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Glassy dynamics in asymmetric binary mixtures of hard spheres
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We perform a systematic and detailed study of the glass transition in highly asymmetric binary mixtures
of colloidal hard spheres, combining differential dynamic microscopy experiments, event-driven molecular
dynamics simulations, and theoretical calculations, exploring the whole state diagram and determining the self-
dynamics and collective dynamics of both species. Two distinct glassy states involving different dynamical arrest
transitions are consistently described, namely, a double glass with the simultaneous arrest of the self-dynamics
and collective dynamics of both species, and a single glass of large particles in which the self-dynamics of the
small species remains ergodic. In the single-glass scenario, spatial modulations in the collective dynamics of
both species occur due to the structure of the large spheres, a feature not observed in the double-glass domain.
The theoretical results, obtained within the self-consistent generalized Langevin equation formalism, are in
agreement with both simulations and experimental data, thus providing a stringent validation of this theoretical
framework in the description of dynamical arrest in highly asymmetric mixtures. Our findings are summarized
in a state diagram that classifies the various amorphous states of highly asymmetric mixtures by their dynamical
arrest mechanisms.

DOI: 10.1103/PhysRevE.99.042603

I. INTRODUCTION

The binary hard-sphere (HS) mixture is one of the sim-
plest representations of a many-body system with competing
scales. Hence, it is a suitable model to investigate how the
emergence of distinct timescales and length scales influences
the physical behavior of a multicomponent glass-forming
liquid, a question that still awaits a unified answer and with
the potential to enhance the rational design of amorphous
materials with high scientific and technological relevance
based, for instance, on metallic alloys [1–4], polymers [5,6],
colloids [7,8], and bioactive composites [9].

Colloidal suspensions of HS have played a crucial role
in the study of glasses [10–13] and gels [14–16] providing
neat experimental realizations of dynamically arrested states
in finely controllable systems and conditions [17–24]. In
the case of a monodisperse HS suspension, the key control
parameter is the volume fraction of colloids φ [10,11]. Close
to the glass transition (GT) point, φ ≈ 0.58, the relaxation
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of the microscopic dynamics becomes extremely sluggish
despite very small changes in the structure, and the motions
of individual particles are inhibited by transient cages formed
by neighboring particles [25]. The addition of a second col-
loidal species with a different size drastically modifies this
scenario. Even for a small size disparity (δ ≡ σs/σb � 0.4;
σs and σb being the diameters of the small and big particles,
respectively), this implies a significant shift of the GT point
to a larger total volume fraction [26], accompanied with
spatial and temporal heterogeneities, and appreciable aging
effects [27,28]. For even larger degree of asymmetry (i.e.,
smaller δ), and depending on the composition of the mixture,
different and more complex dynamical arrest transitions are
observed, leading, for instance, to the formation of attractive
and asymmetric glasses [29–34].

The existence of distinct glassy states in highly asymmet-
ric binary mixtures of HS has been long known [29–40].
However, and despite several earlier studies on the dynamics
of this system, presently there is no systematic and detailed
investigation that explores the full parameter space and that
compares experiments, simulations, and theory near the dif-
ferent dynamical arrest transitions observed and predicted in
these mixtures. Such a comprehensive coverage, however, is
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crucial to obtain a deeper understanding of the glassy behavior
in multicomponent systems, where distinct length scales and
timescales compete in a nontrivial way, leading to a complex
dynamical arrest landscape. In particular, the recent advent of
differential dynamic microscopy (DDM) [31–34] renders the
experimental characterization of the dynamics of both species
in the large asymmetric regime possible. These advancements
allow us thus to develop and test a consistent description of the
GT in the binary HS model, which was missing. This provides
the main motivation of this work.

We present such a description in terms of experimentally
accessible quantities: the wave-vector dependent collective
intermediate-scattering functions (ISF) and its single-particle
counterpart, the self-intermediate-scattering functions (SISF).
The ISF probe the overall changes in structure (on a cer-
tain wavelength) due to collective rearrangements of parti-
cles, while the SISF allow to quantify the statistics of the
movements of individual particles. The latter is connected, in
the low-wave-vector limit, to the mean-squared displacement
(MSD) of the particles as an easily interpreted observable to
quantify particle mobility. As we will show following, the
different glasses that emerge in binary mixtures, called the
single glass and the double glass, are best characterized by
their different wave-vector dependence of the collective dy-
namics regarding the species-resolved ISF, and by the degree
of coupling between the self-dynamics probed in the SISF of
each species and the collective dynamics probed in the ISF.
The characterization thus requires the ability to resolve both
species’ dynamics in experiments and simulations.

From the theoretical point of view, the well-known mode
coupling theory (MCT) of the GT [41–44] laid down a strong
basis for the first-principles description of dynamical arrest
in multicomponent glass-forming liquids [33,35,36]. More
recently, the self-consistent generalized Langevin equation
(SCGLE) theory of dynamical arrest [45–48] has joined MCT
on this endeavor [37,38]. Despite the different starting points
adopted in deriving each theoretical framework, a generic
asymptotic solution valid for either MCT or SCGLE can
be constructed close to conditions of dynamical arrest [49].
Thus, it is not surprising to find several similarities in the
results provided by both approaches when they are applied
to a specific model. A prominent example is the case of a
HS binary mixture with disparate sizes [35–38], where the
GT scenarios of MCT and SCGLE are essentially the same
and qualitatively describe the few available experimental data
for colloidal HS [29–33] and the limited number of results
of molecular dynamics (MD) simulations for soft-sphere mix-
tures [23,39,40].

To date, however, these theoretical predictions have not
been rigorously and systematically validated against corre-
sponding results of both simulations and experiments, and
this provides an additional motivation for this work. We then
specifically show that the SCGLE qualitatively (and often
semiquantitatively) agrees with the data obtained from MD
and DDM, thus providing a trustworthy fundamental tool to
extrapolate the simulations and experimental results to those
states or observables that are not easily accessible with both
techniques, and to establish a generic picture of the physical
mechanisms of glass formation in mixtures with two disparate
length scales. Therefore, our work also paves the way to

establish the quality of the SCGLE-based description for the
technologically highly relevant situation of slowly evolving
colloidal suspensions, and other more complex glassy mix-
tures such as polymers [5,6] and metallic alloys [1–4], using
highly asymmetric binary mixtures of colloidal HS as proto-
typical models for multicomponent glass-forming liquids.

We combine experimental techniques based on DDM able
to resolve the dynamics of the two species, extensive event-
driven MD simulations and theoretical calculations within
the SCGLE formalism, to explore the full parameter space
and provide a consistent description of the different paths
to amorphous solidification of these systems. We specifically
show how, depending on the concentration of big and small
spheres and taking into account specifically the dynamical
contribution of the small and large particles, one can identify
two different glassy scenarios, which are characterized by dis-
tinct dynamical features at the level of both the self-dynamics
and collective dynamics.

We organize the data from experiments and simulations
along different paths of state points that approach dynamical
arrest by increasing the overall packing fraction in different
ways. These paths are grouped into those that approach the
single (S) and the double (D) glass, respectively. The grouping
also serves to emphasize that the different ways to approach
a transition (for example, by increasing the overall packing
fraction at fixed composition, or by adding particles of one
species) are qualitatively equivalent.

After showing that the theoretical framework provided by
the SCGLE accurately describes the data for the dynamics
obtained from MD simulations and DDM experiments, we
employ the theory to outline the main features of each glassy
state in terms of the length-scale dependence of the so-called
nonergodicity parameters, leading to the development of an
arrested states diagram, which qualitatively classifies all the
results. Details of the simulations and experiments are pro-
vided, respectively, in Appendices A and B, whereas a brief
summary of the SCGLE theory can be found in Appendix C.

II. RESULTS

We investigate two fundamentally distinct GT, referred
to as fluid to single glass (F-SG) and fluid to double glass
(F-DG). For this, we have studied binary mixtures of HS via
event-driven MD simulations (see Appendix A) and colloidal
HS suspensions (Appendix B) with a size ratio δ ≈ 0.2. The
choice of this value is motivated by several reasons. First, this
is a size ratio particularly interesting in terms of the physics of
the mixture because the two aforementioned dynamical arrest
scenarios can be investigated experimentally [31,33,35–37].
At larger values of δ, the physical mechanisms associated
to the two different length scales become too similar, and
hence, one of the transitions would not exist or would be
more difficult to distinguish. Second, this size ratio can be
realized in experiments with both particle species undergoing
significant Brownian (diffusive) motion within the experimen-
tal timescale and still being resolvable. Third, a larger size
disparity is not only more difficult to achieve experimentally,
but also implies a significant increase in the number of small
particles in the simulations and, thus, on the required com-
puting time. Furthermore, within a reasonable range of size
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FIG. 1. State space defined by the volume fractions of big, φb,
and small, φs, particles of a binary mixture of hard spheres (HS) with
size ratio δ = 0.2. Arrows indicate the distinct paths studied in this
work via MD simulations (solid symbols) and DDM experiments
(+, ∗, ×). All paths are also investigated with the SCGLE theory.
Paths S1,S2,S3 are used to investigate the dynamics of the transi-
tion from fluid to a single glass (F-SG), varying distinct control
parameters as indicated in Table I. Paths D1,D2 allow to study the
transition from fluid to the double glass (F-DG). The lines delimiting
the boundaries between regions F, SG, and DG are predictions of
the SCGLE [37] for the glass transitions of a binary HS mixture
(δ = 0.2) using the Percus-Yevick approximation [50] combined
with the Verlet-Weis correction [51] for the partial static structure
factors.

