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Effect of particles with repulsive interactions enclosed in both rigid spherical shells and flexible fluid
vesicles studied by Monte Carlo simulation
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Experimental observations indicate that the repulsion of particles is a factor that induces the transformation
of vesicles containing multiple particles. Metropolis Monte Carlo simulations are performed with two models in
which repulsive particles are enclosed inside a vesicle. The distribution of the particles and the effective bending
coefficient and surface tension of the membrane are analyzed. The shape and internal structure of the vesicle
containing the particles are investigated as the vesicle volume is decreased. It is revealed that the repulsive
interaction between particles produces a layered structure and stiffens the membrane. When particles repulsively
interact over a long range, the membrane takes on a dumbbell form.
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I. INTRODUCTION

Flexible membranes and soft particles are important in
molecular biology. The cell is a structure separated from
an environment by a flexible lipid bilayer membrane, which
contains several kinds of cytosolic molecules at a high density
[1]. These molecules inside the membrane exhibit specific
or nonspecific interaction with other molecules and increase
the viscosity within the cell [1]. Most organelles inside the
cell have membrane structures. The relationship between the
membrane deformation and behavior of internal molecules
has attracted attention. The physical understanding of this
relationship is crucial for investigating biological phenomena,
such as division and secretion. Computational studies aimed
toward the complete understanding of this dynamic behavior
will require a detailed understanding of the structure and prop-
erties of each molecule contained in the membrane. For this
reason, simple cell models were prepared in vitro, which are
giant bilayer vesicles containing polystyrene latex beads [2,3]
(PSLBs), polyethylene glycol (PEG), or dextran [4]. It was
observed that giant vesicles containing a high concentration
of PSLBs transform into a shape resembling a pearl necklace
or polyhedrons when the excess area and the volume fraction
of the particles increase due to increased external osmotic
pressure [2,3]. The average diameters of the vesicle and the
included particles are about 10 and 1 μm, respectively, and
the included particles are negatively charged.

In addition, it has been observed that giant vesicles in-
cluding a high concentration of PEG or dextran transform
into a pearl-necklace-like shape when the excess area in-
creases through the fusion of vesicles caused by an electric
pulse [4]. These transformation phenomena are induced by
the included particles. In the reported experiments [2–4],
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particle-particle or membrane-particle adsorption was not in-
vestigated. Although the studied systems contained particles
(PSLBs, PEG, or dextran) of varying surface and size prop-
erties, transformations were observed in each of the three
systems. Because the shape of the vesicle changes to increase
the free volume of the included particles [2–4], the depletion
interaction [5–9] was used to explain the transformation [4].
When a suspension contains large and small colloidal parti-
cles, an effective attractive force between the large particles
occurs. This is an entropic force called the depletion force.
The origin of the depletion interaction is the repulsion be-
tween particles. If particles are deformable, the amount of
interaction strongly increases [10]. The interaction is observed
not only in the famous case of a suspension containing large
and small particles, but also in the case of the vesicle and in-
cluded particles [8]. In this case, to maximize the free volume
of the particles, the curvature of the membrane is frequently
varied. When the membrane is curved, the excluded volume is
reduced. Therefore, the situation is more complicated than in
a hard-sphere system. The free energy of the depletion inter-
action decreases proportionally to the osmotic pressure of the
colloidal particles and the logarithm of the free volume of the
included particles. Considering both the depletion interaction
and the curvature elastic energy of the membrane, Terasawa
and others showed that the free energy of the twin-shaped
vesicles is lower than that of spherocylinders when the surface
area and volume of the two shapes are the same [4]. The
free energy for other shapes was not obtained. However, the
state obtained by minimizing the steric repulsive potential
between colloidal particles will be determined to increase the
free volume of colloidal particles. Therefore, it is not clear
whether this increase in free volume is induced by depletion
interaction.

