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Using numerical simulations, we examine the dynamics of driven two-dimensional bidisperse disks flowing
over quenched disorder. The system exhibits a series of distinct dynamical phases as a function of applied
driving force and packing fraction, including a phase-separated state as well as a smectic state with liquid-like
or polycrystalline features. At low driving forces, we find a clogged phase with an isotropic density distribution,
while at intermediate driving forces the disks separate into bands of high and low densities with either liquid-like
or polycrystalline structure in the high-density bands. In addition to the density phase separation, we find that in
some cases there is a fractionation of the disk species, particularly when the disk size ratio is large. The species
phase-separated regimes form a variety of patterns such as large disks separated by chains of smaller disks. Our
results show that the formation of laning states can be enhanced by tuning the ratio of disk radius of the two
species, due to the clumping of small disks in the interstitial regions between the large disks. This system could
be experimentally realized using sterically interacting colloidal particles suspended in a viscous fluid driven over
random pinning arrays or granular matter suspended in fluid moving over a random landscape.
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I. INTRODUCTION

A large class of systems can be effectively described as
a collection of interacting particles moving over a random
pinning landscape, where a variety of distinct dynamical
phases appear as a function of driving force [1]. Well studied
examples of such systems include vortices in type-II super-
conductors [2–6], driven Wigner crystals [7,8], skyrmions
undergoing current-induced motion [9–11], sliding pattern
forming assemblies coupled to random landscapes [12,13],
colloids on disordered substrates [14–19], and active matter
moving in complex environments [20–22]. These systems
often exhibit multiple nonequilibrium phase transitions, such
as a transition from a pinned to a sliding phase followed by
transitions to different types of sliding phases. Such transi-
tions are associated with clearly observable changes in the
velocity-force curves, fluctuation spectra, and spatial reorder-
ing of the particles.

Previous work on dynamical phase transitions in driven
systems has primarily focused on long- or intermediate-range
particle-particle interactions that tend to favor a uniform parti-
cle density, such as that found in magnetic or charged systems.
When particles of this type are placed on quenched disorder
composed of randomly placed strong pinning sites, three
nonequilibrium phases emerge: a pinned disordered state, a
plastic flow state in which the particle positions are disordered
and the particles exchange neighbors as they move, and a
dynamically reordered anisotropic crystal or moving smectic
state that appears at high drives when the effectiveness of the
pinning is reduced [1].

There are numerous examples of systems in which
the particle-particle interactions are short ranged or steric,

including many types of colloidal suspensions, emulsions,
bubbles, and granular matter. Although it might be natural
to assume that the short-range interactions would produce
simpler behavior than the longer range interactions when
the particles are driven over quenched disorder, it was re-
cently shown that monodisperse hard disks moving over a
random pinning landscape exhibit a remarkably rich variety
of dynamical phases, including clogging, disordered plastic
flow, segregated flow, laning flow, and moving crystals [23].
The disk system can form moving density-segregated states
containing high-density bands coexisting with low-density
regions. In some cases, the dense bands form closely packed
hexagonal lattices even when the overall density of the system
is well below the crystallization density. At higher drives, the
crystalline bands break up to form dense one-dimensional
chains, while at higher densities the disks form a moving
crystalline solid [23]. Density-separated phases cost no energy
in systems with contact interactions, since the energy remains
small even when the particles accumulate in one region and
are depleted from another region. In contrast, when the inter-
actions are longer range, the system can minimize its energy
by destabilizing and dispersing any locally dense regions.

In this work, we consider bidisperse disks driven over
quenched disorder consisting of randomly placed pinning
sites. In the absence of driving or pinning, the disks form
a jammed solid at densities well below the crystallization
density φ = 0.9 of pin-free undriven monodisperse disks
[24,25]. Both monodisperse and bidisperse disks can exhibit
density segregation into dense and depleted regions, but the
bidisperse disks can also undergo species segregation of the
two disk sizes. Numerous studies have demonstrated species
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segregation under nonequilibrium conditions for short-
range repulsive bidisperse systems including granular matter
[26–29] and colloids [30–32], where the degree of segregation
depends on the ratio of particle sizes and the type of driving
force applied. There are, however, few studies examining
the impact of quenched disorder on size segregation. An
understanding of segregation effects in flowing bidisperse
disks coupled to quenched disorder not only offers insights on
depinning and sliding phenomena but also could be used to
develop new methods for separating or mixing bidisperse or
polydisperse systems of particles. For example, some geolog-
ical systems can be described in terms of polydisperse disks
moving through random pinning, and such systems could un-
dergo dynamic segregation. Furthermore, these results could
be relevant to experiments in multispecies flows of soft mat-
ter confined to quasi-two-dimensional environments, such as
sterically interacting colloids moving over random substrates
or the flow of granular matter over a disordered background.

This paper is organized as follows. We describe our simu-
lation technique for the bidisperse disks driven over random
pinning in Sec. II. In Sec. III, we show the dynamic patterns
that form for a system in which 50% of the disks are large and
the radius ratio of the large to small disks is 1.4. In Sec. IV,
we consider large disks that are twice as big as the smaller
disks while maintaining the fraction of large disks at 50%. In
Sec. V, we show that by reducing the fraction of large disks to
10% we can enhance the segregation and stratification effects.
We examine the scaling of the velocity-force curves near
depinning in Sec. VI. We test for hysteresis in Sec. VII, and
we discuss possible extensions to the simulations in Sec. VIII.
We summarize our results in Sec. IX.

II. SIMULATION

We consider a two-dimensional (2D) system of size L × L
with periodic boundary conditions in the x and y directions.
The sample contains Nd = Ns + Nl disks, where Ns disks have
a small radius of rs and Nl disks have a large radius of rl .
The disk dynamics are governed by the following overdamped
equation of motion:

η
dRi

dt
= Fdd + Fp + FD. (1)

Here η is the damping constant and Ri is the location of
disk i. The disk-disk interaction force is Fdd = ∑

i �= j k(ri j
dd −

Ri j )�(ri j
dd − Ri j )R̂i j , where ri j

dd = ri + r j , ri( j) is the radius
of disk i( j), Ri j = |Ri − R j |, R̂i j = (Ri − R j )/Ri j , � is the
Heaviside step function, and the spring constant k = 50 is
large enough to prevent the disks from overlapping by more
than 1% of their radii. The pinning force Fp is produced by
Np pinning sites modeled as randomly placed nonoverlapping
parabolic wells cut off at a radius of rp = rs that can each
capture at most one disk with a maximum pinning force of
Fp = 1.0. The density φ of the system is given by the area
covered by the disks, φ = π (Nsr2

s + Nlr2
l )/L2, where L = 60

and rs = 0.5. We vary rl and set the radius ratio � = rl/rs

to � = 1.4 in Sec. III and � = 2.0 in Sec. IV. In a previous
study of the jamming of bidisperse disks using this model
with � = 1.4, the jamming density in a pin-free sample is
φ j ≈ 0.845 [33]. We set Np = 1440, giving a fixed pinning

site density of φp = Npπr2
p/L2 = 0.31. Previous studies have

shown that increasing φp does not alter the behavior but only
shifts the driving forces at which the dynamical transitions
occur [23]. The driving force FD = FDx̂ is applied uniformly
to all disks. We perform a series of separate runs for each value
of FD at intervals of �FD = 0.05. In Sec. VII, we perform
a continuous sweep of FD over the range 0 to 2.0 and find
that the results are essentially identical with those obtained for
the series of individual runs at each FD value. On each drive
increment, we measure the species-dependent disk velocities,
〈V s

x 〉 = N−1
d

∑Nd
i=1(vi · x̂)δ(ri − rs) and 〈V l

x 〉 = N−1
d

∑Nd
i=1(vi ·

x̂)δ(ri − rl ), where vi is the instantaneous velocity of disk
i. We generate species-dependent histograms of P(vx ), the
distribution of velocities vx of the individual disks in the
direction of applied drive, by first allowing the system to
reach a steady state and then sampling the velocities every
�t = 5 × 105 simulation time steps. The corresponding P(vy)
is Gaussian distributed about vy = 0 since the motion of
the disks perpendicular to the driving force is unbiased. We
also characterize the dynamic phases and phase transitions
using velocity-force curves, the transverse root-mean-square
displacements, and other measures of the particle spacing and
density. The measurements are time averaged over a single
realization of disorder. We have checked that performing
disorder averaging does not change the results except very
close to the critical point, as described in Sec. VII.

