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Interplay of elastic instabilities and viscoelasticity in the finite deformation of thin membranes
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Pneumatic structures and actuators are found in a variety of natural and engineered systems such as dielectric
actuators, soft robots, plants and fungi cells, or even the vocal sac of frogs. These structures are often subjected
to mechanical instabilities arising from the thinning of their cross section and that may be harvested to perform
mechanical work at a low energetic cost. While most of our understanding of this unstable behavior is for purely
elastic membranes, real materials including lipid bilayers, elastomers, and connective tissues typically display
a time-dependent viscoelastic response. This paper thus explores the role of viscous effects on the nature of
this elastic instability when such membranes are dynamically inflated. For this, we first introduce an extension
of the transient network theory to describe the finite strain viscoelastic response of membranes, enabling an
elegant formulation while keeping a close connection with the dynamics of the underlying polymer network. We
then combine experiments and simulations to analyze the viscoelastic behavior of an inflated blister made of a
commercial adhesive tape (VHB 4905). Our results show that the viscous component induces a rich spectrum of
behaviors bounded by two well-known elastic solutions corresponding to very high and very low inflation rates.
We also show that membrane relaxation may induce unwanted buckling when it is subjected to cyclic inflations
at certain frequencies. These results have clear implications for the inflation and mechanical work performed by
time-dependent pneumatic structures and instability-based actuators.
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I. INTRODUCTION

Pneumatic structures and actuators based on the inflation
of thin membranes are an important component of many
industrial and natural systems, such as the vocal sac of
frogs [1], soft robots [2], or baromorphs [3]. Despite the
variety in their nature and composition, these membranes
are characterized by their capability to undergo extremely
large strains (>100%), and the fact that they often exhibit a
strong viscoelastic response [4]. Due to their large distortions,
membranes often display mechanical instabilities. For exam-
ple, the thinning of a stretched rubber membrane affects its
internal pressure [5] and the electric field across it [6]. Surface
wrinkles appear due to a competition between curvature and
compressive strains [7], and cellular blebbing [8] is caused
by a competition between adhesion and internal pressure.
These and other instabilities are the keys to understanding the
mechanics of greater problems such as the vesicle transport
in porous media [9,10] or the electroporation in animal cells
[11]. In addition, many technological applications are de-
signed to harvest those instabilities and use them in actuators
[12], energy harvesting [13], or even medical applications
[14] at low energetic cost. However, while there is extensive
literature devoted to understanding the physics behind these
instabilities in the elastic regime, the role of viscosity is
still poorly understood. To the best of our knowledge, the
interplay between elastic instability and viscous relaxation
has only been reported in the context of dielectric elastomers,
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where several authors stressed the importance of how viscous
effects delay, stabilize, or even eliminate these instabilities
[15–17].

Viscoelasticity in highly deformable shells is often ap-
proached from the perspective of fluidlike thin films in which
the shell or membrane is modeled using a creeping flow [18].
This is the case of thin viscous sheets such as syrup [19],
but the same approach is also used in the broader context
of biomembranes [20–23] due to their faster relaxation times
with respect to other simultaneous processes [24–26]. Re-
garding solidlike materials such as polymers [27], researchers
have relied on coupling shell theory with known constitutive
equations for viscoelasticity such as the standard linear solid
[28], K-BKZ [29], Christensen [30,31], or CBT [32] models.
These approaches are phenomenological and thus provide
little information on the molecular mechanisms driving these
behaviors [33,34]. In this sense, the transient network theory
(TNT) [35,36] enables us to obtain a statistical knowledge
of the molecular processes leading to viscoelasticity in ac-
tive networks [37,38] and is often used to investigate the
physics behind non-Newtonian fluids [39] and the solid-
fluid transition. Taken in the context of shells and mem-
branes, it might, therefore, impact our understanding of lipids
mono- and bilayers [40], viscous sheets [41], or polymeric
membranes.

In this paper, we concentrate on using this statistical ap-
proach to study the interactions between large elastic de-
formation and viscous relaxation during the common snap-
through [42] instability of rubber membranes. We first present
a series of experimental results on a commercial viscoelastic
adhesive tape (VHB 4905) that illustrate the role of relaxation
at the onset and the extent of mechanical instabilities (due
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FIG. 1. (a) Scheme of the blister inflation experimental setup. (b) Experimental results on the internal blister pressure vs the internal fluid
volume obtained at four different inflation speeds: V̇ = 0.1, 1, 5, and 10 mL/min. The insets A–E are actual snapshots of the experiment at
five different stages ranging from V = 0 to 400 mL. The reference cube has a 3.5 mm edge.

to membrane thinning and buckling). After deriving the TNT
for membranes, we then explore the observed blister response
in the case of constant inflation rates and cyclic loading.
Model results not only provide a good interpretation of ex-
perimental results, but they also predict how the competition
between loading rate and relaxation time drives the nature of
instabilities.