To analyze the shape of a giant vesicle, the continuous
membrane models are useful [11]. In these models, the fol-
lowing four conditions are assumed: First, the change in the
area of the lipid membrane is small in the equilibrium state.
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Second, the lipid bilayer does not split. Third, lipid exchange
between two lipid layers is very slow [12]. Fourth, the lipid
membrane thickness is sufficiently small compared with the
size of the membrane. In order to introduce the curvature elas-
ticity that a membrane exhibits naturally, two types of elastic
models have been considered. The spontaneous curvature
model was constructed by Canham et al. [13,14]; this model
includes the curvature-dependent bending energy. This energy
is generated by the effect of the repulsive or attractive forces
between neighboring lipid molecules [15]. The most stable
shape of the vesicle as a function of the spontaneous curvature
was systematically investigated [16]. The area-difference elas-
ticity (ADE) model is a variation of the spontaneous curvature
model using the ADE energy [17]. The ADE energy is related
to the mismatch of the area differences of the bilayer of
the vesicle and of its spontaneous shape [17,18]. The most
stable shape of the vesicle as a function of the optimal area
difference was also systematically investigated [17,19]. The
shape transitions observed in experiments [19,20] can be
explained using the ADE model [20,21].

Both models are often applied to axisymmetric models and
triangulated lattice models [22]. Nonaxisymmetric models are
more appropriate than axisymmetric ones for investigating
the shape of a model corresponding to an actual vesicle
[19,21,23]. A triangular lattice with tethering exchange is
called the fluid membrane. The fluid membrane has been
studied carefully for a long time. The structure and scaling
behavior of the self-avoiding fluid membrane at equilibrium
with bending rigidity module κ were investigated using Monte
Carlo simulation [24,25], indicating that the membrane soft-
ens according to the size. The effective restriction on the
shape of the fluid vesicle is small. For this reason, a study of
driven transport of fluid membranes through narrow pores was
performed [26]. A budding structure is obtained in the fluid
vesicles, which is extended to a model of multicomponent
vesicles [27]. When calculating the bending elastic energy
of this polyhedron membrane by using the inner products of
surface normals of neighboring faces, an error occurs in cases
such as the spherocylinder [28]. Gompper and Kroll have
solved this problem by using Itzykson-type discretization
[28,29].

For a quasispherical vesicle, the excess bending energy was
estimated from the membrane fluctuation using the spherical
harmonic expansion with a constant-surface-area assumption
[30]. However, when applying the technique including this
approximation to the actual vesicles or the fluid vesicles, the
estimated excess bending energy includes the surface tension
energy corresponding to a small area change. It has become
possible to describe the membrane fluctuating in a certain area
by employing a Lagrange multiplier as the effective surface
tension [31]. Based on this method, the excess energy was
split into the excess bending energy and the excess surface
tension. For the vesicle including repulsive particles, estima-
tion of both the Lagrange multiplier of the effective bending
coefficient and the effective surface tension is not easy from
the virial corresponding to the gradient of a repulsive energy
between particles.

Studies were conducted considering the pressure difference
between the inside and the outside of a vesicle [32], as well
as the pressure difference between the inside and the outside

of a vesicle containing colloidal particles [33,34]. Neither
study explicitly encapsulated the particles. When the osmotic
pressure difference is zero and the temperature is finite, the
frequency of prolates or oblates is high and the frequency
of the sphere that has the lowest energy is low [33]. On the
other hand, when the external pressure was high, it was shown
that the most frequent shape coincides with the energetically
expected shape [33]. When the inner pressure was increased,
the surface tension increased continuously from a fluctuating
state to a limited shape with the maximum volume [34]. In
this transition, the surface tension becomes appreciable.

The Markov chain Monte Carlo method based on the
Metropolis algorithm is often used for simulation of a vesicle
at equilibrium. In this method, the states around the local
minima are searched using the Markov chain. The range of the
states depends on the system temperature. In this method, it is
not necessary to derive a force; thus, it can be easily applied to
simulation. It cannot be used to investigate dynamics, but it is
useful for obtaining the equilibrium state. In the simulation
of a vesicle using the Metropolis algorithm, a new state is
created by moving the grid points of the fluid membrane
and dynamic tethering exchange. Removing an arbitrary state
from the chain is useful for improving the search efficiency
and for keeping the mesh in a preferable state. In order to
realize this, infinite potential was introduced [22,28,35,36]. If
a wide range of tethering lengths is allowed, the number of
tethers corresponding to the grid points tends to be irregular.
As a result, the effective bending rigidity becomes locally
different [37]. Therefore, the tethering length is restricted to
the extent of the range by using infinite potential. Even if a
restraint of the tethering length is imposed, it is possible to
make a branch with a diameter of approximately the tethering
length.