III. MINIMALLY PHASE SEPARATING
SYSTEM WITH Nl = Nd/2

We first consider samples with Ns = Nl and a disk diameter
ratio of � = 1.4. By varying the disk density from φ = 0.23
to φ = 0.81, we obtain a ratio of pinning sites to disks in
the range Np/Nd = 2.0 to 0.53. At φ = 0.46, there is one
disk for every pin, Np/Nd = 1.0. In Fig. 1(a), we plot 〈V s

x 〉
and 〈V l

x 〉 versus FD/Fp for φ = 0.23 to 0.87, and we show
the corresponding d〈V s

x 〉/dFD and d〈V l
x 〉/dFD versus FD/Fp

curves in Fig. 1(b). At small FD/Fp, the system is in the pinned
or clogged state that we term phase I, while for FD/Fp � 1.5,
the velocities increase linearly with drive for all values of φ.
In the inset of Fig. 1(b), we plot the critical depinning force Fc

marking the end of phase I versus φ. When φ is low, Fc ≈ Fp

since each disk can be captured independently by a pinning
site. As the disk density increases, Fc drops when the disks
begin to interact with each other. Since each pin can capture
at most one disk, if an unpinned disk comes into contact with
a pinned disk, the driving force on both disks is offset by
the pinning force on only one disk, lowering the depinning
threshold. The number of disks in contact with each other
increases with increasing φ, causing Fc to decrease monoton-
ically. We find no species dependence of Fc at any value of
φ. Figure 1(c) shows �〈Vx〉 = 〈V s

x 〉 − 〈V l
x 〉, the difference in

net velocity between the two disk species. This difference is
largest in magnitude near the depinning transition.

At a small disk density of φ = 0.23 in Fig. 1, both 〈V s
x 〉 and

〈V l
x 〉 show relatively sharp depinning transitions, as also indi-

cated by the large single peak at depinning in the d〈V s
x 〉/dFD

and d〈V l
x 〉/dFD versus FD/Fp curves. For drives close to but

above Fc, the smaller disks move slightly faster than the larger
disks so that �〈Vx〉 > 1.
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FIG. 1. (a) The species-dependent average disk velocities 〈V s
x 〉

(solid lines) and 〈V l
x 〉 (dashed lines) vs driving force FD/Fp in a

sample with � = 1.4 with equal numbers of small and large disks,
Ns = Nl . The total disk density is φ = 0.87 (down triangles), 0.81
(pentagons), 0.70 (right triangles), 0.58 (stars), 0.46 (squares), 0.35
(up triangles), and 0.23 (circles). (b) The corresponding d〈V s

x 〉/dFD

(solid lines) and d〈V l
x 〉/dFD (dashed lines) vs FD/Fp curves for the

same values of φ showing a peak near FD/Fp = 1.0. Inset: critical
depinning force Fc vs disk density φ. (c) The difference �〈Vx〉 =
〈V s

x 〉 − 〈V l
x 〉 vs FD/Fp for the same values of φ shown in panels

(a) and (b).

A. Intermediate disk densities

Disk-disk interactions become important at φ = 0.35,
where Fig. 1(b) shows that a two-peak structure emerges
in d〈V s

x 〉/dFD, with one peak at FD/Fp = 0.9 and a smaller
second peak at FD/Fp = 1.05. We also find that d〈V l

x 〉/dFD

has a small peak at FD/Fp = 0.7 and a larger peak at FD/Fp =
1.05. A positive peak in �〈Vx〉 extends over the range 0.8 <

FD/Fp < 1.05 and is larger in magnitude than what we ob-
serve at other values of φ.

In the left panel of Fig. 2(a), we illustrate the disk po-
sitions in the pinned phase I for φ = 0.35 at FD/Fp = 0.3.

Here, small numbers of unpinned disks have accumulated
behind pinned disks, giving a heterogeneous disk density
and reducing the depinning threshold to Fc/Fp = 0.7. In
some regions, short chains of disks composed preferentially
of large disks are stabilized at an angle to the driving di-
rection. In the center panel of Fig. 2(a), we plot the lo-
cal number density nloc

l and nloc
s of large and small disks,

respectively, obtained by taking slices of width w = 4rs

through the sample at a fixed value of y and dividing the
number of disks of each type in that slice by the slice
area. Thus, nloc

s (y) = (4rsL)−1 ∑Ns
i �(|Ri

y − y| − 2rs)δ(ri −
rs) and nloc

l (y) = (4rsL)−1 ∑Nl
i �(|Ri

y − y| − 2rs)δ(ri − rl ).
The difference in local number density, �nloc = nloc

l − nloc
s ,

is shown as a function of y in the rightmost panel of Fig. 2(a).
Below the depinning transition, both disk species are dis-
tributed uniformly throughout the sample.

Figure 1(c) shows that for φ = 0.35 at FD/Fp = 0.9, the
velocity of the small disks is larger than that of the large
disks, giving �〈Vx〉 ≈ 0.24. At this drive, the sample develops
a horizontal band containing a high local density of small
disks moving through a homogeneous distribution of large
disks, forming a phase-separated liquid-gas state illustrated
in Fig. 2(b) that we term phase III. The peak in d〈V s

x 〉/dFD

at FD/Fp = 0.9 coincides with the emergence of the dense
band of small disks in the region 10 < y < 45. At y = 30, the
value of nloc

l is nearly zero, but in the rest of the sample nloc
l

is roughly constant. The small disks flow continuously while
the large disks undergo stick-slip motion that is enhanced
in the vicinity of the band of small disks, as shown in the video
in the Supplemental Material [34]. The species-dependent ve-
locity distributions P(vx ) in Fig. 3(a) show that vx is bimodal
for each species, with peaks at vx = 0 and vx = 0.9 arising
from the alternating pinned and freely flowing motion of each
disk. The vx = 0.9 peak is higher for the small disks than for
the large disks since the small disks are more likely to move
freely, due to their separation into a dense band, and similarly
the peak at vx = 0 is highest for the large disks, which are
more likely to fall into a pinning site due to their greater
radius. Strong interactions with the pinning sites are required
to produce the vx = 0 peak. Although P(vx ) falls off rapidly
above vx = FD = 0.9, there is still a tail with finite weight at
vx > FD produced by disks that undergo brief rapid motion
just after escaping from a pinning site.

In Fig. 2(c), at FD/Fp = 1.1, the band of small disks in
the φ = 0.35 system becomes more diffuse. Simultaneously,
the large disks segregate into dense bands surrounding the
original band of small disks, while the lower density portion
of the sample develops smectic ordering consisting of chains
of mixed disk sizes that are oriented with the driving direction.
We call this phase-separated liquid-smectic state phase IV.
Figure 1(c) shows that 〈V s

x 〉 is slightly larger than 〈V l
x 〉 at this

drive since the higher density band of small disks is able to
move more efficiently over the pinning sites, as illustrated
in the Supplemental Material [34]. Figure 2(e) shows a more
detailed plot of the disk positions along with the pinning site
locations in a portion of the sample from Fig. 2(c) containing
both the dense band of large disks and the smectic chains.
The disk species are not segregated within the chains, and
since the pinning force and driving force are nearly equal,
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FIG. 2. [(a)–(d)] Left panels: Large disk (blue circles) and small disk (red circles) positions for the system in Fig. 1 with � = 1.4 and
Ns = Nl at φ = 0.35. Center panels: nloc

l (blue) and nloc
s (red), the local number density of large and small disks, respectively, averaged over

the x direction for each y position. Right panels: �nloc = nloc
s − nloc

l plotted at each y position. (a) The pinned phase I at FD/Fp = 0.3, where
unpinned disks pile up behind pinned disks. (b) Just above depinning at FD/Fp = 0.9 in phase III, where the sample contains a dense liquid-like
region in the center surrounded by a gaslike region. (c) FD/Fp = 1.1 in phase IV flow, where the small and large disks become further segregated
and the disks from the gaslike region collapse into chains with smectic ordering. (d) FD/Fp = 2.0 in phase V, where the entire sample develops
a smectic structure. (e) Detail showing large disk (blue circles), small disk (red circles), and pinning site (gray circles) locations in a portion
of the sample from panel (c) at FD/Fp = 1.1 in phase IV. (f) Detail as in panel (e) for a portion of the sample from panel (d) at FD/Fp = 2.0 in
phase V.

the disks do not experience much transverse displacement as
they traverse the pinning sites. In the liquid-smectic phase IV,
P(vx ) has a single peak at vx = 1.1 with equal weight for both
species, as shown in Fig. 3(b). Interactions of the disks with
the pins in the lower density portions of the sample produce
a broad plateau in P(vx ) over the range 0.1 < vx < 1.1. Since
FD > Fp, the pinning sites can only slow the disks but cannot
trap them, so there is no longer a peak at vx = 0.