ratios, the exact value of δ is not expected to play a crucial role
in the determination of (metastable) amorphous states. This
is notably different for equilibrium crystalline states, which
might depend sensitively on size asymmetry. The SCGLE
theory predicts that the physical scenario does not change
qualitatively, for instance, when decreasing the size ratio from
0.2 to δ = 0.1 (see Appendix C). Thus, we expect our results
to be generic in the sense that they do not crucially depend on
the size ratio, as long as δ is small enough to provide a reason-
able separation of length scales. At fixed δ, the state space of a
binary mixture composed of N = Nb + Ns spherical particles
is spanned by the two volume fractions (φb, φs), where φi ≡
πρiσ

3
i /6 (i = b, s) and ρi = Ni/V . Alternatively, one could

also choose the total volume fraction φ = φb + φs and the
composition xs = φs/φ as control parameters [31–33]. For the
study of the F-SG and F-DG transitions, we have considered
the dynamics of the mixture at distinct state points in the
plane (φb, φs), organized for clarity in different paths as shown
in Fig. 1. For instance, paths S1,S2,S3 were used to study
the F-SG case, where S1 (solid symbols) was followed using
MD simulations and S2, S3 (∗, +) with DDM experiments.
Similarly, we ran simulations along path D1 (solid symbols),
complemented with DDM measurements along path D2 (×)

TABLE I. List of the state points studied by means of MD sim-
ulations, DDM experiments, and SCGLE theory for the transitions
from the fluid (F) state to the single glass (SG) and to the double
glass (DG), respectively.

Sample φb φs SCGLE MD Expt. Transition

S1a 0.40 0.05 � � × F-SG
S1b 0.45 0.05 � � × F-SG
S1c 0.50 0.05 � � × F-SG
S1d 0.55 0.05 � � × F-SG
S1e 0.60 0.05 � � × F-SG
S2a 0.5225 0.0275 � × � F-SG
S2b 0.551 0.029 � × � F-SG
S2c 0.5795 0.0305 � × � F-SG
S3a 0.594 0.006 � × � F-SG
S3b 0.6039 0.0061 � × � F-SG
S3c 0.6138 0.0062 � × � F-SG
D1a 0.30 0.20 � � × F-DG
D1b 0.35 0.20 � � × F-DG
D1c 0.40 0.20 � � × F-DG
D1d 0.45 0.20 � � × F-DG
D2a 0.30 0.25 � × � F-DG
D2b 0.30 0.30 � × � F-DG

to test the F-DG transition. In all cases, we investigate the
dynamics at the same state points also using the SCGLE
theory. To facilitate the discussion, all the state points explored
are summarized in Table I.

Let us mention in advance that the two lines delimiting the
boundaries of the F region in Fig. 1, and the line separating
region SG from DG, correspond to theoretical predictions of
the SCGLE for the GT in a HS binary mixture, with δ = 0.2,
using the Percus-Yevick approximation [50] combined with
the Verlet-Weis correction [51] for the partial structure factors.
After presenting the main results from MD and DDM, we
provide a detailed discussion concerning the determination of
these transition lines and other features predicted by the SC-
GLE (Sec. II D). The main details of the theory are provided
in Appendix C and can also be found in Ref. [37].

A. Dynamics of the F-SG transition

To describe the dynamics of the mixture towards the F-SG
transition, let us start with path S1. As shown in Table I, this
path considers a fixed φs = 0.05 while increasing φb, and was
investigated via SCGLE and MD simulations, thus allowing
to resolve both the self-dynamics and collective dynamics of
the two species.

Figures 2(a) and 2(b) display a comparison of the SCGLE
predictions and MD results, respectively, for the behavior of
the SISF, F S

i (q, t ) ≡ 〈exp [iq · �R(i)(t )]〉, evaluated at q∗ =
7.18, where �R(i)(t ) denotes the displacement of any of
the Ni particles of species i (= b, s) over a time t , q is the
scattering vector, and the reduced wave number q∗ ≡ qσb

is used. To allow for a one-to-one comparison between the
SCGLE results and the MD simulations, we have used the
molecular version of the SCGLE theory [52] (see also Sec. 2
of Appendix A).

As shown in these figures, the SISF of the small particles
(open symbols) decay much faster than those of the large
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FIG. 2. Self- and collective-intermediate-scattering functions
(SISF and ISF) of the large and small particles, calculated along the
state points of path S1 (as indicated), at fixed reduced wave number
q∗ ≡ qσb = 7.18, and as a function of the reduced time t∗ ≡ t/t0

b ,
where t0

b = σb
√

Mb/kBT , Mb is the mass of any of the large particles,
kB the Boltzmann constant, and T the absolute temperature (see
Ref. [52] and Appendix A). (a) Results of the SCGLE theory for the
SISF F S

b (q∗ = 7.18, t∗) (solid symbols) and F S
s (q∗ = 7.18; t∗) (open

symbols), including the solid and dashed curves for, respectively, the
big and small particles, at the critical value φ

(g)
b = 0.638. (b) Cor-

responding results obtained with event-driven MD simulations. (c),
(d) Corresponding results for the ISF fbb(q∗ = 7.18, t ) (solid sym-
bols) and fss(q∗ = 7.18, t ) (open symbols).

ones (solid symbols) at all the state points of path S1. Upon
increasing φb, a general slowing down is observed in both
F S

s and F S
b , but the slowdown is much more pronounced

for the large particles. This scenario is essentially the same
in both theory and simulations, except for small differences
in timescales. The MD results show a slightly faster decay
of F S

b for low φb (S1a–S1d) and a slower decay for large
φb (S1e). In addition, in the simulations F S

s develops a fi-
nal stretched relaxation pattern that is reminiscent of that
seen in the dynamics of tracers moving in crowded environ-
ments [33], for instance, diffusion in heterogeneous porous
media [53].

The SISF of the small species always decays to zero, in
contrast with that of the large spheres, which becomes much
slower and eventually does not decay within the observation
time window of the MD simulations. Furthermore, the theory
predicts that F S

b eventually develops a two-step relaxation,
characteristic of the GT of a HS system, and occurring at the
critical volume fraction φ

(g)
b = 0.638 [solid line in Fig. 2(a)].

This state point, however, has no counterpart in the simula-
tions because aging effects, which are observed even at S1e,
become too severe. Also, the MD simulations at S1e show
a static structure of the large particles that is very different
from the other state points along path S1, although it is
compatible with that of a highly amorphous solid (see Sec. 3
of Appendix A). Thus, at the level of self-dynamics, only the
large species shows a signature of arrest.

We now turn to the collective dynamics and consider
the normalized ISF, fii(q, t ) ≡ Fii(q, t )/Sii(q), with Fii(q, t ) =
〈∑N

j,k exp{iq · [r(i)
j (t ) − r(i)

k (0)]}〉/N , where r(i)
j (t ) describes

the position of the jth particle of species i at time t , and
Sii(q) denotes the corresponding partial static structure factor
[i.e., Sii(q) = Fii(q, t = 0)]. Figures 2(c) and 2(d) display the
predictions of the SCGLE compared to MD data for q∗ =
7.18, which both provide essentially the same scenario. One
notices first that the behavior of fbb is essentially the same
as that of F S

b , in contrast with fss which qualitatively differs
from F S

s . At the state point S1a, for instance, the relaxation
patterns of the SISF and ISF of the small species are clearly
distinct (open circles), where the latter exhibits a two-step
relaxation pattern not observed in the former. Upon increasing
φb, fss gradually evolves and eventually follows the same
trend as fbb, not only at long delay times but for almost all
times. This feature is not observed in the self-dynamics. Thus,
approaching the F-SG transition the normalized collective
ISFs of both species become slower and coupled at wave
number q∗ = 7.18. These features are qualitatively the same
in both SCGLE and MD results, although in the MD results
one observes again slightly different relaxation times.

Let us now consider path S2, along which xs = 0.05 is
fixed (rather than fixing φs) and φ increases toward the F-SG
transition. As mentioned before, this path was investigated
by means of DDM experiments yielding the ISF of the two
species. The results are shown in Fig. 3. Despite the limited
time window of the experiments (lower panel), one notices
that the measured ISF display similar behavior as that found
along path S1, where with increasing concentration both cor-
relation functions become slower and fss starts to follow, in
particular at long times fbb. The qualitative similarity between
the results of paths S1 and S2 suggests that the overall dy-
namical scenario does not depend on the specific route along
which the transition is approached.

We have additionally analyzed the q∗ dependence of
fii(q∗, t∗) for the more concentrated samples along paths
S1 and S2, i.e., the points S1e and S2c. Results for both
state points show good qualitative agreement between theory,
simulations, and experiments, as shown in Figs. 4 and 5,
respectively. Both fbb and fss display an initial acceleration of
the decay with increasing q∗, a slowing down for q∗ = 7, and a
second acceleration for larger q∗ at the state point S1e. As we
will discuss later in Sec. II D, these effects can be attributed
to the modulation of the structure factor of large particles.
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τB = σ 2
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the bottom panel DDM measurements. To scale experimental data,
we used τB = 150s (see Appendix B).