II. EXPERIMENTAL GROWTH
OF VISCOELASTIC BLISTERS

Our experiment consists of inflating a blister under a
viscoelastic adhesive tape (VHB 4905) firmly attached to
an aluminum substrate through a central hole of radius R
[Fig. 1(a)]. The inflation process is driven by an NE-1000
syringe pump (NEWERA Pump Systems, Inc.) that injects
dyed water at a controllable volume rate V̇ using a network of
polyethylene tubing. In parallel, a pressure transducer (Omega
PX26-005GV) connected to a DAQ system (NI-9211 and
NI USB-9162) and powered with a dc power source allows
constant monitoring of the pressure with precision between 0
and 5 psi. To prevent the delamination of the material during
inflation, the neck of the blister is firmly constrained at all
times such that we obtain the blister growth depicted in the
insets A–E in Fig. 1. Three parameters, therefore, control the
system: the volume inflation rate V̇ , the initial tape thickness
h0, and the initial blister neck radius R [Fig. 1(a)]. Due to
the known viscous response of the material [43], the initial
results are presented in the form of pressure-volume curves
for a blister with parameters R = 3.5 mm, h0 = 0.5 mm, and
various inflation rates (V̇ = 0.001–10 mL/min) [Fig. 1(b)].
In addition, these results are compared to an elastic solution
that we obtained via quasistatic inflation. For this, we inflated
multiple blisters to different volumes and allowed them to
relax for large periods of time (>10 h) until the pressure
reached a steady state. The different pressure-volume points

obtained with this method were combined to obtain the bottom
curve of Fig. 1(b), which we labeled as an elastic solution.
Each of these curves shows a nonlinear relationship between
pressure and volume, which we characterize by two measures:
(i) the magnitude of the maximum or critical pressure, and
(ii) the critical volume at which this instability occurs. In
the case of an elastic membrane (V̇ → 0), this instability is
known to result from the thinning of the rubber membrane
at large strains and a subsequent drop in internal pressure
[5]. We show here that a similar phenomenon also occurs for
larger inflation rates where viscous effects become dominant.
In particular, it can be seen that while the critical pressure
increases monotonically with the inflation rate, the critical
volume first shows a drop and then a rise with the inflation
rate. In theory, this critical volume should be the same at
very slow and very fast inflations as they both correspond to
different scalings of the elastic solution.

It is clear that this time-dependent behavior can drastically
affect the behavior of blisters subjected to dynamic and cyclic
loading. To illustrate this point, we subjected the blister to a
single inflation-deflation cycle (up to a volume of 0.7 mL) at
two different speeds: a fast process driven at V̇ = 0.1 mL/s
and a slower one driven at V̇ = 0.004 mL/s. The blister was
then deflated at the same speed until it buckled, and finally
it was left to relax until it recovered a smooth shape. As
shown in Fig. 2, the blisters display a very different buckling-
recovery pattern depending on the inflation rate. For slow
inflation [Fig. 2(b)], buckling appears at a high volume, and
the blister takes a long time to recover a quasispherical shape.
For fast inflation, however [Fig. 2(a)], the blister buckles at a
small volume, and relaxation occurs almost instantaneously.
To understand these puzzling behaviors, we first introduce
a model to capture the viscoelasticity of a membrane at
large strains based on the transient network theory (TNT)
and then we explore the problem of rate-dependent blister
inflation.
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FIG. 2. (a) Deflation cycle performed of a slowly inflated blister
made of VHB 4905 with initial radius R = 3.5 mm. The images
show the maximum inflation at 700 mL (A), the shape prior to
buckling (B), buckling (C), and the final relaxed state (D). (b) Same
as (a) using an extremely fast inflation-deflation speed.

III. TRANSIENT NETWORK THEORY
FOR THIN MEMBRANES

The theory of thin membranes [44] idealizes a thin layer as
a two-dimensional surface embedded in a three-dimensional
space. Due to the membrane’s small thickness, two main
assumptions can usually be made: (a) bending moments are
negligible compared to in-plane stresses, and (b) the normal
vector n at any point remains normal during deformation.
The latter implies that we can parametrize the membrane
by two in-plane coordinates ξα (α = 1, 2) and one out-of-
plane coordinate ξ such that the position x of a point in the

membrane is

x = ϕ(ξα ) + ξνn, ξ ∈
[
−h0

2
,

h0

2

]
, (1)

where ϕ(ξ 1, ξ 2) is the coordinate on the midplane while ν is
the ratio between the current h and reference thickness h0.
In the remainder of the paper, we use α to indicate the two
tangent coordinates, and the index 3 to indicate the normal
direction. Furthermore, instead of precise but more complex
index notation, we prefer here to use a more generic tensor
notation for clarity. Details regarding the component form
of the presented equations are provided in Appendix A for
the interested reader. Following [44], the stress state of a
membrane is characterized by the in-plane Cauchy stress
tensor σ, which is obtained by integrating the Cauchy stresses
over the thickness of the shell. This tensor has nonzero com-
ponents σαβ that are proportional to the membrane thickness
h (Fig. 3), and whose dimensions are of line tension (force per
length). Considering then a membrane with external pressures
applied tangential f α and normal f 3 to the midplane, the
balance of linear momentum takes the form [45]

σαβ
∣∣
β

+ f α = 0, σ αβκαβ + f 3 = 0, (2)

where the vertical bar in the first equation indicates a covariant
derivative, and καβ is the curvature tensor (or second fun-
damental form) of the surface (see Appendix A for details).
Despite their apparent complexity, one can easily interpret the
physical meaning of these equations by drawing an analogy
with the Laplace law in fluid interfaces. Indeed, the second of
Eqs. (2) establishes that the pressure applied normally to the
membrane is balanced by the surface tension σαβ times the
curvature kαβ at that particular point.