At higher drives for φ = 0.35, the system enters phase
V in which the smectic ordering spreads throughout the
entire sample, as shown in Fig. 2(d) at FD/Fp = 2.0. The
tendency of the disks to form chains in this state is illustrated

FIG. 3. Histograms of P(vx ) for the velocity vx parallel to the
driving direction for the small disks (red) and large disks (blue) for
the system in Fig. 1 at φ = 0.35 with (a) FD/Fp = 0.9 in phase III
and (b) FD/Fp = 1.1 in phase IV.

in a detailed view in Fig. 2(f). Chainlike ordering emerges
continuously in the smectic state as the drive increases. The
long chains of disks have greater species separation and
reduced fluctuations in the y direction compared to the chains
which form at lower FD. The dynamics of this state are
illustrated in the Supplemental Material [34]. Similar lane for-
mation was observed for a low density of monodisperse disks
driven over quenched disorder [23] and is due in part to the
fact that strong density modulations incur no energy penalty
in systems with short-range interactions. Although on average
�nloc ≈ 0, indicating that the large-scale species segregation
found at lower drives is lost, we find that individual chains
can be preferentially composed of a single species of disk.
The velocity distributions P(vx ) are similar to those shown in
Fig. 3(b) but have a sharper peak at vx = FD.

The moving smectic state we observe differs from that pre-
dicted by theory [35,36] and observed in simulations [6,37,38]
and experiments [5] to occur in driven systems with quenched
disorder such as vortices in type-II superconductors confined
to two dimensions. The short-range nature of the disk-disk in-
teractions permits the emergence of extreme chaining behav-
ior in which the disks are nearly in contact along the driving
direction but are well spaced in the transverse direction. In
contrast, superconducting vortices strongly repel one another
at short distances and thus have a more even spacing in the
directions parallel and transverse to the drive. Adjacent vortex
rows in the smectic state contain dislocations that can glide
along the driving direction and permit the rows to slide past
one another. For the disk system, adjacent rows are noninter-
acting and can move completely independently of each other.

In Fig. 4, we illustrate the time-dependent behavior of the
φ = 0.35 system. We find similar behavior when 0.2 < φ <

0.5. Figure 4(a) shows the instantaneous values of V s
x and

V l
x versus time at driving forces ranging from FD/Fp = 0.70
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FIG. 4. (a) The instantaneous disk velocity V s
x (solid lines) and

V l
x (dashed lines) vs time for the small and large disks, respectively,

in the sample from Fig. 1 at φ = 0.35 for FD = 0.7 (phase I), 0.8
(phase II), 0.9, 0.95, 1.0, 1.05 (phase III), 1.1, and 1.15 (phase IV),
from bottom to top. (b) The corresponding ratio R = V s

x /V l
x vs time

for samples with FD/Fp > 0.7. (c) V s
x (solid blue line) vs time for the

system in panels (a) and (b) at FD = 0.9 in phase III. Black dashed
line: A fit to V s

x ∝ e−t/τ with τ = 1.22 × 107. Red dot-dashed line:
A fit to V s

x ∝ tα with α = 0.26 ± 0.01.

to 1.15. In Fig. 4(b), we show the corresponding ratio R =
V s

x /V l
x versus time. At FD � 0.70, the disks are pinned, and

V s
x = V l

x = 0 except for a brief sharp decay at very early times
from a nonzero value. At intermediate FD values of 0.75,
0.8, and 0.85, the system is in phase II, where the density
of the flowing disks remains homogeneous but some phase
segregation occurs. Here, we find large fluctuations in both V s

x
and V l

x and, although the velocities of the two disk species
are initially identical, as the system evolves the velocities
separate so that at long times V s

x > V l
x . At FD/Fp = 0.9, where

phase III emerges and the small disks first segregate into a

band, we can fit the velocity of the small disks to a stretched
exponential form, as shown in Fig. 4(c), where we find V s

x ∝
e−t/τ with τ = 1.22 × 107. For comparison, we show a fit to
V s

x ∝ tα with α = 0.26 ± 0.01, which gives a poorer fit. We
find a similar stretched exponential behavior at FD/Fp = 0.95,
and we show in Sec. III C that this behavior is associated with
enhanced transverse diffusion. The stretched exponential time
response suggests that the formation of the segregated band
of small disks is similar to an absorbing phase transition of
the type found in clogging systems [39]. For FD/Fp = 1.0,
1.05, and 1.10, a stretched exponential fit gives a large time
constant τ , and we show in Sec. III C that these drives produce
superdiffusion in the transverse direction. At higher driving
forces FD > 1.10, the sample quickly reaches a steady-flow
phase IV state with constant V s

x and V l
x .

B. High disk density

When φ = 0.46, the effect of interstitial or unpinned disks
on the depinning process becomes more important, and the
depinning threshold drops to Fc/Fp = 0.5, as shown in Fig. 1.
The peak in 〈V s

x 〉 and 〈V l
x 〉 at depinning is diminished in size,

and we find that �〈Vx〉 ≈ 0.04 over the range 0.5 < FD/Fp <

1.0. At FD/Fp = 0.5, illustrated in Fig. 5(a), �〈Vx〉 ≈ 0 and
both types of disks are in a uniform phase II state containing
small regions of higher disk density in the form of clumps and
chains. For this drive, the plots of nloc

l and nloc
s in Fig. 5(a)

indicate that each disk species is uniformly distributed across
the sample. The corresponding velocity histogram P(vx ) in
Fig. 6(a) shows a bimodal distribution produced by the stick-
slip motion of the disks, which are interacting strongly with
the pinning sites. The vx = 0 peak is higher than the vx = FD

peak, indicating that the disks spend more time sticking and
less time slipping, giving a low value of 〈Vx〉 in Fig. 1(a). At
FD/Fp = 1.3 in Fig. 5(d), where we again have �〈Vx〉 ≈ 0,
the disks phase segregate into phase VI flow consisting of
a liquid region surrounding a smectic region, which extends
from 40 < y < 55. The smectic state is characterized by
strongly asymmetric spacing of the disks, which are much
closer together parallel to the drive than perpendicular to
the drive. In this case, the smectic region contains mostly
small disks and is of relatively low density. The density of
the liquid region varies as a function of y, and the liquid is
composed mainly of large disks separated by horizontal gaps
for 10 < y < 30, while a densely packed liquid containing
nearly equal numbers of small and large disks appears for
y < 10. The large disks are almost completely depleted in the
regions y ≈ 30 and 40 < y < 50 but have a nearly uniform
density in the rest of the sample, as shown by the plot of
nloc

l in Fig. 5(d). In Fig. 6(d), P(vx ) has a single peak at
vx = FD = 1.3 and a broad distribution of velocities in the
range 0.3 � vx � 2.3, including a low-velocity plateau.

