]. Large-scale simulations were performed
considering one- and two-dimensional substrates. It was ob-
served that the introduction of the kinetic barrier induces
the formation of quasiregular mound structures differently
from those obtained with the original models that forms
irregular (self-affine) structures in the interface. The kinetic
barrier stabilizes the mound width, leading to the formation
of quasiregular structures. The interface width in models with
kinetic barriers has an initial regime similar to the original
models. However, a growth exponent very close to β = 1/2
is observed for asymptotically long times. Also, the charac-
teristic lateral length saturates after a transient that depends
on the number of steps that an adatom can perform before
irreversibly stick in a position. These results are consistent
with mounds evolving independently. The dynamics in both
one- and two-dimensional substrates are characterized by a
strong reduction of downward current with respect to the orig-
inal models. The downward flux has an intensity decreasing
monotonically to an asymptotic value that seems to be null
for the DT model and small for WV, the latter being possibly
subject to strong crossover effects in the present analysis.

A central contribution of this work is to show that a very
simple mechanism neglected in a previous analysis, in which
particles also diffuse in the direction perpendicular to the
substrate, is able to change markedly the surface morphology
of basic growth models with limited mobility. Our results are
qualitatively very similar to those obtained when an explicit
step barrier, with a smaller probability to move downward,
is considered [36]. Particularly, asymptotic mound morphol-
ogy has been reported for limited mobility models in d = 2
without barriers with the application of the noise reduction
method [38]. Our results corroborate this scenario since a
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small perturbation induces mound instability in this kind of
processes while it alone does not produce mounds in models
with thermally activated diffusion [51].

We expect that the concepts investigated in this work
will be applied to more sophisticated models and aid the
understanding of pattern formation in film growth and the
production of self-assembled structures for technological
applications.
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