The viscoelastic response of polymers arises from a variety
of molecular dynamics including molecular entanglements
[46], dynamic bonds [47], or diffusion of molecular chains
[48], among others. When these dissipative mechanisms are
coupled with large elastic deformations, we have previously
shown that the TNT [49] provides a convenient mathematical
description. With this approach, a polymer is conceptual-
ized as N + 1 interpenetrated and independent networks of
cross-linked molecular chains (Fig. 3). These networks can
belong to two categories: (a) dynamic networks are those
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b

FIG. 3. Scheme of the parametrization x of an axisymmetric blister with neck radius 2R, local basis a1, n, and principal stresses σ 11, σ 22.
The inset on top represents a scheme of a polymer made of a combination of permanent and dynamic bonds with attachment and detachment
rates ka and kd , respectively.
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in which cross-links constantly attach and detach at rates ka

and kd , respectively, and thus provide a viscous component
to the material; (b) permanent networks have permanent (or
covalent) cross-links (ka = kd = 0) and thus provide an elastic
response. In this study, the elastic network is denoted by the
index 0, while the dynamic networks are denoted by indices
n = 1 to N . To derive a constitutive relation based on these
assumptions, a molecular chain is idealized as the collection
of N Kuhn segments of length b, and characterized by its
end-to-end vector r (Fig. 3). The mechanics of the nth network
may then be understood through the distribution φn (Fig. 3) of
this end-to-end vector r within a continuum point. Following
[36], a domain 	 made of a population of polymer chains
with total concentration Cn can then be characterized by two
key quantities: the concentration cn of attached chains (i.e.,
those that are connected to the network and contribute to the
mechanical response) and the chain distribution tensor μn:

cn =
∫

	

φn(r)d	, μn = 3

cNb2

∫
	

φn(r)r ⊗ r d	. (3)

From its definition, it can be inferred that μn represents mean-
squared stretch experienced by attached chains in the nth
network; it is directly related to the stored elastic energy and
internal stress in the corresponding network. Following [36],
the Cauchy stress tensor in the polymer follows an additive
decomposition, which in the case of a membrane we can write
as

σ = h

(
N∑

n=0

cnkBT (μn − I) + pI

)
, (4)

where kBT is the thermal energy of a single polymer chain,
I is the identity tensor, and p is the internal pressure, which
acts as a Lagrange multiplier enforcing the material’s incom-
pressibility. We note that the term cnkBT has units of force
per unit length and it corresponds to the shear modulus Gn

of each individual network [36]. For a thin membrane, this
expression can be simplified by noting that σ 33 = 0. Indeed,
if we consider the normal component of the distribution tensor
as μt

n = n · μn · n, the internal pressure is then determined as
p = ∑

Gn(1 − μt
n). By substituting this result into σ and in-

tegrating over the thickness, we obtain a universal constitutive
equation for the viscoelastic stress in membranes as

σ =
N∑

n=0

hGn
(
μn − μt

nI
)
. (5)

It can easily be shown that the pure elastic case (n = 0)
converges to a neo-Hookean elastic model with shear mod-
ulus G0 = c0kBT [36]. The stress can therefore be additively
decomposed into a purely elastic component hG0(μ0 − μt

0I)
and N viscoelastic contributions.

The problem is then reduced to determining the evolu-
tion of the concentrations cn of attached chains and their
distribution μn over time. We have previously shown [36]
that general evolution equations for these quantities follow

first-order kinetics as follows:

ċn = ka(Cn − cn) − kd cn, (6a)

μ̇n = ka
(Cn − cn)

cn
I − kdμn + Lμn + μnLT , (6b)

where L is the velocity gradient. We see here that the evolution
of chain stretch in networks is driven by their attachment in
their natural state at a rate ka, their detachment in their current
state at a rate kd , and finally their elastic distortion due to
an imposed rate of deformation, represented by the velocity
gradient L. We finally note that this model simplifies if the
rates ka and kd are independent of chain deformation. In these
cases, (6a) and (6b) are decoupled, and the concentration cn

quickly reaches a steady state given by cn = Cnka/(ka + kd ).
Substituting this result in (6b) leads to

μ̇n = −kd (μn − I) + Lμn + μnLT . (7)

Furthermore, if one expresses this equation in the curvilinear
coordinate system (a1, a2, a3), where ai = ∂x

∂ξα (see Appendix

A for details), the evolution of the tensor μ = μi ja1 ⊗ a2

becomes

μ̇n = μ̇i j
n ai ⊗ a j + μi j

n ȧi ⊗ a j + μi j
n ai ⊗ ȧ j . (8)

All three terms on the right-hand side can be readily identified
with those appearing in Eq. (7). In other words, in this ap-
propriate curvilinear system, the evolution of the distribution
tensor degenerates to the simple component equation

μ̇i j
n = −kd

(
μi j

n − ai j
)
. (9)

The variations of the components of the distribution tensor are
therefore related to the viscoelastic component of the stress,
and one obviously has μ̇

i j
0 = 0. In summary, the deformation

of the membrane is defined by the combination of Eqs. (2),
(5), (6a), and (6b).

IV. INFLATION OF VISCOELASTIC BLISTERS
AT CONSTANT RATES

We explore here the behavior of a viscoelastic blister at
constant inflation rates. We start by deriving an exact solution
for a spherical membrane, which provides a good approxi-
mation of a blister undergoing large deformation. We then
confirm our findings by exploring the more complex geometry
of a real blister.