For higher disk densities of φ = 0.58 to 0.87, Fc continues
to decrease with increasing φ while �〈Vx〉 becomes small.
The increased disk-disk interactions that occur at the higher
densities not only diminish the depinning force but also
equalize the velocities of each disk species due to the higher
frequency of disk-disk collisions. In Fig. 5(b), we show a
φ = 0.70 sample at FD/Fp = 0.5 in phase VI, where the disks
are in a liquid state containing some small localized clumps
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FIG. 5. Left panels: Large disk (blue circles) and small disk (red circles) positions for the system in Fig. 1 with � = 1.4 and Ns = Nl . Center
panels: nloc

l (blue) and nloc
s (red) as a function of y position. Right panels: �nloc as a function of y position. (a) φ = 0.58 and FD/Fp = 0.5 in the

driven homogeneous phase II. (b) φ = 0.70 and FD/Fp = 0.5, showing the segregated liquid phase VI. (c) φ = 0.81 and FD/Fp = 0.5, where we
find an isotropic polycrystalline phase VII. (d) φ = 0.58 and FD/Fp = 1.3, where the system fractionates into a liquid and smectic phase IV.
(e) φ = 0.70 and FD/Fp = 1.3, where the system is liquid throughout but forms distinct horizontal bands, giving a segregated phase VI.
(f) φ = 0.81 and FD/Fp = 1.3, which shows an isotropic polycrystalline phase VII similar to that found at lower drives.

and chains. There is some species segregation, with the small
disks preferentially located at the top of the sample and the
large disks preferentially residing in the bottom of the sample,
as indicated by the plots of nloc

l and nloc
s in Fig. 5(b). We find

a bimodal distribution of P(vx ) as shown in Fig. 6(b), but the
two peaks are barely higher than the background plateau since
the increased disk-disk interactions reduce the effectiveness
of the pinning sites. The same sample at FD/Fp = 1.3 remains
in phase VI but develops polycrystalline structure in which
the disks form wide species separated bands, as illustrated
in Fig. 5(e). The polycrystalline clusters tend to be aligned
in the driving direction. Figure 6(e) shows a single peak in
P(vx ) at vx = FD along with a broad distribution of velocities
over the range 0.4 � vx � 2.4. The plateau at low vx has
vanished since all of the disks are always moving at this
drive, and it is replaced by a rapid decrease in P(vx ) with
decreasing vx.

At φ = 0.81, Fig. 5(c) shows that when FD/Fp = 0.5, the
disks have a combination of liquid-like and polycrystalline

structure in the isotropic polycrystalline phase VII. Although
the plot of nloc

s indicates that there is a local increase of
small disk density near y ≈ 55, the disks are nearly jammed,
and as a result further species segregation is suppressed. In
Fig. 6(c), P(vx ) has lost its distinct peaks and has a much
more Gaussian shape, since the strong interactions between
the disks prevent individual disks from being trapped by the
pins. At FD/Fp = 1.3 for the same sample in Fig. 5(f), phase
VII flow is still present and the disk structure is nearly the
same except that any slight tendency for segregation into a
band has been destroyed. The plot of P(vx ) in Fig. 6(f) shows
a spread of velocities about vx = FD due to the tightly packed
motion of the disks.

For densities of φ = 0.81 and above, the disks have a
glassy arrangement at both low and high drives, and the
high packing fraction inhibits rearrangements of the disks,
preventing both species segregation and the realignment of
the polycrystalline regions with the driving direction. We have
tested the system for finite-size effects using a larger sample

FIG. 6. P(vx ) for the small disks (red) and large disks (blue) for the system in Fig. 1 at (a) φ = 0.58 and FD/Fp = 0.5 in phase II;
(b) φ = 0.7 and FD/Fp = 0.5 in phase VI; (c) φ = 0.81 and FD/Fp = 0.5 in phase VII; (d) φ = 0.58 and FD/Fp = 1.3 in phase IV; (e) φ = 0.7
and FD/Fp = 1.3 in phase VI; and (f) φ = 0.81 and FD/Fp = 1.3 in phase VII.
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FIG. 7. The transverse displacements 〈δy2
s 〉 (red dashed line)

and 〈δy2
l 〉 (blue dashed line) for the small and large disks obtained

after 1 × 107 simulation time steps vs FD/Fp and the corresponding
diffusive exponent αs (red squares) and αl (blue squares) for the
system in Fig. 1 at φ = (a) 0.35, (b) 0.58, and (c) 0.70.

with L = 200, where we found structures similar to those
illustrated in Figs. 2 and 5. The only difference is that the large
system can accommodate multiple layers of segregated bands
along the y direction.

C. Transverse diffusion and topological order

To further distinguish the phase behavior of each disk
species, we measure the disk displacements in the direction
transverse to the applied drive,

〈
δy2

s(l )

〉 = 1

Ns(l )

Ns(l )∑
i=1

[yi(t ) − yi(t0)]2, (2)

for the small and large disks, respectively. We perform the
measurement at intermediate times, after the system has had
enough time to phase segregate. In Fig. 7, we plot 〈δy2

s 〉
and 〈δy2

l 〉 obtained over the time interval 1 × 107 to 5 × 107

simulation time steps versus FD/Fp for samples with φ =
0.35, 0.58, and 0.7. We also show the corresponding diffusive
exponents αs and αl obtained from long-time fits to 〈δy2

s(l )〉 ∝
tαs(l ) . At all densities, 〈δy2

s(l )〉 = 0 and αs(l ) = 0 for FD < Fc

when the disks are motionless. Previous studies of monodis-
perse disks showed superdiffusive transverse flow with α > 1

in regimes where density phase separation occurred, since
the increased frequency of disk-disk interactions in the high-
density region produces a greater amount of disk motion
transverse to the driving direction [23]. The bidisperse disks
have a more complex behavior since a wider variety of phase-
separated states occur that extend down to lower densities. In
particular, the large and small disks generally exhibit different
transverse diffusive behavior in the species-separated regimes.
We expect both the superdiffusive and subdiffusive regimes
to cross over to regular diffusion at long timescales, where
t � 107.

In Fig. 7(a) at φ = 0.35, both disk species undergo sub-
diffusive transverse motion with αs(l ) < 1 when FD > Fc.
Transverse movement is suppressed at low disk density due
to the infrequency of disk-disk collisions. Near FD/Fp = 1.0
in phase III, we find large fluctuations of αs and αl due
to the gradual emergence of the dense species separated
bands illustrated in Figs. 2(b) and 2(c). Similar fluctuations
in αs(l ) appear in phase III near FD/Fp = 1 for 0.35 < φ <

0.5, where some samples reach a steady phase-segregated,
particle-separated state within �t = 5 × 107 time steps while
others do not. At FD/Fp = 0.9 and 1.0 in the φ = 0.35 sample,
the dense liquid band of small disks is surrounded by a
homogeneous low-density gas of large disks, and we find
subdiffusive behavior with αs(l ) < 1.0. Superdiffusive behav-
ior with αs(l ) > 1 appears at FD/Fp = 0.95, where the small
disks have more fully segregated into a distinct horizontal
band, and also at FD/Fp = 1.05 and 1.1, where the small disks
form a phase IV liquid-smectic low-density state containing
horizontal chains.

In Fig. 7(b) at φ = 0.58, we find diffusive transverse mo-
tion with αs(l ) ≈ 1 whenever the disk density is homogeneous,
including near depinning in phase II and for driving forces at
which the phase VII densely packed polycrystalline regions
appear. For drives just above depinning in phase II, both
types of disk undergo superdiffusive transverse motion as the
species separation illustrated in Fig. 5(a) occurs. The large
disks transition to diffusive behavior at FD/Fp = 0.75 when
phase III appears, while the small disks remain superdiffusive
until FD/Fp = 1.3, where the system enters phase IV. Above
FD/Fp = 1.3, the driving force dominates the disk motion and
the transverse displacements are subdiffusive for both species.
In Fig. 7(c) at φ = 0.70, the transverse motion is diffusive
at depinning when FD = Fc. The large disks are superdiffu-
sive in the range 0.3 < FD/Fp < 1.0 and become diffusive at
higher drives. The small disks are diffusive in phase II for
0.3 < FD < 0.5, superdiffusive in phase VI for 0.5 < FD <

1.5, and diffusive above FD = 1.5. A similar intermediate
superdiffusive phase was observed in Ref. [40]. When the
disk density is high, we find a transition from diffusive to
subdiffusive behavior coinciding with the emergence of the
locked polycrystalline phase VIII. For example, at φ = 0.814,
αs(l ) ≈ 1 for all FD > Fc. At φ = 0.87, αs(l ) ≈ 0 since the
disks are kinetically trapped.