Additionally, for q∗ > 7, fss develops distinct relaxation pat-
terns to those observed in fbb; a faster initial decay followed
by an intermediate inflection point, whose height oscillates
with increasing q∗. This reflects the increasingly smaller
fraction of small particles that are temporarily trapped at
increasingly shorter length scales (larger q∗ values). These
features are also observed in the experimental results at S2c
displayed in Fig. 5, although with some minor quantitative
differences with respect to the theory, thus suggesting a void
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different wave numbers q∗ (as indicated) as a function of the reduced
time t∗, obtained from the SCGLE theory (upper panel) and MD
(lower panel). The vertical dashed line in the lower panel indicates
t∗ = 10, at which the values fii(q∗, t ) have been extracted for the
comparison in Fig. 15(a).
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FIG. 5. Collective ISF for the large fbb(q∗, t∗) (solid symbols)
and small fss(q∗, t∗) (open symbols) particles, at the state point S2c,
for different wave numbers q∗ (as indicated) as a function of the
scaled time tB. The top panel displays predictions of the SCGLE
theory and the bottom panel DDM measurements.

structure slightly different in the theoretical and experimental
samples or hydrodynamic interactions playing a significant
role.

One notices that for samples S1e and S2c, experiments
and simulations are consistent with the theoretical predic-
tions. The data display essentially the same behavior and the
structural relaxation times are roughly equal for q∗ � 7. The
two samples correspond, however, to overall packing fractions
φ = 0.65 and 0.60, respectively. Hence, the results support
the theoretical prediction that, toward the F-SG transition, the
total volume fraction to reach the GT in the binary mixture
increases upon the addition of small particles [36,37].

To further investigate the influence of both φs and φb on the
dynamics of the small particles close to the F-SG scenario, we
also consider path S3, which corresponds to experimental data
previously reported for fss(q∗, t ), at φ ≈ 0.61 and xs = 0.01
(i.e., φs ≈ 0.006, see Table I) [33]. The results displayed in
Fig. 6 show that, in comparison to paths S1 and S2 (where
φs = 0.05 and φs ≈ 0.03, respectively), the height of the
plateaus in fss is generally lower at comparable q∗ values. This
implies that due to crowding, i.e., increasing φs, localization
involves a larger fraction of small particles down to smaller
length scales. Again, experiment and SCGLE are in good
overall agreement. However, obvious differences arise at q∗ ≈
7. This value corresponds to the length scale set by the nearest-
neighbor cages of big particles, and it is associated to a strong
peak in the static structure factor of the large species. The dif-
ferences may represent the deviations of the idealized binary
HS mixture assumed in the theoretical calculations from the
experimental model system. For example, in the experimental
samples, both species are polydisperse to avoid crystalliza-
tion. Thus, one expects that density fluctuations around the
value q∗ ≈ 7 will be noticeably affected by the degree of
polydispersity in the large particles; this is not accounted
for in the theory. For the strictly binary model system, one
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S3 for different values of q∗ (as indicated) as a function of the scaled
time tB. Left column: experimental results reported in Ref. [33].
Right column: SCGLE predictions for the same state points. The
vertical dashed line in the upper left panel indicates the time tB =
66.7 (i.e., t = 104 s), at which the values fss(q∗, tB = 66.7) were
extracted for the comparison shown further below in Fig. 15(c).

observes important variations in both the static structure factor
and the fbb(q, t ) around q∗ = 7 that are strongly smeared
out due to polydispersity. Hence, a comparison of plateau
values at this length scale overemphasizes the differences in
the q-dependent structure functions.

We finally consider the behavior of the mean-squared
displacements (MSD) along path S1. Figure 7 reports a
comparison of the results obtained from MD (symbols) and
SCGLE (lines). The features of the self-dynamics toward
the F-SG transition previously illustrated in terms of the
SISF [Figs. 2(a) and 2(b)] are also manifested in the corre-
sponding MSDs W ∗

i (t ; φb, φs) ≡ 〈(�ri(t ))2〉/6σ 2
b (i = s, b).
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FIG. 7. MSD for the large (solid symbols and solid lines) and
small particles (open symbols and dashed lines) along path S1 (as
indicated) obtained from MD simulations (symbols) and the SCGLE
theory (lines).

For instance, one observes that, at intermediate and long
times, W ∗

s (t ) (open symbols) only decreases by a factor of
approximately one order of magnitude along path S1. Instead,
W ∗

b (t ) (solid symbols) decreases by more than two orders of
magnitude and exhibits an increasingly extended subdiffusive
regime at intermediate times with larger φb.

In summary, the dynamics of the binary mixture approach-
ing the F-SG transition was outlined with the assistance of
SCGLE, MD, and DDM experiments. In the self-dynamics of
the system, only the large spheres display arrest. The small
particles, instead, undergo long-ranged transport even if the
mixture as a whole is in a nonergodic state. In contrast, on
the level of collective dynamics, one observes that the two
species display nonergodic behavior, with the small spheres
following the dynamical arrest of the large ones, and with
modulations in the wave-number dependence of the dynamics
due to the frozen structure of the big spheres. This indicates
that the small particle’s density fluctuations cannot decay
independently from the very slow dynamics of the frozen
background formed by the large species. Thus, the F-SG
transition indeed is induced by the arrest of a single species,
the large particles which, however, lead also to the arrest of
the collective motion of the small spheres, but still allowing
individual small particles to explore the voids left by the large
particles.

B. Dynamics of the F-DG transition

We now consider the F-DG transition. For this, theory and
simulation results for constant φs = 0.2 and increasing φb,
i.e., along path D1, are first discussed. Figures 8(a) and 8(b)
report the behavior of the SISF along this path, and at fixed
q∗ = 7.18. Different from the case of approaching the F-SG
transition, one notices that the relaxation patterns displayed
by F S

b and F S
s are now rather similar. The latter still show the

faster decay, but upon increasing φb, both SISF slow down
by a similar factor. No signature of a stretched relaxation in
F S

s is observed, and F S
b now decays within the observation

time window. These results reflect thus the lubricating effect
of the large enough fraction of small particles on the big parti-
cles’ dynamics, as suggested by previous experimental studies
[11,20,26–28,31,32] (compare, for instance, the behavior of
F S

b at the two state points S1e [Figs. 2(a) and 2(b)] and
D1d , both represented by down triangles, and both satisfying
φs + φb = 0.65).

The corresponding collective ISF are displayed in
Figs. 8(c) and 8(d). For the large particles, fbb behaves quite
similar to F S

b , and also decays faster in comparison to the
behavior found along path S1. In contrast, fss differs from F S

s
and shows a qualitatively distinct behavior with respect to path
S1. The collective ISF of the small species now rapidly shows
a relaxation pattern that, from intermediate times onward,
resembles that of the large particles fbb. Approaching the F-
DG transition, these correlation functions become essentially
indistinguishable.

To test the influence of φs on the qualitative features
observed in the collective dynamics approaching the double-
glass scenario, we next consider another route in which φb is
kept constant (at about 0.3) and φs is increased, i.e., path D2.
Figure 9 shows the results for the measured fbb and fss along
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FIG. 8. Self- and collective-intermediate-scattering functions
(SISF and ISF) of the large and small particles, calculated along
the state points of path D1 (as indicated), at fixed q∗ = 7.18, as a
function of the reduced time t∗ ≡ t/t0

b . (a) Results of the SCGLE
theory for the SISF F S

b (q∗ = 7.18, t∗) (solid symbols) and F S
s (q∗ =

7.18; t∗) (open symbols). (b) Corresponding results obtained with
event-driven MD simulations. (c), (d) Corresponding results for the
ISF fbb(q∗ = 7.18, t ) and fss(q∗ = 7.18, t ).

this path. Due to the limited measurement time (on the order
of a day), the experimental data extend over a smaller time
window. Thus, the final decay of both fbb(q, t ) and fss(q, t )
is not accessible in the experiments. Nevertheless, the trends
are compatible with the results of MD simulations along
path D1, where the relaxation of fbb and fss becomes slower
and practically indistinguishable but now with increasing φs.
Figure 9 also shows theoretical results for the states measured
in DDM. They agree in the sense that the relaxation functions
associated to the small and large particles resemble each other
as the glass transition is approached. The theory predicts a
much weaker variation in the final structural relaxation time
between the two state points along this path than that observed
in experiments. This could indicate that the glass-transition
point predicted by the theory is located at a slightly higher
packing fraction than corresponds to the experimental system.
It could be a quantitative error of SCGLE, but also due
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1
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FIG. 9. Collective ISF of the large fbb(q∗, t ) (solid symbols) and
small fss(q∗, t ) (open symbols) particles, along path D2 (as indi-
cated), at fixed q∗ = 7.06 as a function of the scaled time tB ≡ t/τB.
The top panel displays predictions of the SCGLE and the bottom
panel DDM measurements.

to the differences between the experimental system and the
binary HS model used in the theory, or uncertainties in the
experimental determination of the volume fraction [54].

The fact that the results along paths D1 and D2 share
similar qualitative features again highlights that the dynamical
arrest scenario that is associated to the F-DG transition does
not qualitatively change if the path used to approach the
transition is varied.