A. Solution for spherical viscoelastic membranes

To gain insight into our experimental results, we therefore
consider first the inflation of a spherical membrane with an
initial radius R0 and thickness h0 [Fig. 4(b)]. The elastic
solution for this problem is well known in the literature
[50,51] and is commonly used to illustrate elastic instabilities.
However, to the best of our knowledge, although there are
some viscoelastic versions of this problem [29], the effect of
viscosity on the mechanical instability is still poorly under-
stood. During spherical inflation, the membrane deformation
is entirely defined by the change in radius R = λR0. Hence, a
solution to this problem involves integrating the distribution
tensor in time and use Eq. (2) to determine the internal
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FIG. 4. (a) Normalized pressure P∗ vs the radial strain λ = R/R0 during the inflation of a spherical membrane made of a single dynamic
network c1 = 0. (b) Evolution of the critical strain εc/ε

el
c , where the P∗-λ diagram takes the maximum value. The insets represent a comparison

between the minimum and the maximum relative size at which this maximum takes place. (c) Normalized pressure P∗ vs the radial strain
λ = R/R0 during the inflation of a spherical membrane with β = 1. (d) Variation of the maximum pressure in the (a) and (b) diagrams with
the strain rate, and its comparison with the purely elastic case c2 = 0. (e) Variation of the strain λc that gives the maximum pressure with the
strain rate and its comparison with the elastic case c2 = 0.

pressure P (details are provided in Appendix B). Regarding
the constitutive equation, we choose here a simple approach
in which the polymer is made of a permanent network with a
constant c0 and a single dynamic network with constants c1

and kd . Altogether, these assumptions lead to the following
expression relating the radial strain λ to the internal pressure
P:

P∗ = 2c∗
0

(
μλ

0 − μh
0

) + 2c∗
1

(
μλ

1 − μh
1

)
, (10)

where μλ
0 = 1/λ, μh

0 = 1/λ7, and

μλ
1 = 1

λ
e−kd t + kd

λ

∫ t

0

ekd (ζ−t )

λ(ζ )2
dζ , (11)

μh
1 = 1

λ7
e−kd t + kd

λ7

∫ t

0
λ(ζ )4ekd (ζ−t )dζ . (12)

This solution contains two contributions, weighted by c∗
0 and

c∗
1, respectively. The former corresponds to the elastic re-

sponse of the permanent network, and it matches the classical
result for the inflation of a spherical neo-Hookean membranes
[52]. The latter corresponds to the viscous or rate-dependent
contribution. For convenience, we normalize the problem
based on the total number of attached bonds as c∗

n = cn
c0+c1

(n = 0, 1) and P∗ = PR0/(
∑

cnkBT h0), implying that the
reference shear modulus is G = G0 + G1. Using this, let us

explore the behavior of a membrane made of a purely dynamic
network (c∗

0 = 0) (that may be compared to a Maxwell model
in its linearized form). In this case, the pressure takes the form

P∗ = 2(μλ − μh). (13)

We plot in Fig. 4(a) the variation of the normalized pressure
P∗ with radial stretch λ for different inflation rate λ̇∗ = λ̇/kd .
We note that when inflated quickly (λ̇∗ → ∞), the sphere
converges to a purely elastic membrane with shear modulus
G = c1kBT [Fig. 4(a)] and an elastic instability occurring at
the classical critical stretch λc = 1.38. As the inflation rate
decreases, however, the solution shifts the magnitude and
position of this critical value until it eventually vanishes when
the timescale of the inflation is smaller than the material
relaxation. Interestingly, we observe a nontrivial shift of the
coordinate [λc, Pc] of the critical point. On the one hand,
we observe the expected decrease in critical pressure due to
the stress relaxation on the membrane. This behavior, similar
to that observed in the blister tests, is a direct result of the
dynamic network, which acts as a viscous damper. On the
other hand, Fig. 4(b) shows that the model predicts a nonlinear
increase of the critical strain εc = λc − 1 with inflation rate
λ̇∗. This may be explained as follows: for very slow rates,
the polymer behaves like a fluid and thus shows immediate
relaxation εc ≈ 0. In contrast, as the inflation speed increases,
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the membrane starts showing an elastic behavior and its asso-
ciated instability at 0 < εc < 0.38. Finally, at large inflation
rates, the membrane becomes quasielastic, and we recover the
elastic solution εc = 0.38.

Let us now consider the case in which both the permanent
and dynamic networks are present [Eq. (10)]. For this, it is
useful to separate the contribution from each network with
the parameter β = c∗

1/c∗
0. Now, due to the presence of the

permanent network, the P∗-λ relationship converges to the
same solution in both quasistatic and extremely fast inflations
with a scale factor of (1 + β). Indeed, the shear moduli
corresponding to a relaxed and instantaneous inflation are, re-
spectively, G0 = c0kBT and Gi = (1 + β )G0. Furthermore, in
the boundary β → 0, the system converges to the quasistatic
solution with modulus G0 regardless of the inflation speed. In
intermediate cases, however, the elastic behavior of the per-
manent network coexists with the viscous dissipation of the
dynamic one. In this case, the previous analysis on extremely
slow and extremely fast inflation indicates that the position of
εc must remain unchanged at the inflation boundaries λ̇ → 0
and λ̇ → ∞ [Fig. 4(d)]. Regarding its magnitude, the critical
pressure scales with (1 + β ) between these two scenarios
[Fig. 4(c)]. By plotting these two quantities [Figs. 4(b) and
4(c)], we observe a nonlinear variation where the critical strain
is reduced on intermediate inflations, while the critical pres-
sure always increases with the inflation rate. Indeed, as long as
the viscous contribution is present, we observe the same shift
to lower critical strains. However, this effect disappears as the
contribution of the dynamic network vanishes (λ̇∗ → 0) and
we are left with a purely elastic membrane.