To characterize lane formation, we measure 〈�nn〉, the aver-
age perpendicular distance between disks that are in contact,
given by

〈�nn〉 =
√〈

�
(
ri j

dd − Ri j
)
[Ri j · ŷ]2

〉
, (3)
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FIG. 8. The average transverse nearest neighbor distance �nn vs
FD/Fp for the system in Fig. 1 at φ = 0.06 (blue circles), 0.12
(blue triangles), 0.29 (blue squares), 0.35 (green stars), 0.58 (orange
circles), 0.81 (red triangles), and 0.87 (brown pentagons).

where Ri j = Ri − R j . In Fig. 8, we plot 〈�nn〉 versus FD/Fp for
φ = 0.06 to φ = 0.87. For small disk densities in the range
φ = 0.06 to 0.12, almost no disks are in contact with each
other and 〈�nn〉 is nearly zero. For higher disk densities, in the
pinned phase I the disks tend to form blockages perpendicular
to the drive that become more extensive as φ increases,
giving larger values of 〈�nn〉. As the depinning threshold is
approached, these blockages fall apart, so that 〈�nn〉 decreases
monotonically over the range 0 < FD < Fc. For φ = 0.29 and
φ = 0.35, 〈�nn〉 = 0 just below depinning where nearly all
disk-disk contacts are lost, followed by a peak in 〈�nn〉 near
FD/Fp = 1 in phase III, where phase segregation into low- and
high-density regions occurs. When phase IV chain structures
form at higher FD, 〈�nn〉 plateaus to a small but finite value. At
φ = 0.58 and φ = 0.81, 〈�nn〉 decreases steadily for FD > Fc,
where Fc = 0.4 and 0.2, respectively. At φ = 0.87, which is
near the jamming limit, the system is always in phase VII
above depinning and 〈�nn〉 ≈ 0.6 over the entire range of
FD/Fp shown in Fig. 8.

In Fig. 9, we show a heightfield plot of the �〈Vx〉 data
from Fig. 1(c) as a function of disk density φ versus driving
force FD/Fp for the � = 1.4 system, while in Fig. 9(b) we
present a schematic dynamic phase diagram as a function of
φ vs FD/Fp. Phase I is the clogged or pinned state illustrated
in Fig. 2(a). Phase II, consisting of homogeneous plastic flow
with some species segregation, is shown in Fig. 5(a). Phase III
is the density-phase-separated liquid/gas state from Fig. 2(b).
Phase IV, a density-phase-separated liquid/smectic state, is
illustrated in Figs. 2(c) and 5(d). Phase V is the moving
smectic/chain state from Fig. 2(d). Phase VI, the moving
segregated liquid, appears in Figs. 5(b) and 5(e), and phase
VII is the moving polycrystalline state shown in Figs. 5(c) and
5(f). Except for phase VI, we do not distinguish fractionation
by species within the phases. We note that the liquid-gas phase
separation observed for monodisperse disks in Ref. [23] is
different in character from what we find here. It occurs at
higher disk densities of φ = 0.46 to 0.61 and is associated
with the formation of closely packed clusters of disks.

FIG. 9. (a) Height-field plot of �〈Vx〉 as a function of total disk
density φ vs driving force FD/Fp, based on the data in Fig. 1(c). Red
(blue) indicates that the velocity of the small disks is higher (lower)
than that of the large disks. (b) A schematic dynamic phase diagram
as a function of φ vs FD/Fp. I, pinned or clogged; II, homogeneous
density, with some species segregation; III, phase-separated liquid-
gas state; IV, phase-separated liquid-smectic, or moving chain, state;
V, homogeneous smectic or moving chain state; VI, segregated or
banded liquid; and VII, polycrystalline flowing state.

The boundary between the pinned phase I and the moving
phases II, V, or VII is determined by the critical depinning
force plotted in Fig. 1(b). At low φ, where the pins outnumber
the disks, the system depins directly into the moving smectic
phase V. As φ increases, disk-disk interactions become im-
portant and the homogeneous phase II flow appears above
depinning. For intermediate φ, this is followed at higher FD

by density separation into the liquid/gas phase III or the
liquid/smectic phase IV, while at higher drives the density
becomes uniform again and the smectic phase V emerges. At
higher φ, the disks are too dense to undergo phase separation
and the system transitions directly from the homogeneous
phase II flow to the banded solid phase VI. For very large disk
densities, the disks can no longer exchange neighbors, and the
system depins into a moving polycrystalline phase VII.

IV. ENHANCED CRYSTALLIZATION AND BANDING
WITH LARGER RADIUS RATIO AT Nl = Nd/2

We next increase the radius ratio to � = 2.0, a value that
is known to produce phase separation for disks driven out
of equilibrium [26,28]. We fix Ns = Nl and consider disk
densities in the range φ = 0.19 to 0.88, corresponding to
ND/Np = 0.25 to 1.125. Here, a disk density of φ = 0.78
corresponds to a ratio Np/ND = 1.0.

The plot of 〈V s
x 〉 and 〈V l

x 〉 versus FD/Fp in Fig. 10(a) for the
� = 2.0 system at different values of φ has similar behavior
to that shown in Fig. 1(a), with a pinned phase I at low
drives, a nonlinear velocity-force relation above depinning,
and a linear dependence of velocity on drive for high FD.
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FIG. 10. (a) 〈V s
x 〉 (solid lines) and 〈V l

x 〉 (dashed lines) vs FD/Fp

in a sample with � = 2.0 and Ns = Nl at φ = 0.82 (down triangles),
φ = 0.79 (pentagons), φ = 0.59 (right triangles), φ = 0.49 (stars),
φ = 0.39 (squares), φ = 0.29 (up triangles), and φ = 0.20 (cir-
cles). (b) The corresponding d〈V s

x 〉/dFD (solid lines) and d〈V l
x 〉/dFD

(dashed lines) vs FD/Fp curves for the same values of φ showing a
peak near FD/Fp = 1.0. Inset: Fc vs φ. (c) The corresponding �〈Vx〉
vs FD/Fp. Inset: a detail from the main panel of the region around
FD/Fp = 0.5 where �〈Vx〉 < 0 for large φ.

The corresponding d〈V s
x 〉/dFD and d〈V l

x 〉/dFD versus FD/Fp

curves in Fig. 10(b), as well as the plot of Fc versus FD/Fp in
the inset of Fig. 10(b), are also similar to what was shown
in Fig. 1(b). In Fig. 10(c), the plot of �〈Vx〉 versus FD/Fp

indicates a higher velocity of the small disks at low φ similar
to that found in Fig. 1(c); however, at low driving forces and
high φ, we find that the large disks have a higher velocity than
the small disks, as highlighted in the inset of Fig. 10(c).

At the lowest density of φ = 0.20 in Fig. 10, the small and
large disks both have the same behavior, and the depinning
occurs sharply at FD/Fp = 1.0, with a distinct transition from
pinned to elastic flow of the homogeneous smectic phase V
type. Since this system contains fewer disks than the � =
1.4, φ = 0.23 system, the depinning transition is sharper, and
the peak in d〈V s

x 〉/dFD and d〈V l
x 〉/dFD at FD/Fp = 1.0 is

larger.
At φ = 0.29, we find an enhancement in the velocity of

the small disks near depinning since the large disks can easily
be pinned by traps and other large disks, while the small
disks slip through smaller apertures to form a segregated

dense band, as illustrated in Fig. 11(a) at FD/Fp = Fc = 0.95.
Here, the large disks are uniformly distributed through the
sample, while the small disks are concentrated in a band
extending from 45 < y < 60. This is the same type of phase
III segregation found in Fig. 2(b). In Fig. 10(b), d〈V s

x 〉/dFD

peaks at FD/Fp = 0.95, whereas d〈V l
x 〉/dFD peaks at FD/Fp =

1.0, indicating that the smaller disks begin to flow freely at
lower drives than the larger disks. Above FD/Fp = 1, there is a
transition to phase IV flow consisting of a liquid of small disks
surrounded by a smectic state of large disks, as illustrated in
Fig. 11(d) for FD/Fp = 1.1. This is accompanied by a large
positive peak in �〈Vx〉 over the range 1.05 < FD/Fp < 1.25,
as shown in Fig. 10(c). The smectic chain structure of the
large disks increases the number of disk-disk interactions and
diminishes the effectiveness of the pinning for the large disks.
The small disks tend to form chains at higher drives.