As above, we also study the q∗ dependence of the collective
dynamics for the most concentrated samples, i.e., D1d and
D2b (Figs. 10 and 11, respectively). One notices that, for
values q∗ � 7, the decay of both fbb and fss is very similar
and essentially independent of q∗ in MD and experiments. In
the theory, only a small and rather irrelevant acceleration with
increasing q∗ is observed. For q∗ > 7, the relaxation time of
both ISF continues monotonically and only moderately de-
creasing, but a slightly different initial relaxation is observed
in fss, followed by an inflection point and transient plateaus [in
the experiments this effect appears shifted to larger q∗(≈14)
with respect to MD and theory]. Furthermore, the height of
these plateaus is significantly larger than those appearing at
the state points S1e (Fig. 4) and S2c (Fig. 5), thus suggesting
weak structural effects on the collective dynamics toward the
F-DG transition.

Finally, let us refer to the behavior of the MSD along
path D1. This is shown in Fig. 12. For the state points we
considered, the small-particle MSD slows down by about
one decade in the final mobility, while in the case of the
large particles only by roughly a factor of 50. This is to be
contrasted with the conditions found along path S1, Fig. 7,
where a similar slowing down of a factor of 10 in the small-
particle MSD is caused by a much more drastic effect in the
large-particle self-dynamics (amounting to a factor of 500).

In summary, the results of this section reveal a different
scenario toward the F-DG transition, where the self-dynamics
of the large and small spheres becomes slower simultaneously.
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for the comparison in Fig. 15(b).

The collective dynamics also shows similar trends for the two
species at all the relevant length scales, and displays weak
structural effects. These results suggest that both big and small
spheres become arrested in the self-dynamics and collective
dynamics toward the DG domain.

C. Comparison of the dynamics toward the F-SG
and F-DG transitions

The self-dynamics and collective dynamics approaching
the F-SG and F-DG transitions have been described above and
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for different wave numbers q∗ (as indicated) as a function of scaled
time tB. The top panel displays predictions of the SCGLE theory and
the bottom panel DDM measurements.
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FIG. 12. MSD for the large (solid symbols and solid lines) and
small particles (open symbols and dashed lines) along path D1 (as
indicated) obtained from MD simulations (symbols) and the SCGLE
theory (lines).

will now be compared. For this, notice that for each state point
along path D1, there is a corresponding point along path S1
having the same total volume fraction φ, but a different com-
position xs ≡ φs/φ. To highlight the corresponding samples,
in Figs. 2 (path S1) and 8 (path D1) we have used the same
symbols to represent those state points with the same φ.

In Fig. 13, the evolution of the self-dynamics along both
paths is compared in terms of the φ dependence of the
structural relaxation times (also called α-relaxation times) τ S

i ,
approximated here as F S

i (q∗ = 7.18, τ S
i ) = 1/e. For samples

with the same φ, the relaxation time of the small species
is moderately larger along path D1 (φs = 0.2) than path S1
(φs = 0.05), but τ S

s displays essentially the same overall be-
havior in the φ range considered. This comparison, however,
does not take into account the distinct relaxation patterns that

0.45 0.5 0.55 0.6 0.65
φ

10-2

10-1

100

101

102

103

τ is

τb
S- Path S1 (SCGLE)

τs
S- Path S1 (SCGLE)

τb
S- Path D1 (SCGLE)

τs
S- Path D1 (SCGLE)

τb
S- Path S1 (MD)

τs
S- Path S1 (MD)

τb
S- Path D1 (MD)

τs
S- Path D1 (MD)

S1a
S1b

S1c

S1d

S1e

D1a
D1b

D1c
D1d

FIG. 13. Self-α-relaxation times of large (solid symbols, solid
lines) and small particles (open symbols, dashed lines) along paths
S1 and D1 as a function of the total volume fraction φ. Symbols
represent MD data and lines SCGLE results, as indicated.
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function of reduced wave number q∗, at the state points S1e and D1d ,
as indicated, predicted by the SCGLE theory.

are observed in F S
s along paths S1 [Figs. 2(a) and 2(b)] and

D1 [Figs. 8(a) and 8(b)]. The different nature of the slowing
down is revealed by considering the large-species’ dynamics
in addition. For φ < 0.6, the difference in the relaxation of
F S

b along both paths is smaller in comparison to the case of
the small spheres, with τ S

b being slightly larger along path
D1. A crossover, however, is observed at φ ≈ 0.6 and, for
higher φ(=0.65), τ S

b becomes noticeable larger along path
S1. Overall, for the range of packing fractions φ shown in
Fig. 13, a slowing down of the dynamics (as set by the
large particles) to a factor of about 1000 along path S1, is
compared to only a factor of about 50 along path D1. In
other words, a similar effect on the small-particle dynamics
corresponds to a much stronger slowing down of the large
particles along path S1 than along path D1. This is consistent
with the picture that toward the F-SG transition, the slowing
down of the small species is driven by the large particles,
whereas toward the F-DG transition both species undergo an
arrest transition. The theoretical results shown in Fig. 13 are
in reasonable agreement with the MD simulation data; except
for the structural relaxation time of the large spheres at the
highest φ, where the theory predicts a less drastic splitting
for the relative slowing down of the large and that of the
small particles, i.e., it underestimates the differences in the
two transition scenarios for the specific paths chosen here.

To compare the collective dynamics close to the F-SG
and F-DG transitions, we similarly consider collective re-
laxation times defined by fii(q∗, t∗ = τi ) = 1/e, for different
q∗ values, and at the state points S1e and D1d , respectively
(Fig. 14). For q∗ � 7.18, the relaxation times of the small and
large particles are strongly coupled for both compositions,
with path D1 displaying the slower relaxation for q∗ < 7
and a crossover at q ≈ 7.18 similar to the behavior of τ S

i .
At q∗ > 7.18 and large xs (i.e., many small particles, D1d)
the relaxation of each species is essentially the same, which
reflects a more pronounced contribution of the small-particles
dynamics to the slowing down of the mixture. In contrast, if

the fraction of small particles is decreased (small xs) and the F-
SG is close (S1e), one observes two separate relaxation times,
with the small species displaying a faster decay reflecting their
ability to explore the local environment.

D. Nonergodicity parameters and localization lengths

The previous results provide the cornerstone elements to
develop a general and unified description of the glassy dy-
namics in highly asymmetric HS binary mixtures. In order
to systematically analyze our observations, we now use the
SCGLE and subsequently compare its results to simulations
and experiments. Our previous discussion demonstrates that
this theoretical framework reasonably describes the features
observed in MD and DDM upon approaching dynamical
arrest. Thus, we employ the theory to construct the GT lines
in the parameter space and to summarize the structural and
dynamical features of the single- and double-glass states.
This is particularly helpful because a precise determination
of GT points from experiments and simulations is notoriously
difficult since all the samples close to a transition tend to
show severe instabilities and display history dependence. A
common protocol consists in estimating these points from the
divergence of the α-relaxation times τ S

i or, alternatively, from
an extrapolation of the long-time diffusion coefficients DL

i .
Nevertheless, these methods are prone to errors since they
intrinsically involve large uncertainties in the choice of the
specific extrapolation function and the fit range.

We consider the predictions for the GT lines of a HS binary
mixture, with δ = 0.2, provided by the SCGLE. Let us briefly
remind some technical details regarding the determination of
GT lines within this theoretical framework. The theory pro-
vides closed equations for the nondecaying components of the
collective ISF, commonly referred to as nonergodicity param-
eters (NEP) [10,11] and defined as f ∞

ii (q) ≡ limt→∞ fii(q, t )
and for the parameters γi, related to long-time limit of the
MSD of species i, limt→∞〈[�ri(t )]2〉 [37]. The quantities γ −1

b
and γ −1

s play the role of order parameters in the determination
of the ergodic-to-nonergodic transitions of the mixture. Both
are zero in a fully ergodic fluid state (F), leading also to
f ∞
bb (q) = f ∞

ss (q) = 0. Any other solution indicates partial or
total loss of ergodicity. For example, one finds a region (SG)
in the (φb, φs) plane characterized by the condition γ −1

b 
=
0, γ −1

s = 0, f ∞
bb (q) 
= 0, and f ∞

ss (q) 
= 0. This condition de-
scribes, thus, states where the self-dynamics of the small
particles remains ergodic, whereas that of the large species
becomes arrested, and where the collective ISF of both species
undergo arrest. Similarly, another region (DG) is found where
both order parameters and all fii(q) are different from zero.
Hence, based on the SCGLE, three different states of the
mixture can be distinguished: a fluid, where both species
diffuse, a double glass, in which both components become
arrested in the collective and self-dynamics, and a single glass,
where the collective dynamics of the system undergoes a GT,
but with the small particles still diffusing through the voids
left by the large spheres. The locus of the boundaries between
these regions defines the transition lines shown in Fig. 1.

The two different boundaries enclosing the ergodic region
F describe the following: The transitions from a fluid state
to a single-glass state (i.e., the F-SG transition), represented
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by the dashed line in Fig. 1; and the transitions from a fluid
state to a double-glass (F-DG) which corresponds to the solid
line in the same figure. The F-SG line runs from the state
point (φb = 0.582, φs = 0), i.e., the GT point in the absence
of small particles, and represents a monotonically increasing
function of φs, which indicates that the total volume fraction
of the mixture to reach the F-SG increases with φs. Therefore,
a single glass state can be melted upon the addition of small
particles [26]. As mentioned before, the previous results for
samples S1e (MD), S2c, and S3a (DDM) are consistent with
this prediction. In contrast, the F-DG line corresponds to a
distinct type of transition, where the total volume fraction for
the GT becomes a monotonically decreasing function of φs

and which intersects the vertical axis of Fig. 1 at the point
(φb = 0, φs = 0.582), i.e., the GT point in the absence of big
particles. Recall that the samples D1d and D2b (correspond-
ing to φ = 0.65 and 0.6, respectively) displayed essentially
the same dynamics and, thus, are in qualitative agreement
with this scenario. In the limit of small φb, this line describes
a special type of asymmetric glass, where the large particles
are localized in a glass of small spheres [36,37], as already
observed in previous experimental work [30–32].