B. Inflation of a viscoelastic blister

Using the general formulation, let us now concentrate on
the problem of an axisymmetric blister with radius R being
inflated at a rate V̇ (Fig. 3). The governing equations for
this particular problem (see Appendix C) now consist of
nonlinear partial differential equations that do not lend a
simple solution. For this reason, we constructed a numerical
solution by discretizing the strong form of Eq. (2) using the
extended particle difference method [53,54], and we solved
the time increments with an explicit forward Euler approach
(see Appendix D for details). In a nutshell, given an external
force f during a small time increment δt , the displacement
δx = u of a particle on the midplane was found and updated
using the following incremental scheme: (a) Assuming a
constant distribution tensor μ, we used Eq. (5) to find the
stresses as a function of x. (b) We used this result in Eq. (2)
and solved to determine u = δx. (c) We then updated the
position of the midplane ϕ, its thickness h, and all surface
properties such as strains and curvatures. (d) We subsequently
updated the distribution tensor and chain density following
Eqs. (6a) and (6b). (e) Finally, the force f was updated, and
we started a new time step.

Again, for simplicity, we modeled the VHB tape used in
our experiments as a combination of one permanent network
(with shear modulus G0) and one dynamic network (with
shear modulus G1 and detachment rate kd ). These material pa-
rameters were determined by matching model and experimen-
tal results as discussed below. For this, we first normalized the

pressure, volume, and inflation rate in the form

P∗ = h0P

R(G1 + G2)
, V ∗ = V

h3
0

, W = V̇

h3
0k0

d

. (14)

The membrane equations were then subjected to fixed volume
inflation rates W for which we predicted the critical volume
V ∗

c and pressure P∗
c [Figs. 5(b) and 5(c)]. As expected, the

critical pressure varies between two asymptotes correspond-
ing to the relaxed and instantaneous shear moduli [Fig. 5(b)].
As W → 0, the system behaves elastically and the pressure is
equivalent to that obtained with an elastic solution of shear
modulus G = G0. By contrast, a fast inflation adds a total
contribution of G1 to the shear modulus such that the system
has an elastic behavior with instantaneous modulus G = G0 +
G1. With this approach, we found that G0 = 23 ± 3 MPa
[Fig. 5(a)] and G1 = 120 ± 5 MPa. We note that the elastic
modulus G0 is on the same order as the value previously found
(13.6 kPa) using uniaxial tests [55,56]. At moderate inflation
speeds, an appropriate match between the two-network model
and experimental curves was difficult to achieve since VHB
is known to possess multiple relaxation times [55]. More
specifically, experimental curves imply that the relaxation
time is stress-dependent, i.e., it flows and relaxes faster under
stress. To improve our model, we therefore assumed that the
relaxation time kd of the dynamic network was an increasing
function of the first invariant I1 = tr(σviscous) of the viscous
stresses, i.e., the stresses arising from networks 1 to N . A satis-
factory fit for different inflation rates (V̇ = 0.001–10 mL/min)
was found when the detachment followed a power law in I1

of the form kd = 2.7 × 109(I4
1 ). We see in Fig. 5(a) that this

model leads to acceptable predictions of the loading stage, the
critical pressure, and the initial relaxation times. However, it
cannot capture the polymer relaxation at high strains. A more
accurate model could be constructed to include the presence of
more networks and relaxation times; this is, however, beyond
the scope of the present study. Nevertheless, this analysis
shows that the conclusions found for the spherical model
are still valid for the more complex blister geometry. Note,
however, that the relationship between W and the critical
volume and pressure appears shifted to the right in Figs. 5(b)
and 5(c). This results from the fact that there is a nonlinear
relationship between volume rate W and strain rate during the
inflation process, the former being generally faster than the
latter.

V. CYCLIC LOADING OF A VISCOELASTIC SPHERE

While the study of blister inflation at a fixed rate yielded
insightful results regarding its viscous instabilities, many ap-
plications seeking to harvest those instabilities occur at load-
ing conditions that are far from constant [57]. Applications
of these concepts in reversible actuators [58], soft generators
[59], or the control of biofouling [60] are precisely based on
the fact that the instability can be cyclically recovered. We
therefore propose to explore the mechanisms driving blister
relaxation during cyclic inflation and their connection with the
buckling phenomenon observed in Sec. II. Motivated by our
previous results and other studies [61], we further idealize the
blister as a spherical cap, enabling the derivation of exact and
insightful analytical solutions.
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FIG. 5. Normalized pressure P∗ vs the normalized volume of the blister V ∗. The solid lines correspond to our model results while the
symbols are experimental data obtained at three different speeds, i.e., V = 0.01, 0.1, and 1 mL/min plus an additional set of data obtained
using a quasistatic inflation V → 0. (b),(c) Model predictions of the evolution of the critical pressure and volume vs the Weissenberg number.
The images on top correspond to the modeled blister profiles at Pc − Vc for the corresponding Weissenberg numbers indicated in (c).

A. Step loading

Here, we consider a situation in which the spherical mem-
brane is periodically inflated at a constant rate λ̇∗, with alter-
nating relaxation periods for a duration t∗

r = trkd [Fig. 6(a)].
This could correspond, for example, to the evolution of a
pathological blister where the incoming volume is periodi-
cally interrupted in time. From the previous discussion, it can
be inferred that the strain-pressure curve for this situation is
bounded by the two elastic solutions corresponding to the
relaxed and instantaneous inflation shown in Fig. 6(b). Hence,
if the inflation rate is small, one recovers the elastic lower
bound, and the solution is independent of time. Similarly, for
extremely fast loading (λ̇∗ → ∞) and small relaxation times
t∗
r , one recovers the elastic upper bound. As t∗

r increases,
the stress in the dynamic network relaxes and the pressure

eventually shifts to the elastic lower bound [Fig. 6(b)]. Fig-
ure 6(b), however, shows that once the membrane has been
allowed to relax multiple times, it converges to the lower
bound solution, regardless of the inflation rate.