Near depinning at φ = 0.39, we find a density-phase-
segregated state containing distinct bands of high-density
liquid smectic regions and low-density regions, similar to
the phase III structure illustrated in Fig. 2(b). There are two
distinct peaks in d〈V s

x 〉/dFD and d〈V l
x 〉/dFD in Fig. 10(b) near

FD ≈ Fc = 0.75, where the small disks begin to move freely,
and FD ≈ Fp, where the motion of the large disks increases.
In Fig. 10(c), �〈Vx〉 > 0 over the range 0.8 < FD/FP < 1.0 in
phase IV flow, indicating that the small disks can flow more
easily in the liquid smectic region, which they preferentially
occupy. At φ = 0.49, there is a pronounced crossover in
�〈Vx〉 in Fig. 10(c) from a negative value for 0.6 < FD/Fp <

0.7 to a positive value for 0.8 < FD/Fp < 1.0, indicating that
the large disks are moving faster than the small disks at lower
drives but slower at higher drives.

For φ = 0.59, �〈Vx〉 is never positive but has an enhanced
negative region at low drives above depinning in the range
0.4 < FD/Fp < 0.9, as highlighted in the inset of Fig. 10(c).
Species segregation of the disks into phase VI flow occurs in
the window 0.8 < FD/Fp < 0.9. As illustrated in Fig. 11(b)
for FD/Fp = 0.9, the large disks form a cluster that spans
nearly the entire system, while the small disks are concen-
trated in a band ranging from 20 < y < 40. The small disks
form relatively few disk-disk contacts, making them less
likely to be depinned due to disk-disk interactions, and thus
reducing their velocity compared to the large disks. At higher
drives, all of the disks depin and the difference in velocity
among the two disk species drops to zero. At FD = 1.1, shown
in Fig. 11(e), we find phase VI flow where the small disks
remain in a single high-density band while the large disks
form a low-density smectic state at 0 < y < 10 coexisting
with a high-density liquid state containing polycrystalline
regions at 35 < y < 60. A low-density void region appears
at 10 < y < 20. The motion of the particles in this state is
illustrated in the Supplemental Material [34].

When φ � 0.59, d〈V s
x 〉/FD and d〈V l

x 〉/FD have a smooth
rather than sharp increase at FD = Fc. There is an extended
regime in which the velocity of the large disks is higher than
that of the small disks, with �〈Vx〉 < 0 over the range 0.2 <

FD/Fp < 1.5 for the φ = 0.79 system. As shown in Fig. 11(c)
for φ = 0.79 at FD/Fp = 0.9, a significant fraction of the large
disks form tight polycrystalline packings while the small disks
form trapped clusters over specific horizontal windows. This
phase VII structure remains similar at higher drives, as shown
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FIG. 11. Left panels: Large disk (blue circles) and small disk (red circles) positions for the system in Fig. 10 with � = 2.0 and Ns = Nl .
Center panels: nloc

l (blue) and nloc
s (red) as a function of y position. Right panels: �nloc as a function of y position. (a) φ = 0.29 and FD/Fp = 0.95

in phase III segregated liquid/gas flow. (b) φ = 0.59 and FD/Fp = 0.9 in phase VI segregated liquid flow. (c) φ = 0.79 and FD/Fp = 0.9 in
polycrystalline phase VII flow. (d) φ = 0.29 and FD/Fp = 1.1 in phase IV liquid/smectic flow. (e) φ = 0.59 and FD/Fp = 1.1 in phase VI
segregated liquid flow. (f) φ = 0.79 and FD/Fp = 1.1 in polycrystalline phase VII flow.

in Fig. 11(e) at FD/Fp = 1.1. For larger systems with L = 200
at high φ, we find multiple large polycrystalline regions rather
than a single band spanning the system.

Transverse diffusion and topological order

In Fig. 12, we plot the transverse diffusion 〈δy2
s 〉 and 〈δy2

l 〉
along with the exponents αs and αl versus FD/Fp for the � =
2.0 system from Fig. 10. At φ = 0.59 in Fig. 12(a), we find
homogeneous phase II flow with αs ≈ αl ≈ 1 at low driving
forces of 0.4 < FD/Fp < 0.6, indicating diffusive behavior.
At intermediate driving forces, 0.6 < FD/Fp < 1.2, phase VI
flow appears and the small disks are subdiffusive since they
have become confined in a horizontal band, as shown in
Figs. 11(b) and 11(e). The large disks are superdiffusive for

FIG. 12. Transverse displacements 〈δy2
s 〉 (red dashed line) and

〈δy2
l 〉 (blue dashed line) for the small and large disks obtained

after 1 × 107 simulation time steps vs FD/Fp and the corresponding
diffusive exponent αs (red squares) and αl (blue squares) for the
system in Fig. 10 with � = 2.0 for densities φ = (a) 0.59 and
(b) 0.79.

0.6 < FD/Fp < 1.0, and become subdiffusive at higher drives
once their structure changes from a homogeneous liquid with
small voids to a denser liquid containing a large horizontal
gap. The small voids permit a transverse flow of the large
disks that is suppressed once a large void opens at higher
drives. For 1.2 < FD/Fp < 2.0, the driving force dominates
the behavior of both disk species, which form chain states that
move subdiffusively in the transverse direction. At φ = 0.79
in Fig. 12(b), the system is in phase VII flow and αs ≈ αl ≈ 1
at all driving forces above depinning, indicating diffusive
transverse flow for both disk species. This is expected in a liq-
uid phase containing polycrystalline regions of homogeneous
density.

In Fig. 13, we characterize the lane structure of the disks
based on the average angle between disks that are in contact,

〈θnn〉 = 1

Nd

Nd∑
i

�
(
ri j

dd − Ri j
)

tan−1

(∣∣∣∣Ri j · ŷ
Ri j · x̂

∣∣∣∣
)

, (4)

FIG. 13. 〈θnn〉 vs FD/Fp for the system in Fig. 10 with � = 2.0
for φ = 0.20 (circles), 0.39 (triangles), 0.59 (squares), and 0.79
(stars).
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FIG. 14. Height-field plot of �〈Vx〉 as a function of total disk
density φ vs driving force FD/Fp, based on the data in Fig. 10(c).
Red (blue) indicates that the velocity of the small disks is higher
(lower) than that of the large disks. We find a large region in which
�〈Vx〉 < 0.

sampled every �t = 5 × 105 simulation time steps after the
system has reached a steady state. This measure is closely
related to 〈�nn〉 from Fig. 8. Figure 13 shows 〈θnn〉 versus
FD/Fp for systems with φ = 0.2, 0.39, 0.59, and 0.79. For
φ = 0.20, 〈θnn〉 is low for all drives due to the phase V smectic
flow which favors disk-disk contacts that are aligned with the
x direction. We find 〈θnn〉 ≈ 30◦ near depinning for φ = 0.79,
since the polycrystalline disk arrangements in phase VII tend
to contain crystallites aligned with the x axis that contribute
angles of 0◦ and 60◦ equally to the sum. As the driving force
increases, 〈θnn〉 decreases monotonically due to an increase in
the amount of smectic or chainlike ordering in the system.
For φ = 0.39 and φ = 0.59, a local maximum in 〈θnn〉 at
FD/Fp = 1 is produced by the denser structures that form in
the phase VI flow when the phase separation is maximized for
nearly equal pinning and driving strengths. This is followed
by a decrease in 〈θnn〉 at higher drives as smectic ordering
emerges.