Moreover, a third transition (dashed-dotted line in Fig. 1)
separates the SG-DG regions. This transition describes the
dynamical arrest of the small particles in the arrested large
spheres. We have not considered this transition in the MD or
DDM since this would require to perform extremely demand-
ing simulations and experiments due to the very slow dynam-
ics with pronounced aging effects [33]. Notice, however, that
the SCGLE predicts that samples along path S3 belong to the
SG domain, in agreement with the experimental conditions
reported in Ref. [33].

Figure 15 illustrates the different structural features as-
sociated with the distinct GTs, as they are expected from
the predictions of the SCGLE theory. We show the NEP of
the big, f ∞

bb (q∗), and small, f ∞
ss (q∗), particles at three points

located on the F-SG, F-DG, and SG-DG lines, respectively,
as a function of the reduced wave number q∗. To allow for a
comparison with MD data, we have chosen the points on the
F-SG and F-DG transition lines that correspond, respectively,
to the crossing points with paths S1 and D1. Similarly, we
have considered the extrapolation of path S3 with the SG-DG
line for a comparison with DDM results.

For the point at the intersection of the extended path S1
with the F-SG line [Fig. 15(a)], one observes an oscillatory
behavior in both f ∞

bb (q∗) and f ∞
ss (q∗), associated with the

modulations of the structure factor of the big species Sbb(q∗).
The two NEP appear coupled and they are essentially identical
up to q∗ ≈ 7.18, which approximately corresponds to the
location of the main peak of Sbb(q∗). Thus, at large length
scales, the collective dynamics of the small spheres is con-
trolled by the confinement by the large particles. For q∗ >

7.18, oscillations are still present, but become decoupled. The
NEP cease to oscillate and decay to nearly zero at values
q∗ ≈ 20 in the case of f ∞

ss (q∗) and q∗ ≈ 30 for f ∞
bb (q∗). This

indicates that, at smaller length scales, the small spheres can
still explore the local environment.

In contrast, for the point at the intersection of the extended
path D1 with the F-DG transition line [Fig. 15(b)], the theory
predicts a different behavior. Both f ∞

bb (q∗) and f ∞
ss (q∗) remain
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FIG. 15. Nonergodicity parameters (NEP) of the large particles
f ∞
bb (q∗) (solid lines) and of the small particles f ∞

ss (q∗) (dashed lines)
as a function of the reduced wave number q∗ predicted by the SCGLE
formalism (a) at the intersection of path S1 with the F-SG transi-
tion line; estimates of the NEP obtained from MD simulations for
fbb(q∗, t∗ = 10) (solid symbols) and fss(q∗, t∗ = 10) (open symbols)
at the state point S1e are also displayed, (b) at the intersection of path
D1 with the F-DG transition line; estimates of both NEP obtained
from MD simulations at the state point D1d are also shown, (c) at the
intersection of path S3 with the SG-DG transition line; experimental
data from Ref. [33] for fss(q∗, t = 104) (+ symbols) at the state point
S3a are also displayed.
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close to unity and without oscillations for q∗ � 7.18, thus
indicating the tendency of both ISF to develop higher plateaus
with respect to the previous case. For q∗ > 7.18, the NEPs
behave different and large oscillations appear in fss(q∗). Also,
a larger spectrum of nondecaying components in the ISF of
both species is observed up to q∗ ≈ 150 (not shown).

In Fig. 15(c), the SCGLE predictions for the behavior of
the NEP at the intersection of the SG-DG transition line with
the extended path S3 are shown. The behavior is qualitatively
similar to that observed at the F-SG transition, but fss(q∗) is
noticeably smaller than fbb(q∗) for q∗ � 7.18, and becomes
nearly zero for q∗ > 7.18. Hence, at this transition the small
particles become trapped in voids created by big particles,
thus resembling a localization transition in random porous
media [53].

Due to the technical reasons explained above, simulations
and experiments could not be performed at the GT. However,
the dynamics observed in both techniques close to the GT is
compatible with these theoretical predictions. Figure 15 also
shows estimates of the NEP obtained from MD and DDM.
As estimates, we use values of the ISF at an intermediate
time that is long enough to be outside the initial decay but
short enough to not yet probe the final structural relaxation
toward zero. As shown in Figs. 15(a) and 15(b), the data
extracted from the state points S1e (Fig. 4) and D1d (Fig. 10)
follow the qualitative trends discussed above for the F-SG
and F-DG transition lines, respectively. Along path S1, the
simulations confirm much lower plateau values for the small-
particle dynamics than the large-particle dynamics, while
along path D1 the nonergodic contributions from both species
are roughly identical. To probe the features of the SG-DG
transition, we estimate plateau values for f ∞

ss (q∗), obtained
from DDM experiments (Fig. 6, at t = 104 s) along path S3.
Here, the state S3a was chosen as a proxy because the data
for S3c proved to be too noisy. Given these restrictions, the
experimental data are in good qualitative agreement with the
theoretical prediction, as shown in Fig. 15(c).

We finally discuss the behavior of the long-time plateau
of the MSD, i.e., the parameters γb and γs. In an ordinary HS
glass, its height indicates the maximum possible displacement
inside a nearest-neighbors cage [31,32]. The square root of
this value is called localization length li and is a measure
of the local confinement. In Fig. 16, the behavior of the
localization lengths calculated along the F-SG and F-DG lines
is reported. For the F-SG line, the normalized localization
length l∗

b ≡ lb/σb of the big spheres (solid diamonds) is found
to be l∗

b ≈ 10−1 (notice that along this line the total volume
fraction of the mixture increases). Hence, their characteristic
cage size corresponds to approximately 10% of their diam-
eter, a typical feature of an ideal glass of HS. On the other
hand, the normalized localization length of the small particles,
l∗
s ≡ ls/σb, is infinite, indicating that the latter ones are not

localized and diffuse (a feature not observed for a small degree
of asymmetry [28]). These results are in qualitative agreement
with the scenario for the self-dynamics provided by the MD
simulations (Figs. 2 and 7).

At the intersection of the F-SG and F-DG lines, l∗
b dis-

continuously jumps from ∼10−1 to ∼10−2 (solid squares)
and l∗

s becomes suddenly finite with a value l∗
s ∼ 10−1 (open

squares). This indicates that along the F-DG line both species
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100
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~0.583
∼0.7

∼0.7

∼0.63

∼0.583

∼0.65

∼0.65

∼0.29

φ

φb

FIG. 16. Normalized localization lengths l∗
b (solid symbols) and

l∗
s (open symbols) of the large and small particles, respectively, as

function of the volume fraction of small particles φs, calculated
with the SCGLE formalism along the two transition lines enclosing
region F (Fig. 1).

are localized, with the small particles being less localized
than the large ones. The latter become even more localized
than along the F-SG transition in agreement with previous
experimental results [31,32] (see Sec. 2 of Appendix C).
As mentioned before in this case, the total volume fraction
decreases when going from the intersection point toward the
point (φb = 0, φs = 0.582). Both l∗

b and l∗
s become smaller

with decreasing φ and increasing φs, which implies that the
cage size along the F-DG line is controlled by the small
spheres.

Despite this qualitative agreement between SCGLE, MD,
and DDM results, one should also refer to the quantitative
differences found in comparison to additional experimental
data. For instance, for a higher degree of asymmetry (δ = 0.1)
the theory less accurately determines the locus of the GT
lines [29,30] (see Fig. 18 in Appendix C). Nevertheless, the
SCGLE results remain in qualitative agreement with the main
physical scenario emerging from such experimental character-
izations, and the theory reproduces also the behavior observed
for measurements at similar degree of asymmetry [31]. We
believe that these differences are due to the very simplified
character of the theory and the approximations applied in
the determination of the static structure factor [50,51], as
well as polydispersity, residual charges, and other effects
present in the experimental samples, in particular, hydrody-
namic interactions (HI). However, the consistent picture of the
arrest scenarios that emerges from our discussion of both MD
simulation data (where no HI are present by definition) and
experiments on colloidal suspensions suggests that HI do not
change the qualitative aspects of the different glasses found in
binary hard-sphere mixtures.

III. CONCLUDING REMARKS

By combining experiments, molecular dynamics simula-
tions, and theoretical calculations based on the SCGLE theory,
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we have presented a general and consistent physical descrip-
tion of glassy dynamics in highly asymmetric binary mixtures
of hard spheres. Two fundamentally different glass states, the
single glass and the double glass, as well as the corresponding
transitions from the fluid were examined and characterized in
terms of the experimentally accessible scattering functions,
namely, the collective ISF and the tagged-particle SISF. Both
glasses lead to dynamical arrest of the large particles, and,
for the case of the single glass upon further densification,
eventually also the small particles. Hence, both transitions are
related to distinct signatures in the dynamics.