This observation may be explained as follows: when the
dynamic network is allowed to reorganize, its stress-free state
corresponds to a larger membrane radius and lower thickness.
Since the normalized pressure is scaled with the factor h0/R
[Eq. (14)], this change in reference reduces the maximum
pressure that can be sustained by the dynamic network and
shifts the position of the instability. In contrast, the perma-
nent network does not feel any of those changes, and its
pressure-strain curve is maintained to the lower bounds. In this
situation, for a given membrane stretch λi = 1 + εi, the corre-
sponding pressure can be split into (a) a pressure P∗

elastic from
the permanent network and (b) a pressure P∗

viscous from the

40
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ε2

tr = 100
tr = 500
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FIG. 6. (a) Weissenberg number variation during a step loading with alternate relaxation times of length t∗
r . (b) Pressure-strain curves on a

spherical shell when the inflation profile of (a) is applied. (c) Variation of the maximum possible pressure on the system with each subsequent,
long-lasting pause i at a strain εi

r .
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FIG. 7. (a) Pressure-strain curves during the first three cycles of a continuous inflation-deflation process at constant |λ̇∗| = 10 on a spherical
membrane with β = 1. The colors define the hysteresis produced on each cycle. The dotted line shows the constant contribution of the elastic
or permanent network. (b) Same as (a) but using an inflation speed |λ̇∗| = 103.

dynamic network resists that progressively relaxes over time.
Hence, resuming a fast loading after a long-lasting relaxation
at εr leads to a new maximum pressure-strain relationship of
the form

P∗ = 2c∗
0

(
1

λ
− 1

λ7

)
︸ ︷︷ ︸

P∗
elastic

+ 2c∗
1

(1 + εi )3

(
1

λ − εi
− 1

(λ − εi )7

)
︸ ︷︷ ︸

P∗
viscous

.

(15)

The onset of the instability, which we previously denoted as
(λc, Pc), is modified accordingly. As the dynamic network
reaches a new stress-free state at higher εr , the location of the
instability is consequently shifted to higher stretch values, and
its magnitude is progressively reduced as shown in Fig. 6(c).
This decay is even more evident at higher values of β, where
the contribution of the viscosity is more prominent. This
result implies that the rubber instability normally seen during
inflation cannot be recovered for long relaxation periods. To
attenuate this effect, one can minimize the total energy lost
during relaxation, i.e., having smaller relaxation periods and
inflating at higher speed.

B. Cyclic inflations

Let us finally turn to a scenario during which the membrane
follows a periodic inflation-deflation cycle shown in the inset
of Fig. 7(a) and that would recapitulate the conditions felt by
a soft reversible actuator, for example. More specifically, the
membrane is first inflated at a constant rate λ̇, then kept at
constant volume, and finally subjected to a deflation rate −λ̇,
all steps occurring in the same time interval t∗

0 . The predicted
pressure response of this system is depicted in Figs. 7(a)
and 7(d), depicting three inflation-deflation cycles with a
maximum strain εmax = 2 at two different rates. We observe
that the membrane initially follows a typical pressure-strain
curve during inflation, but the same path is not followed
during deflation as the system loses energy (hysteresis) due
to the viscous effects. The magnitude of this hysteric region is
affected by the system dynamics such that it decreases as the

inflation speed becomes larger and it vanishes when W → ∞.
This observation has two important outcomes. (a) Since the
dynamic network progressively relaxes, recovering the initial
condition V ∗ = 0 induces compressive stresses. Although
these stresses would eventually relax, they can result in the
temporary buckling of the shell. The onset of buckling (P∗ =
0) occurs at a larger strain for a slowly inflated membrane and
is further increased with each inflation cycle (Fig. 7). This is
consistent with the results observed in Fig. 2(b), where the
dynamic network in a slowly inflated blister has enough time
to relax so that it reaches a larger volume at buckling. By
contrast, a quickly inflated blister has less time to relax, which
induces the buckling instability at smaller volumes [Fig. 2(b)].
(b) After being cyclically loaded, the rubber instability not
only occurs at smaller pressures but is also shifted to a
larger critical strain. Indeed, while the permanent network
always follows the same (dotted) path, the dynamic network
resets its reference state at a higher strain, which affects the
location of the instability. As we saw in previous cases, the
system is bounded by two elastic solutions corresponding
to the only two situations in which the membrane would
not buckle: an extremely fast and an extremely slow cycle.
To a greater or lesser degree, all intermediate cases imply a
buckling phase whose recovery time depends on the polymer
dynamics. Eventually, since the contribution of the dynamic
network scales with h/R and it is therefore reduced in time,
the behavior of the membrane at large strains converges to
the elastic, or relaxed, solution. This behavior is observed
in our experiments [Fig. 1(b)] where both buckled blisters
eventually recovered their corresponding elastic shape, i.e., a
partial sphere and a flat surface. Hence, a system based on
this instability would undoubtedly need to account for the
viscous effects and either load at a larger speed (reducing the
hysteresis) or find a way to quickly reset the dynamic network
to its original state.