In Fig. 14, we show a height-field plot of �〈Vx〉 as a
function of φ versus FD/Fp for the � = 2.0 system. Compared
to the � = 1.4 system in Fig. 9, we find a much larger region
in which �〈Vx〉 < 0. This indicates that increasing the relative
size of the large disks can also increase their velocity relative
to the small disks when the driving force is close to the
depinning threshold and the total disk density is sufficiently
large.

V. LOWER FRACTION OF LARGE DISKS, Nl = Nd/10

We next investigate the effect of changing the disk species
ratio from Ns = Nl = 0.5Nd to Ns = 0.9Nd and Nl = 0.1Nd

for a system with � = 1.4. We find the same general phases as
described in Sec. III but with a greater tendency for the large
disks to move faster than the small disks. In Fig. 15(a), we
plot 〈V s

x 〉 and 〈V l
x 〉 versus FD/Fp for the Nl = 0.1Nd system at

a disk density of φ = 0.48. We find plastic depinning for both
disk species, as indicated by the concave shape of the velocity-
force curve, followed by a transition at higher drives to a
linear dependence. At FD/Fp = 0.9, illustrated in Fig. 16(a),
the system can be divided into three regions: a small disk
liquid, a small disk gas, and a mixed gaslike region containing
both disk species at an intermediate density. We label this
state phase IIIa flow. At a higher drive of FD/Fp = 1.1 in
Fig. 16(b), the small disk liquid has increased in density and

FIG. 15. (a) 〈V s
x 〉 (solid lines) and 〈V l

x 〉 (dashed lines) vs FD/Fp

in a sample with � = 1.4, Ns = 0.9Nd , and Nl = 0.1Nd at φ = 0.48.
(b) The instantaneous disk velocity V s

x (solid lines) and V l
x (dashed

lines) vs time for the small and large disks, respectively, in the sample
from panel (a) at FD = 0.2 (phase I), 0.4, 0.6, 0.8 (phase IIIa), 1.0,
1.2 (phase IVa), 1.4, 1.6, 1.8, and 2.0 (phase V), from bottom to top.
The large disks reach a steady state quickly, while the small disks
continue to evolve at t > 107 time steps. (c) A detail showing only
the FD = 0.8 curves in phase IIIa from panel (b). Dot-dashed line: A
fit to 〈V s

x 〉 = et/τs with τs = 8.46 × 105. Dotted line: A fit to 〈V l
x 〉 =

et/τl with τl = 1.19 × 106.

contains a few large disks. In this phase IVa flow, a window of
large disk liquid containing some small disks runs along one
side of the small disk liquid, while the low-density region of
the sample contains roughly equal numbers of small and large
disks arranged in a smectic structure. Because of the strong
species segregation, these phases resemble the states found
for monodisperse disks in Ref. [23]. Over the range 0.2 <

FD/Fp < 1.6 where the species separation occurs, 〈V l
x 〉 >

〈V s
x 〉, giving �〈Vx〉 < 0 (not shown).
In Fig. 15(b), we plot the time evolution of 〈V s

x 〉 and 〈V l
x 〉

for the same φ = 0.48 system at FD values ranging from
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FIG. 16. Left panels: Large disk (blue circles) and small disk
(red circles) positions for the system in Fig. 15 with � = 1.4 and
Nl = 0.1Nd at φ = 0.48. Right panels: nloc

l (blue) and nloc
s (red)

as a function of y position. (a) FD/Fp = 0.9 in phase IIIa flow.
(b) FD/Fp = 1.1 in phase IVa flow.

FD/Fp = 0.2 to FD/Fp = 2.0. For FD/Fp � 0.2, the system is
in the pinned phase I and 〈V s

x 〉 = 〈V l
x 〉 = 0. When FD/Fp �

0.4, phase IIIa flow appears and we find 〈V l
x 〉 > 〈V s

x 〉, with
〈V l

x 〉 remaining nearly constant over time while 〈V s
x 〉 decays.

For intermediate driving forces of 0.6 < FD/Fp < 1.2, ex-
tending through the regime of phase IV flow, the 〈V s

x 〉 curves
have an exponential shape, 〈V s

x 〉 ∝ e−t/τs + 〈Vo〉, as shown in
Fig. 15(c) for FD/Fp = 0.8, where τs = 8.46 × 105. A similar
fit of 〈V l

x 〉 at the same drive gives a time constant τl = 1.19 ×
106 that is somewhat larger. As FD/Fp increases above 1.2,
the system rapidly reaches a phase V steady state and the
difference between the velocity of the small and large disks
vanishes. Because of the lengthy transient dynamics at inter-
mediate FD/Fp, we wait a minimum of 2 × 107 simulation
time steps before measuring the velocity-force curves shown
in Fig. 15(a).

In Fig. 17, we plot the transverse displacements 〈δy2
s 〉

and 〈δy2
l 〉 versus FD/Fp for the φ = 0.48 sample along with

the corresponding exponents αs and αl . All four quantities
increase monotonically between FD = Fc and FD/Fp = 0.4.
At intermediate FD, in phase IIIa, we find subdiffusive trans-
verse motion of the small disks with αs < 1 accompanied
by superdiffusive transverse motion of the large disks with
αl > 1. Here the small disks are confined within a dense

FIG. 17. Transverse displacements 〈δy2
s 〉 (red dashed line) and

〈δy2
l 〉 (blue dashed line) for the small and large disks obtained

after 1 × 107 simulation time steps vs FD/Fp and the corresponding
diffusive exponent αs (red squares) and αl (blue squares) for the
system in Fig. 15 with � = 1.4 and Nl = 0.1Nd at φ = 0.48.

liquid, while the large disks are in a low-density region in
which interactions with pinning sites can enhance the trans-
verse diffusion. At large FD where phase V smectic structures
emerge, both disk species have subdiffusive transverse mo-
tion.

VI. SCALING NEAR THE DEPINNING TRANSITION

In systems of particles that have long-range interactions,
the velocity-force relationship scales as V ∝ (FD − Fc)−β

near depinning [1]. For elastic depinning in which the struc-
ture of the particle lattice remains unchanged, β = 2/3,
while when the depinning transition is plastic, β > 1.0. For
Coulomb [8] and screened Coulomb [15,41] interaction po-
tentials, the plastic depinning exponents are β ≈ 1.65 and 2.0,
respectively, while simulations of depinning of superconduct-
ing vortices with a Bessel function vortex-vortex interaction
give β = 1.3 [41]. It is interesting to ask whether similar
scaling of the velocity-force curves occurs in the disk system.
For monodisperse disks with Np/Nd > 0.288, it was shown in
Ref. [23] that the velocity-force curves can be fit to a power
law with 1.4 < β < 1.7.

In Figs. 18(a) and 18(b), we plot 〈V s
x 〉 and 〈V l

x 〉 versus
FD − Fc on a log-log scale at densities of φ = 0.46 and 0.58,
respectively. By fitting the portion of the curve closest to
depinning, we find 1.0 < β < 1.3. The scaling fit can be
performed only for φ > 0.35 and does not work at low disk
densities. We find similar scaling fits for sufficiently large
disk densities for the � = 2.0 system and for the � = 1.4 and
Nl = 0.1Nd system. The depinning is clearly not elastic, but
the lower values of β compared to systems with longer range
interactions suggest that the type of plastic depinning that
occurs may be different for short-range interacting systems
than for longer range interacting systems.