Below a certain volume fraction of small spheres, a transi-
tion to a single glass is observed. The slowing down of the
dynamics of the system is dominated by the large species,
whose SISF and collective ISF indicate an approach to arrest
with the typical characteristics of the well-known glass tran-
sition of hard spheres. At large length scales, the collective
ISF of the small particles follows a pattern dictated by the
structure and dynamics of the big species, while at short length
scales appears decoupled. Moreover, the self-dynamics of the
small spheres does not arrest, but resembles the behavior of
a fluid embedded in a heterogeneous medium, including a
pronounced stretched decay in the relaxation functions at long
times. In this regime, we find that the overall volume fraction
to reach the glass transition becomes larger with increasing
volume fraction of small particles, i.e., the small spheres serve
to fluidize the mixture.

In the double-glass transition, both species show a broadly
similar approach to dynamical arrest. In consequence, the
same amount of slowing down in the large-particle dynamics
is accompanied by a much more pronounced concomitant
slowing down of the small particles than in the approach to
the single-glass transition. The strong coupling between the
two species is observed at essentially all length scales, i.e., the
microstructure and dynamics is determined by both particles.
Consistent with this behavior, in this regime the overall pack-
ing fraction required for dynamical arrest becomes smaller
with increasing packing fraction of the small particles.

Our characterization is based on the species-resolved col-
lective and tagged-particle scattering functions, the ISF and
the SISF, respectively. Broadly speaking, both intermedi-
ate scattering functions measure how a many-body system
changes with time on a given length scale. The ISF probes the
changes in the overall particle arrangement, while the SISF
is a measure of individual motion. A typical case is that the
motion of individual particles already suffices to induce a loss
of overall structure, and in these conditions the SISF and the
ISF decay roughly equally. This is, essentially, the case for the
double glass.

If, however, as in the single glass, some part of the overall
structure remains intact even though individual particles are
able to move, the SISF of the small spheres decays faster than
that of the large spheres, and also faster than the collective ISF
of the two species. In this sense, a decoupling between self-
dynamics and collective dynamics arises toward the single
glass. Note that this implies that the remnant structure of
the large particles inhibits an overall structural relaxation of
the large- as well as small-particle structure, and thus no
decoupling is observed between the ISF of the two species.

Therefore, a quantification of small-particle mobility in the
single glass requires the measurement of the SISF of this
species.

As predicted by the SCGLE, a collective quantity that
allows to distinguish the single and double glass is the propa-
gator �αβ (q, t ), defined by �(q, t ) ≡ F(q, t ) · S−1(q) (where
bold symbols indicate matrices in the species indices). The
quantity �αβ (q, t ) can be interpreted as the effect of the
static structure associated to the species β on the collective
dynamics of the species α. In the double glass, all entries of
�(q, t ) remain finite [37], whereas in the single glass only the
�αβ associated with β = b remain finite (positive or negative)
whereas those associated with β = s relax to zero (see Sec. 3
of Appendix C). This indicates that in the single glass, the
big-particles static structure affects the glassy (long-time)
dynamics of the small species, but the glassy dynamics of
large spheres is not influenced by the static structure of the
small particles (but only by their dynamics).

However, as discussed above, even in the collective ISF
distinct features arise due to the length-scale-dependent mi-
crostructure, and therefore wave-vector resolved experiments
provide valuable information to distinguish the different
glassy regimes of binary mixtures with disparate length scales.
A mere discussion of structural relaxation times at a single
length scale does not reveal the full information on the differ-
ent transition scenarios. Experiments that are able to resolve
the dynamics of both the large and the small species are
required to fully characterize the different glassy states. This
also points to the fact that effective single-species models
where the motion of one species (typically the small one) is
integrated out to yield an effective potential, are not sufficient
to understand the evolution from single to double glass.

Our simulations and the experimental data presented above
provide the first thorough validation of the SCGLE theory
of glass transitions in binary mixtures. Using the SCGLE
theory as an experimentally validated basis, we have con-
structed a generic state diagram of size-disparate binary hard-
sphere mixtures. The effects are generic to the appearance of
competing length scales in the system, and therefore should
be applicable also to a wider range of colloidal (non-hard-
sphere) mixtures and also polymeric or protein solutions
with different length scales and possibly also certain metallic
alloys.

Recently, the SCGLE approach has been extended to a
nonequilibrium (NE-SCGLE) theory of irreversible processes
in liquids out of thermal equilibrium [55–57]. The NE-
SCGLE provides a microscopically founded tool for the un-
derstanding of essential characteristics of the aging kinetics of
solidifying liquids or the processing-protocol dependence of
amorphous solids [58]. In this regard, the NE-SCGLE theory
has proven to be advantageous in its ease of generalization
and application over more rigorous (and technically involved)
theories, for example, those based on MCT. The results that
we present here are thus an important step in extending
SCGLE to the description of nonequilibrium transformations
in amorphous mixtures, which are the systems of applicational
relevance. We hope that this provides a basis to facilitate the
rational design of amorphous materials and eventually the
industrial processes involved in their fabrication.

042603-12



GLASSY DYNAMICS IN ASYMMETRIC BINARY MIXTURES … PHYSICAL REVIEW E 99, 042603 (2019)

ACKNOWLEDGMENTS

This work was supported by the Consejo Nacional de Cien-
cia y Tecnología (CONACYT, Mexico) through Grants No.
242364, No. 182132, No. 237425, No. 358254, No. 287067,
No. FC-2015-2/1155, No. LANIMFE-279887-2017, and No.
CB-2015-01-257636. L.F.E.A. acknowledges financial sup-
port from the German Academic Exchange Service (DAAD)
through the DLR-DAAD programme under Grant No. 212.
P.L. and S.U.E. acknowledge support by the German-Israeli
Foundation (Grant No. I-1345-303.10/2016). R.C.P. acknowl-
edges the financial support provided by Marcos Moshinsky
Foundation, the University of Guanajuato (Convocatoria Insti-
tucional de Investigación Científica 2018), and the Alexander-
von-Humboldt Foundation during his stay at the Henrich
Heine University, Düsseldorf.

APPENDIX A: SIMULATIONS

1. Technical details

We have carried out event-driven molecular dynamics
(MD) simulations for a HS binary system with size asymmetry
δ ≡ σs/σb = 0.2. We have simulated Nb big spheres and Ns

small spheres in a volume V . We have investigated the dynam-
ics of the mixture following two different paths in the plane
(φb, φs), representing fixed φs = 0.05 (for path S1 in Fig. 1)
and φs = 0.2 (for path D1), respectively, and increasing φb

toward the dynamical arrest transitions enclosing the fluid
region F predicted by the SCGLE theory.

For path S1, we have simulated a system of fixed Nb = 200
big particles and a variable number of small particles Ns.
More specifically, we have considered the following values for
each point investigated (Fig. 1): (S1a) Ns = 3125, (S1b) Ns =
2778, (S1c) Ns = 2500, (S1d) Ns = 2273, and (S1e) Ns =
2083. For each state point, the size of the cubic simulation box
was adjusted, together with Ns, in order to match φb. Along
path S1, 10 different seeds (realizations) of the system have
been used to explore the available phase space and to improve
statistics. For the points S1a–S1d we have used a waiting time
t∗
w = 103, whereas for point S1e we let t∗

w = 104 in order to
avoid aging effects.

For path D1, we have simulated Nb = 100 big particles and
(D1a) Ns = 8333, (D1b) Ns = 7143, and (D1c) Ns = 6250
small particles. For the state point D1d , we have considered
Nb = 150 and Ns = 8333. Along path D1, only five different
seeds were considered for each state point and a waiting time
t∗
w = 103.

In the simulations, the unit of length is defined by the
diameter of the large particles σb and the unit of mass is
defined as the mass of the big particles Mb. The mass densities
ρM

α ≡ Mα/vα [vα = 4π (σα/2)3/3, α = s, b] are set equal to
define the mass of the small particles. In the beginning,
the velocity distribution is updated in order to fix the ve-
locity of the center of mass of the system to zero. Thus,
setting kB = 1, the unit of time is defined from the equipar-
tition theorem 〈v2〉 = 3kBT/2Mc.m.. Periodic boundary con-
ditions were employed in all directions. Finally, in order to
generate nonoverlapping initial configurations, a soft stan-
dard MD with repulsive short-range potential and decreasing
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FIG. 17. Evolution of the radial distribution function gbb(r∗)
along the state points in pathS1 obtained from MD simulations as
indicated. The curves are vertically shifted for clarity and r∗ ≡ r/σb.

temperature was implemented [59]. This soft-core MD starts
from a completely random initial configuration.

2. Comparison of SCGLE theory and molecular dynamics

The SCGLE formalism is a theoretical framework to de-
scribe the dynamics of colloidal mixtures, i.e., dynamics orig-
inating from the Brownian nature of the microscopic particle
motion. In our work, the SCGLE analysis is compared with
results of MD simulations for HS, which are based on the
Newtonian character of the individual particle motion and
hence rather represent the motion of atoms. The long-time
dynamical equivalence between a colloidal and an atomic
liquid that share the same interparticle potential is well estab-
lished [60–63]. In contrast, a fundamental difference appears
in the short-time dynamics, colloidal motion is diffusive at
all relevant timescales, whereas atoms show a crossover from
ballistic to diffusive behavior after a few particle collisions. In
a recent contribution [52], a SCGLE theory for the dynamics
of multicomponent atomic fluids has been derived. When
complemented with a Gaussian approximation, the resulting
theory provides a reasonable representation of the transition
from ballistic to diffusive behavior in atomic liquids, allowing
us to quantitatively compare theory and MD simulations. The
details of this approach and its specific implementation are
discussed in Ref. [52].