VI. CONCLUSION

In summary, this study aimed to shine a light on the in-
terplay between elastic instabilities in elastomeric membranes
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and their viscous relaxation over time. For this, we developed
a membrane-specific version of the transient network theory
[62,63] that makes a connection between the mechanisms of
bond exchange between molecular chains and the emerging
viscoelastic response of the resulting network [64]. Combin-
ing this approach with experimental results on commercial
adhesive tape (VHB 4905), we showed that for a viscoelastic
membrane, the classical pressure instability may be switched
and lessened by changing the inflation rate. We found that the
blister displays a rich spectrum of pressure-volume responses
that are always bounded by two elastic solutions. In the case
of cyclic inflation patterns, viscous relaxation can also trigger
membrane buckling, which can potentially be avoided by
appropriately tuning the inflation dynamics. On a final note,
although blisters are often regarded as a symptom of material
pathologies [65], they may be positively harvested during
manufacturing processes [66] and actuators. In this context,
results from this work may be used to control, fine-tune,
and eventually harvest the rubber and buckling instabilities in
practical applications. Finally, a fundamental understanding
of the interplay between elastic instabilities and viscosity
may also be of relevance on a wide variety of synthetic and
biological materials, such as non-Newtonian fluids [67], the
cell walls of plants and fungi [68], as well as cell sheets [69]
and aggregations of insects [70].
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APPENDIX A: MEMBRANE MECHANICS

From Eq. (1), we can define a local basis on the membrane
by defining two tangent vectors to the midplane aα = ϕ,α in
addition to a unit normal n = (a1 × a2)/‖a1 × a2‖ that deter-
mines its orientation (Fig. 3). Hence, a vector and a tensor
can be written in the so-called covariant basis {a1, a2, a3} as
vvv = viai and σ = σ i jai ⊗ a j (i, j = 1, 2, 3), respectively. The
definition of this basis is completed by defining its metric
aαβ = aα · aβ and curvature καβ = −aα · n,β tensors, which
are related, respectively, to the change in area and curvature
with respect to the parametric space. This basis is, however,
not enough to describe all the necessary features to describe a
membrane, and we need to define a second (or contravariant)
basis {a1, a2, a3} defined by the fact that aα · aβ = δα

β (where

δα
β is the Dirac delta function) and a3 = 1

ν
n. In the same

way, this basis is characterized by its own metric tensor
(with components aαβ = aα · aβ) and curvature tensor (with
components κα

β = −aα · n,β) with similar physical meanings.
Using these definitions, a vector and a tensor are written,
respectively, as as vvv = viai and σ = σ i jai ⊗ a j . Note that
this basis is not necessarily orthonormal, which implies that
one must redefine the gradient of a vector and a tensor by
taking into account the variation of both the components
and the basis. Hence, we can write the divergence and the

gradient as

∇ · vvv = (
vi

∣∣
i

)
, (A1a)

∇ · σ = (
σ i j

∣∣
j

)
ai, (A1b)

∇vvv = (
vi

∣∣
j

)
(ai ⊗ a j ), (A1c)

∇σ = (
σ i j

∣∣
k

)
(ai ⊗ a j ⊗ ak ), (A1d)

where the vertical bar indicates a covariant derivative:

vi
∣∣

j = vi
, j + �i

jkv
k, (A2a)

σ i j
∣∣
k = σ

i j
,k + �i

lkσ
l j + �

j
klσ

il , (A2b)

and �i
i j = 1/2ail (a jl,k + akl, j − a jk,l ) are the Christoffel sym-

bols of the second kind. The comma is used here and in
further derivations to indicate derivative with respect to the
parametric coordinates, i.e., ∂ (·)/∂ξ k . As discussed in the
main text, a thin membrane is described by the expression
described in Eq. (1), and thus we can write the velocity of
a point located at a parametric position ξ at a given time t by

vvv(ξ, t ) = δx
δt

= vαaα + vnn + ξ ȧ3. (A3)

Using this definition, we can obtain the time variation of
the local basis by differentiating the surface in both space and
time, and considering the fact that ∂ (aα · n)/∂t = 0 obtaining

ȧβ = (
vα

∣∣
β

− vnκα
β

)
aα + (

vn
,β + vακαβ

)
n, (A4)

ȧ3 = ḣ

h0
n − h

h0

(
vακαβ + vn

,β

)
aβ, (A5)

and which we can use to derive the velocity gradient. For this,
we start by combining these results with Eqs. (A1c) and (A2a)
such that we can write the velocity gradient L = ∇vvv as

L = (
vα

∣∣
β

− vnκα
β

)
(aα ⊗ aβ )

+ (
vγ κγβ + vn

,β

)
(n ⊗ aβ )

+ ḣ

h0
n ⊗ a3 − h

h0

(
vακαβ + vn

,β

)
aβ ⊗ a3. (A6)

In parallel, we can also expand the time derivative of the
tensor μ as

μ̇ = μ̇αβaα ⊗ aβ + μαβ ȧα ⊗ aβ + μαβaα ⊗ ȧβ

+ μ̇33a3 ⊗ a3 + μ33ȧ3 ⊗ a3 + μ33a3 ⊗ ȧ3, (A7)

and by introducing here Eqs. (A4) and (A6) it is straightfor-
ward to see that

μ̇ = μ̇αβaα ⊗ ab + μ̇33a3 ⊗ a3 + Lμ + μLT . (A8)

Finally, using the relationship between the Truesdell rate
and the time derivative μ̇ = μ̊ + Lμ + μLT and the fact that
μ̊ = ka(C − c)/cI − kdμ [36], we can identify terms and
obtain the expressions of (9).