VII. CONTINUOUS DRIVING FORCE

In the results presented above, we performed individual
simulations for each value of FD starting from a uniform
initial disk configuration in each simulation. To check whether
cumulative disk rearrangements affect the velocity response
and ordering, and also to test for the presence of hysteresis, we
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FIG. 18. 〈V s
x 〉 (solid lines) and 〈V l

x 〉 (dashed lines) vs FD − Fc on
a log-log scale for the sample from Fig. 1 with � = 1.4 and Ns = Nl .
We fit the data to 〈V s(l )

x 〉 ∝ (FD − Fc )−β (pink lines). (a) φ = 0.46
with β = 1.0. (b) φ = 0.58 with β = 1.3.

next consider a set of simulations in which we continuously
sweep FD up a series of steps with increment size �FD =
0.05. We increase FD from FD = 0 to FD = 2.0, and then
continuously decrease FD with �FD = −0.05 from FD = 2.0
back down to FD = 0, spending 5 × 107 simulation time steps
at each drive increment in order to let the system reach a
steady state. We apply this continuous sweep protocol to
systems with � = 1.4 and φs = φ� at two densities, φ = 0.35
and φ = 0.46, and compare it to the discrete ramp protocol.

In Fig. 19(a), we plot 〈V s
x 〉 and 〈V l

x 〉 for the upward and
downward sweeps in the φ = 0.35 system, and in Fig. 20(a)
we show the same quantities for the φ = 0.46 sample. In each
case, we find no velocity hysteresis. The φ = 0.35 system
undergoes phase segregation but does not show the disk
species separation found with the discrete ramp protocol. In
the φ = 0.46 system, both phase segregation and disk species
separation occur.

We also measure the average largest cluster size of the
system, 〈CL〉, versus FD/Fp, as shown in Fig. 19(b) for φ =
0.35 and Fig. 20(b) for φ = 0.46. To determine CL, we use the
cluster counting algorithm of Luding and Herrmann [42] to
identify clusters of disks that are all touching each other, and
we record the size of the largest cluster in the system. We then
average this quantity over time to obtain 〈CL〉. Hysteresis ap-
pears in 〈CL〉 within the pinned phase I. As the drive increases
from FD = 0, large clusters form as disks become trapped
and prevent interstitial disks from flowing, and the value of
〈CL〉 is relatively high just below the depinning transition. In
the φ = 0.35 sample, once the disks depin the clusters break
apart, giving a gradual decrease in 〈CL〉 with increasing FD, but
once the system enters the phase IV regime near FD/Fp = 1.1,
the disks form chain structures that are nearly the same size as
the clusters that formed below depinning, so 〈CL〉 stabilizes
and then increases slightly with increasing FD as the chain

FIG. 19. (a) 〈V s
x 〉 and 〈V l

x 〉 vs FD/Fp for a continuous ramp in
a system with φ = 0.35, � = 1.4, and Ns = Nl . Solid lines, upward
sweep of FD; dashed lines, downward sweep of FD. (b) 〈CL〉 vs FD/Fp.
Solid lines, upward sweep of FD; dashed lines, downward sweep
of FD.

length gradually increases. In the φ = 0.46 sample, there is
also a drop in 〈CL〉 above depinning as the clusters dissolve,
but the chains that form in phase IV are relatively short, so
〈CL〉 saturates at a steady low value. Upon reversing the drive,

FIG. 20. (a) 〈V s
x 〉 and 〈V l

x 〉 vs FD/Fp for a continuous ramp in
a system with φ = 0.46, � = 1.4, and Ns = Nl . Solid lines, upward
sweep of FD; dashed lines, downward sweep of FD. (b) 〈CL〉 vs FD/Fp.
Solid lines, upward sweep of FD; dashed lines, downward sweep
of FD.
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the evolution of 〈CL〉 is not hysteretic until the sample repins
and the evolution of the disk structures is frozen. Since the
disks have already rearranged during the upward sweep of the
drive, there are no disk rearrangements below the repinning
transition and 〈CL〉 remains fixed at a value lower than that
which appears on the upward ramp when pinned clusters of
disks are slowly evolving.

VIII. DISCUSSION

Our work suggests that dynamical phase separation, par-
ticle species segregation, and laning effects are general fea-
tures of driven systems with short-range hard-disk particle-
particle interactions moving over random disorder. Observing
these results experimentally requires access to a sample in
the overdamped limit where thermal fluctuations are absent,
such as colloidal particles suspended in a viscous fluid or
colloidal particles of relatively large size for which thermal
effects are small [43,44]. Additionally, in certain supercon-
ducting vortex systems, multiple vortex species could be
stable and the vortex-vortex interactions would be effec-
tively short range near phase boundaries [45]. Other systems
include magnetic bubbles with different bubble sizes [46],
multispecies Skyrmions [47,48], and emulsions composed of
binary species [49]. Our results could have some relevance
to granular matter; however, our model does not include
inertial terms or frictional interactions, both of which are often
important in granular systems. One possible similar system
would be granular matter suspended in fluid moving over a
random surface.

The unusual phase-separated states observed in the bidis-
perse hard-disk system arise at certain disk densities and
driving forces and result from a velocity collapse mechanism
that occurs whenever the mobility becomes density dependent
such that an isolated disk can move more rapidly than disks
within a cluster. The resulting voids in the sample have
no energy penalty due to the short range of the disk-disk
interaction potential. Similar clustering appears in a system
of monodisperse disks [24].

We measure only the transverse diffusion of the disks since
the driving force induces ballistic motion in the longitudinal
direction, similar to that which appears for active matter.
The net motion is therefore generally superdiffusive over
extended timescales, as described in Sec. III C. Even though
the behavior becomes diffusive at the longest timescales, it is
still superdiffusive on the timescale of collective interactions.

Our simulations could be extended to include thermal
fluctuations, finite inertia, and/or different disk-disk inter-
action potentials. We expect that the clustering of the disks
would break down under increasing temperature, which would
tend to homogenize the disk density; however, species phase
segregation may still occur for entropic reasons. Introduction
of an inertial term to the equations of motion would produce
more Gaussian-like fluctuations of the motion of the disks,
unlike the nonequilibrium fluctuations produced by the exter-
nal applied driving force, and should change the nature of the
dynamical states. It would be interesting to study a system
of soft interacting disks that can strongly overlap, such as
an experimental bubble array system [14]. In this foam or
bubble limit, it may be possible to obtain states in which

some particles are pinned while other particles are able to
squeeze past the pinned particles. This system could be used
to access densities above the hard-sphere jamming density,
where stress fields and other long-range effects would become
important.

IX. SUMMARY

We examine the dynamics of bidisperse disks driven over
random quenched disorder to explore the dynamical phases of
particles with short-range interaction forces. At low disk den-
sities, we observe a pinned state that transitions into a strongly
chained state where the disks can undergo local demixing
but where the overall disk distribution is homogeneous. At
intermediate disk densities, the disks depin into a disor-
dered flow state exhibiting stick-slip dynamics, followed by a
species-segregated state in which the small disks form clusters
and the large disks remain evenly distributed throughout the
sample. For intermediate drives, the disks form a partially
laned state exhibiting both species separation and density
segregation, while at high drives a mixed laning state emerges.
At high disk densities of φ > 0.75, a rigid polycrystalline state
appears that moves as a solid and undergoes no species or
density segregation. Both the density- and species-segregation
effects are the most prominent near FD = Fp when the driving
force and pinning force directly compete. The anisotropic
fluctuations induced by the pinning at high drives favor the
formation of laned states. It is also possible to induce mixing
between the two species just above the depinning transition.
By increasing the radius of the large disks compared to that
of the small disks, we find a larger amount of crystallization
and banding of the large disks, while the small disks tend
to form an interstitial liquid. Lowering the fraction of large
disks compared to the fraction of small disks tends to increase
the velocity of the large disks compared to that of the small
disks, which species separate into a disordered liquid that
flows unevenly over the pinning sites. When the disk density is
sufficiently large, we find scaling of the velocity-force curves
near the plastic depinning transition with an exponent that
is slightly smaller than what is observed in systems with
longer range interparticle interactions, suggesting that the
plastic depinning transition may have distinct features when
the interaction range is very short.

Our results could be relevant to multispecies flows of soft
matter through random substrates or the flow of granular
matter over a disordered background. It would be interesting
to explore possible segregation effects for bidisperse systems
with long-range particle-particle interactions driven over ran-
dom disorder. In the disk system, the segregation of particles
into clumps reduces the number of disk-disk collisions and
enhances the disk flow.
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