3. Radial distribution function along path S1

Aside from the slowing down of both self-dynamics and
collective dynamics of the large spheres along path S1 (Figs. 2
and 7), the MD simulations also revealed structural behavior
similar to that of a highly amorphous material at the state point
S1e. This is seen in the evolution of the radial distribution of
the large species gbb(r) along the state points of path S1 shown
in Fig. 17.

042603-13



EDILIO LÁZARO-LÁZARO et al. PHYSICAL REVIEW E 99, 042603 (2019)

APPENDIX B: EXPERIMENTS

1. Materials

We have studied dispersions of sterically stabilized PMMA
particles of different diameters. For path S3, σb = 3.1 μm
(polydispersity 0.07, not fluorescently labeled) mixed with
particles of diameter σs = 0.56 μm (polydispersity 0.13,
fluorescently labeled with nitrobenzoxadiazole). For paths
S2 and D2, σb = 3.1 μm (polydispersity 0.06, fluorescently
labeled with Nile Red) mixed with particles of diameter
σs = 0.56 μm (polydispersity 0.13, fluorescently labeled with
nitrobenzoxadiazole). This resulted in a size ratio δ ≈ 0.18
for both systems. In all cases, the colloids were dispersed in a
cis-decalin/cycloheptylbromide mixture that closely matches
the density and refractive index of the colloids. We added salt
(tetrabutylammoniumchloride) to obtain hard-sphere-like in-
teractions [64,65]. The volume fraction φb of a sediment of the
large particles was estimated to be φb = 0.65 by comparing
with numerical simulations and experiments [25,66,67], the
uncertainty �φb typically is 3% [54]. In order to mix stock
dispersions with comparable dynamics and therefore distance
from the glass transition, we have assumed the generalized
Stokes-Einstein relation [68] to be valid, and therefore com-
pared the linear viscoelastic moduli of the one-component
dispersions of the two species. The volume fraction of the
small particles was adjusted until the linear viscoelastic mod-
uli, measured in units of the energy density 6kBT/πσb

3, were
comparable to those of the large particles. The frequency
was multiplied by the free-diffusion Brownian time τB =
3πησb

3/kBT , where η = 2.2 mPa s is the solvent viscosity.
Note that comparable rheological response and dynamics
imply that the stock dispersions of large and small particles
have a slightly different φ due to the different polydispersities.
Samples with different total volume fractions φ and composi-
tions, quantified by the fraction of small particles xs = φs/φ =
0.01, 0.05, were prepared by mixing the one-component stock
suspensions. We should mention that the experimental system
used in this work could be employed in principle to study also
the self-dynamics using a mixture of labeled and unlabeled
particles of the same batch. However, one could not easily
obtain batches of identical particles which are labeled and
unlabeled. Such kind of experiments will be performed in
future investigations.

2. DDM measurements and analysis

We used a Nikon A1R-MP confocal scanning unit mounted
on a Nikon Ti-U inverted microscope, with a 60× Nikon
Plan Apo oil immersion objective (NA = 1.40). Confocal
microscopy images were obtained in a plane taken approxi-
mately 30 μm from the coverslip. Images with 512×512 pix-
els, corresponding to 107 μm×107 μm, were taken at two
different rates: a fast rate of 30 frames per second to follow
the short-time dynamics and a slow rate, between 0.07 and
0.33 frames per second (depending on sample), to follow
the long-time dynamics. The maximum pinhole diameter of
255 μm was used. Time series of 104 images were acquired
for 2 to 5 distinct volumes, depending on sample.

Details of the image analysis using the DDM approach to
obtain the intermediate scattering function f (q, t ) have been

reported previously [33,34]. For measurements along path S2,
instabilities of the microscope setup, mainly caused by a slow
drift of the stage, limited the maximum measurement time.

APPENDIX C: THEORETICAL ANALYSIS

1. Multicomponent SCGLE theory

The SCGLE theory of colloid dynamics and dynami-
cal arrest was previously introduced [45,46,48] and fur-
ther extended to mixtures [37,38,47]. It provides the time
and wave-vector dependence of the relevant dynamical
properties of a colloidal mixture. Details of the deriva-
tion of this theory and its application to colloidal model
systems are provided in Refs. [37,38,47] and references
therein. The theory is summarized by a set of self-consistent
equations describing the time evolution of the matrix
F(q, t ), whose αβ elements are the partial intermediate
scattering functions (ISF), [F(q, t )]αβ ≡ 〈nα (q, t )nβ (−q, 0)〉,
with nα (q, t ) = ∑Nα

i= j exp[iq · r(α)
j (t )]/

√
Nα being the Fourier

transform of the local density of particles of species α,
nα (r, t ) = ∑Nα

j=1 δ(r − r(α)
j (t ))/

√
Nα , and where r(α)

j (t ) de-
notes position of the jth particle of species α at time t .
The initial value F(q, 0) is thus the static structure matrix
S(q), with elements [S(q)]αβ = 〈nα (q)nβ (−q)〉, and consti-
tutes one input needed to solve the SCGLE equations. In
this contribution, we employ the Percus-Yevick (PY) approx-
imation [50] combined with the Verlet-Weiss (VW) correc-
tion [51] to determine the matrix S(q) of a binary mixture
of hard spheres (HS). The SCGLE also provides the time
evolution of the self-part of F(q, t ), referred to as self-ISF
matrix FS (q, t ), and with elements defined as [FS (q, t )]αβ ≡
δαβ〈exp[iq · �rα (t )]〉, where �rα (t ) denotes the displacement
of any of the Nα particles of species α over a time t and δαβ

is the Kronecker’s delta. Written in the Laplace domain, the
SCGLE equations read as [37,47]

F(q, z) = {zI + q2D · [zI + λ(q) · �ζ̂
∗
(z)]−1

·S−1(q)}−1S(q) (C1)

and

FS (q, z) = {zI + q2D · [zI + λ(q) · �ζ̂
∗
(z)]−1}−1, (C2)

where I is the identity matrix [I]αβ = δαβ , D and λ(q) are
diagonal matrices defined as [D]αβ ≡ δαβD0

α , and [λ(q)]αβ =
δαβ[1 + (q/qc

α )]−1, and with D0
α being the short-time self-

diffusion coefficient of species α. The parameter qc
α is an

empirical cutoff wave vector written as qc
α = aqmax

α , in which
qmax

α denotes the position of the maximum of Sαα (q), and
a > 0 is the only free parameter, eventually determined by a
calibration procedure [58].

The αα element �ζ ∗
α (z) of the diagonal matrix �ζ̂

∗
(z) that

appears in Eqs. (C1) and (C2) is the time-dependent friction
function of particles of species α, given by [37,47]

�ζ ∗
α (t ) = D0

α

3(2π )3

∫
dq q2[FS (q, t )]αα[h(q) · √

n · S−1(q)

× F(q, t ) · S−1(q) · √n · h(q)]αα, (C3)

where the q-dependent matrix h is given in terms of S by h =√
n−1 · (S − I) · √

n−1
, and with the elements of the matrix
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√
n defined as [

√
n]αβ ≡ δαβ

√
nα . Thus, for a fixed point

(δ, φb, φs) in the parameter space of a binary mixture of HS,
one starts by determining the static structure matrix S(q) to
further solve Eqs. (C1)–(C3), and hence to obtain the self-
and collective ISF, and the mean-square displacement (MSD)
of each species.

The SCGLE also provides equations for the long-time
asymptotic values of the dynamical properties involved,
f ∞
αβ (q)≡limt→∞Fαβ (q, t )/Sαβ (q), f ∞,S

α (q)≡limt→∞ F S
α (q, t ),

and γα ≡ [limt→∞ �ζ ∗
α (t )]−1D0

α , typically referred to as non-
ergodicity parameters (NEP), and which play the role of order
parameters for the determination of the ergodic-nonergodic
transitions of the mixture [37]. The most fundamental of
these results is the following equation for the asymptotic
value of the mean-square displacement of species α, γα ≡
limt→∞〈[�rα (t )]2〉:

1

γα

= 1

3(2π )3

∫
d3k k2{λ[λ + k2γ]−1}αα

×{c√nSλ[Sλ + k2γ]−1√nh}αα, (C4)

where c and h are, respectively, the direct and total matrices of
correlation functions, thus related to S by S = I + √

nh
√

n =
[I − √

nc
√

n]−1, and with [γ]αβ ≡ δαβγα . Hence, for the case
of the mixture, one can also use the matrix S(q) to solve
Eq. (C4) for the two parameters γb and γs, and the corre-
sponding equations for the diagonal components of the NEP,
i.e., f ∞

bb (q), f ∞
ss (q), f ∞,S

b (q), and f ∞,S
s (q) [37]. At each state

point, the dynamical state of the system can be then classified
using the resulting values of these parameters.