APPENDIX B: PARTICULAR SOLUTIONS

To derive analytical solutions for the deformation of a vis-
coelastic material, let us start by defining F as the deformation
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gradient. Assuming a known expression for this tensor in time,
one can integrate the distribution tensor by parts to obtain

μ = e−kd t F(t )F(t )T

+
∫ t

0
kd [F(t )F−1(ζ )F−T (ζ )FT (t )]ekd (ζ−t )dζ , (B1)

which one can use to determine the value of the stress in
time. To find the stress on a spherical membrane, we start by
considering the deformation gradient for an incompressible
sphere of radius R = λR0 as

F =
⎡
⎣λ 0 0

0 λ 0
0 0 1

λ2

⎤
⎦. (B2)

Then, in order to generalize this problem into the curvi-
linear coordinates framework of Sec. III, let us consider the
parametrization of a sphere in spherical coordinates such that
x = [R sin ξ 1 cos ξ 2, R sin ξ 1 sin ξ 2, R cos ξ 1]. In this context,
it is straightforward to see that the metric and curvature tensor
read

aαβ = (λR0)2

[
1 0
0 sin (ξ 1)2

]
, καβ = −λR0

[
1 0
0 sin (ξ 1)2

]
.

(B3)

Combining these two results with Eq. (B1) and recalling
that μ = μi jai ⊗ a j , we can write the components of the
distribution tensor as

μ11 = 1

R2
0

(
e−kd t + kd

∫ t

0

ekd (ζ−t )

λ(ζ )2
dζ

)
, (B4a)

μ22 = 1

R2
0 cos2 θ

(
e−kd t + kd

∫ t

0

ekd (ζ−t )

λ(ζ )2
dζ

)
, (B4b)

μt = 1

λ4
e−kd t + kd

λ4

∫ t

0
λ(ζ )4ekd (ζ−t )dζ , (B4c)

and by assuming a system made of a permanent and a viscous
network, we can write the average stresses (1) in a rubber
balloon as

σ 11

kBT
= c1h

R2
0

(
1 − 1

λ6

)
+ c2h(μ11 − μt a11), (B5a)

σ 22

kBT
= c1h

R2
0 cos2 θ

(
1 − 1

λ6

)
+ c2h(μ22 − μt a22). (B5b)

These stresses can be directly introduced into the second of
Eqs. (2), which can be understood as the Laplace law in mem-
branes. By setting fn = −P and introducing the curvatures
from Eq. (B3), we obtain

c1

(
1

λ
− 1

λ7

)
+ c2(μλ − μh) = PR0

2kBT h0
, (B6)

where

μλ = 1

λ
e−kd t + kd

λ

∫ t

0

ekd (ζ−t )

λ(ζ )2
dζ , (B7a)

μh = 1

λ7
e−kd t + kd

λ7

∫ t

0
λ(ζ )4ekd (ζ−t )dζ . (B7b)

APPENDIX C: AXISYMMETRIC DETAILS

In this Appendix, we carry out the mathematical conditions
to obtain the axisymmetric form of the equations to finally
obtain the equations in an implementation-ready form. Let us
start by introducing the following polar parametrization on the
midplane:

ϕ = [r(ξ 1) cos(ξ 2), r(ξ 1) sin(ξ 2), z(ξ 1)]. (C1)

By simply applying the definitions of Sec. III, we can
derive the metric and curvature tensors as

aαβ =
[

r′2 + z′2 0
0 r2

]
, καβ =

[
r′′z′+r′z′′√

a11
0

0 − rz′√
a11

]
, (C2)

where we used a prime to indicate a derivative with respect to
ξ 1. In a similar way, the Christoffel symbols can be written as

�1
11 = r′r′′ + z′z′′

a11
, �1

22 = − rr′

a11
, �2

21 = r′

2
, (C3)

and thus we can write the membrane equations as

σ 11
,1 + (

2�1
11 + �2

21

)
σ 11 + �1

22σ
22 + f 1 = 0, (C4a)

σ 11κ11 + σ 22κ22 + f n = 0, (C4b)

which can easily be proven to be equivalent to the common
membrane equations shown in p. 34 of Libay and Simmonds
with the difference that the real stress in the shell corresponds
to T ξ = σ 11a11 and T φ = σ 22a22.

APPENDIX D: NUMERICAL IMPLEMENTATION

To solve Eq. (2) on an axisymmetric shell, we start by
discretizing the parametric domain in J nodes such that any
field is stored in vector form as uT = [u1 · · · uJ ]. Using the
extended particle difference method, we may then interpolate
any point of this field and its derivatives as

u(ξ) = �0uT , u′(ξ) = �1uT , u′′(ξ) = �2uT , (D1)

where �0, �1, and �2 are the interpolation matrices as
defined in [53,54] and evaluated at the point of interest.
Having the problem discretized in this manner, we can then
solve the strong form of Eq. (2) to determine the displacement
of the membrane given an external pressure f . However,
since the problem is time-dependent, solving for the final
displacement directly is not possible and we used, instead,
the following explicit scheme where the problem is solved in
small increments of f in time:

(i) Assuming a constant distribution tensor μ, use Eq. (5)
to interpolate the stresses, strains, and other magnitudes as a
function of x.

(ii) In the context of a Newton-Raphson solver, linearize
Eq. (2) as a function of the differential displacement δU such
that we can rewrite the balance of linear momentum as the
solution to the following system:

RδU + F = 0,

where F is the residual of Eq. (2), and R is the tangent matrix
computed as ∂F/∂δU .

(iii) Solve to determine δU at every node using a standard
Newton-Raphson nonlinear solver.
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(iv) Update the position of the midplane ϕ, its thick-
ness h, and all surface properties such as strains and
curvatures.

(v) Update the distribution tensor and chain density by
means of Eqs. (6) and (7).

(vi) Update the external pressure f , and go back to 1.
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