At fixed δ, one can scan the subspace (φb, φs) calculating
the NEP at each state point, and determine the regions where
a dynamical transition in a subset, or in all these parameters,
occurs. This procedure allows us to locate the boundaries
between the dynamically arrested regions and the ergodic
ones. For δ � 0.38, one finds three main possibilities for the
values of the NEP [37], namely, (i) γb and γs diverge, and
f ∞
bb (q) = f ∞

ss (q) = f ∞,S
bb (q) = f ∞,S

ss (q) = 0, i.e., both species
diffuse and the system is in a fully ergodic state (F); (ii) γb

is finite, γs diverges, f ∞
bb (q) 
= 0, f ∞

ss (q) 
= 0, f ∞,S
bb (q) 
= 0,

and f ∞,S
ss (q) = 0, indicating that the collective dynamics of

both big and small particles becomes arrested, while the self-
dynamics of the small spheres remains ergodic and, thus, they
are still able to diffuse through the voids left by the large ones.
This is referred to as a partially arrested state (SG); and (iii)
all the NEP are finite, thus corresponding to a fully arrested
state (DG). In Fig. 18, the result of this procedure for the case
δ = 0.1 is illustrated.

2. Assessment of the dynamical arrest diagram:
SCGLE vs confocal microscopy experiments

To test the scenario summarized in the dynamical arrest
diagram of Fig. 18, we have considered confocal microscopy
data of colloidal HS binary mixtures. In addition to the
samples reported above, we have also investigated samples
with size ratio δ = 0.09, φ ≈ 0.60, and different compositions
xs, as previously reported [32]. A series of transitions to
arrested and ergodic states were observed for the big species
in terms of their MSD (inset of Fig. 18). In the absence of
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FIG. 18. State space defined by the volume fractions of big φb

and small φs particles of a binary mixture of HS with size ratio
δ = 0.1. Lines are predictions for the glass transition provided by
the SCGLE theory, determined using Eq. (C4) and the PY-VW
approximation for the static structure matrix S(q). The solid line
describes the transitions from the fluid (F) to the double-glass (DG)
state. The dashed line indicates the transitions between the (F)
and the single-glass (SG) states. The dashed-dotted line shows the
transition from the SG to the double-glass DG state. The different
state points represented by solid symbols along the dotted line
correspond to those previously investigated by means of confocal
microscopy experiments in Ref. [32]. The open squares instead
describe the glassy samples reported in Ref. [30] Inset: measured
MSD of the large spheres for different compositions xs (as indicated),
constant volume fraction φ ≈ 0.60, and size ratio δ = 0.09 taken
from Ref. [32].

small particles, xs = 0.0 (solid circle), the one-component
system of large spheres exhibits dynamical arrest, mainly
characterized by a long-time plateau in the MSD, and with
a characteristic localization length l∗

b ≡ lb/σb ∼ 0.1. For xs =
0.01 (solid square), the big particles remain arrested and
display a slightly smaller l∗

b . Consistently, the SCGLE predicts
that both state points belong to region SG. At xs = 0.1 (solid
triangle), the MSD shows diffusive behavior indicating that
the glassy state of the big spheres is melted. According to the
theory, this state is now located inside the ergodic region F.
Increasing the fraction of small particles to xs = 0.3 (solid
down triangle), the MSD slows down and appears subdiffu-
sive, and for xs = 0.5 (solid side triangle) an acceleration is
observed. At xs = 0.7 (asterisk), there is a further slowing
down of the MSD. According to the theory, this state point
approaches the transition line separating regions F and DG.
Finally, for xs = 0.9 (solid diamond), the dynamics of the
large particles becomes arrested again, but with a smaller
localization length (l∗

b ≈ 0.05) in comparison to the cases
xs = 0.0 and 0.1, consistent with the presence of a glass of
small spheres. According to the theory, this state point belongs
to region DG, thus providing qualitative consistency between
the SCGLE and these experimental results.

Despite this qualitative agreement, we should also refer
to the experimental samples of Ref. [30], shown as the open
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squares in Fig. 18 and reporting glassy samples for the case
δ = 0.1. The qualitative results are essentially the same: both
show that, above a certain threshold for φs, the total volume
fraction of the mixture to reach the glass transition becomes
smaller with increasing φs (otherwise, a line adjusting the
experimental data would be parallel to that describing the
experiments of Ref. [32]). In this case, however, the quan-
titative agreement between theory and experiments is poor
since the SCGLE overestimate the locus of the transition line.
This difference may be attributed to several factors such as
polydispersity, residual charges, and other effects present in
the experimental samples but not in the theory, in particu-
lar, hydrodynamic interactions. Furthermore, one should also
consider the simplified character of the theory which does
neither account for these effects and uses the Percus-Yevick
approximation combined with the Verlet-Weiss correction for
the static structure factor.

3. Collective dynamics of the F-SG transition

The SG domain describes a region of partially arrested
states, where the collective dynamics of both species is
predicted to undergo dynamical arrest, whereas the self-
dynamics of the small particles remains ergodic. This fea-
ture of the F-SG transition was observed through the de-
coupling of the SISF, F S

b (q∗ = 7.18, t ) and F S
s (q∗ = 7.18)

[Figs. 2(a) and 2(b)], and of the corresponding MSDs
〈[�ri(t )]2〉 (Fig. 7).

The collective dynamics, however, shows a subtle feature
that deserves to be briefly commented. Collective diffusion
is conventionally described in terms of the so-called normal-
ized ISF, fii(q, t ) ≡ Fii(q, t )/Sii(q), defined in terms of the
diagonal elements of the matrix F(q, t ) of Eq. (C1) and the
initial values Fii(q, t = 0) = Sii(q), being the quantities ac-
cessible experimentally. These observables were extensively
investigated in this work combining DDM experiments, MD
simulations, and theoretical calculations. Toward the F-SG
transition, both fbb(q∗ = 7.18, t ) and fss(q∗ = 7.18) display
a slowing down in the relaxation and become strongly corre-
lated [see, for instance, Figs. 2(c) and 2(d)]. This suggests that,
at the level of collective dynamics, it is only possible to detect
either fluid or arrested states, but not partially arrested ones.
This, however, is only the result of the convention adopted
to describe collective dynamics and, hence, of the normal-
ization employed in the solution of Eq. (C1). To see this,
let us consider the collective propagator matrix �(q, t ) ≡
F(q, t )S−1(q), with initial condition �(q, t = 0) = I. The
quantity �αβ ≡ [�]αβ can be interpreted as the effect of the
static structure associated to the species β on the collective
dynamics of species α.

In terms of the diagonal propagators �bb(q, t ) and
�ss(q, t ), the scenario for the collective dynamics of the
F-SG transition differs from that displayed by the ISF
fbb(q, t ) and fss(q, t ). Specifically, one finds that the col-
lective propagator �bb(q∗ = 7.18, t ) displays dynamical ar-
rest, whereas �ss(q∗ = 7.18, t ) decays to zero, in qual-
itative analogy with the behavior of the self-ISFs (for
a detailed discussion, the reader is referred to Sec.
IV of Ref. [37]). These conditions are illustrated in
Fig. 19 by the results for �bb(q∗ = 7.18, t ) and �ss(q∗ =
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Ψbs(q=7.18,t*)
Ψsb(q=7.18,t*)

FIG. 19. Comparison of the behavior of the collective ISF
fbb(q∗ = 7.18, t∗) (solid line) and fss(q∗ = 7.18, t∗) (dashed line),
and the collective propagators �bb(q∗ = 7.18, t∗) (solid circles) and
�ss(q∗ = 7.18, t∗) (empty circles), calculated at the state point (δ =
0.2, φb = 0.638, φs = 0.05), corresponding to the intersection of
path S1 with the SG transition line in Fig. 1. Inset shows the behavior
of the crossed propagators �bb(q∗ = 7.18, t∗) (solid triangles) and
�ss(q∗ = 7.18, t∗) (empty triangles) at the same state point.

7.18, t ) calculated at the state point (δ = 0.2, φb = 0.638,

φs = 0.05), corresponding to the intersection of path S1 with
the F-SG transition line (see Fig. 1). In the same figure, the
behavior of both fbb and fss at the same state point is displayed
for comparison.

The relaxation of the crossed propagators �bs(q, t ) and
�sb(q, t ) also deserves a comment, in particular, in connection
with partially arrested states. First, one must have in mind
that, despite the matrices F(q, t ) and S(q) being symmet-
ric, the product F(q, t )S−1(q), in general, is not, in other
words �bs(q, t ) 
= �sb(q, t ). Second, since �(q, t = 0) = I,
it is clear that �bs(q, t = 0) and �sb(q, t = 0) must vanish.
Third, the off-diagonal elements of �(q, t ) are not necessar-
ily positive. In the inset of Fig. 19, the behavior of these
propagators at the aforementioned state point in the F-SG
transition line is shown. One observes that both quantities
are negative and that �sb relaxes to a finite nonergodic
asymptotic value, although �bs is always much smaller and
relaxes to zero. On the other hand, it is straightforward to
show that fbb(q, t ) = �bb(q, t ) + [Ssb(q)/Sbb(q)]�bs(q, t ) and
fss(q, t ) = �ss(k, t ) + [Sbs(q)/Sss(q)]�sb(q, t ). Hence, since
�bs(q, t ) is small and relaxes to zero, one finds that both fbb

and �bb display similar behavior. In contrast, although the
propagator �ss does decay to zero, fss exhibits dynamic arrest
due to its linear dependence on �sb(q, t ), which, as illustrated
in the inset of Fig. 19, relaxes to a nonzero value.

Thus, at the F-SG transition, only the �αβ (q, t ) associated
with β = b do not relax to zero, which indicates that in the
single glass, the big particles’ static structure affects the glassy
(long-time) dynamics of the small species, but the glassy
dynamics of large spheres is not influenced by the static
structure of the small particles (but only by their dynamics).
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