Theoretically, it is proven that the effective pair potential
between charged colloids is repulsive [38]. Therefore, the
charged colloids and the hard spheres have some similarity.
It is reported that in a study using the Monte Carlo method
and thermodynamic integration, the interfacial free energy of
particles near the hard plate becomes higher nonlinearly as a
function of the volume fraction of the hard spheres [39]. A
similar free energy should be seen in the system of the vesicle
and repulsive particles. The phase behavior of hard spheres
sandwiched between parallel hard walls [40] and the ordered
structure of hard spheres surrounded by a wedge-shaped hard
shell [41] were examined. In the experiment, ordered particles
near the membrane can be seen in the system of the vesicle
and PSLBs [3].

Models of a triangulated vesicle including spherical parti-
cles were constructed in previous studies [42,43], which were
focused on the attractive interaction between the particles
and the membrane. In addition, the effect of the attractive
interaction was found to be significant, causing the local
membrane to deform to fit the particles [42,43].

In our previous study [44], we investigated a system en-
closing rigid spheres inside an Itykson-type discretized vesicle
via the ADE model and analyzed the vesicle shape for var-
ious values of the number of particles and the optimal area
difference. In that simulation, no remarkable change in shape
was observed. The effect that the rigid spheres have on the
shape of the vesicle is expected to be smaller than the effect
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of deformable particles [10]. In fact, particles which induced
the remarkable deformation, PSLBs, PEG, and dextran, are
charged colloid particles or deformable particles [2], and PEG
is a flexible molecule [4]. Because the repulsive effect of the
hard particles is less than that of actual particles with elec-
trostatic repulsion, we considered that the deformation of the
vesicle including hard spheres [44] is smaller than the actual
deformation.

In order to analyze the dynamic deformation of the vesi-
cle, simulation studies using molecular dynamics have been
performed. For example, the shape change of the vesicle in
the capillary was investigated [45]. In addition, a simulation
to analyze the structure of cells containing molecules was
performed using the dissipative particle dynamics technique
[46]. However, in these simulations, it is difficult to reproduce
the deformation of vesicles on a time scale of seconds to
minutes as observed in experiments [2,3,4].

On the other hand, in order to analyze the shapes of
the vesicles at equilibrium and fluctuations under given con-
ditions, the Metropolis Monte Carlo (MMC) method has
been employed [22,24,28,32,33,35,36,43,47,48]. The MMC
method is simpler and provides faster calculation for equilib-
rium sampling than the molecular dynamics method because
the gradient information of a potential field is unnecessary.
Therefore, in simulations, it is possible to avoid the error in
calculating forces depending on the curvature [49].

The objective of this paper is to study the shape of a fluid
vesicle containing repulsive particles. In order to investigate
the interaction between particles and membrane, we take three
approaches to the problem. First, we analyze the distribution
of particles because it is expected that the ordering of particles
will appear inside the vesicle as in the study by Tata et al.
[41]. Second, we estimated the effective bending coefficient
and the effective surface tension from the fluctuation of the
vesicular membrane in order to investigate the dependency
on the number of particles and on the exponent of repulsion
on the membrane. Finally, the phase diagram is created to
investigate the shape of the fluid vesicle including particles
depending on the number of particles and the exponent of
repulsion when the volume of the vesicle decreases.

II. MODELS OF VESICLES CONTAINING PARTICLES

Two models of the vesicle including particles were con-
structed, as shown in Fig. 1. The membrane of each vesicle
model has infinite or finite bending coefficients κ . The unit
length of the system is σ , and the unit of energy of the system
is kBT so that each prefactor of energy fR, κ , κ̄ , fA, and �μ,
which appears later, is scaled by kBT .

A. Rigid spherical shell and particles model

The rigid spherical shell and particles (RSSP) model has
a rigid spherical shell as the membrane with the bending
rigidity coefficient κ → ∞. If the area of the membrane is
constant, the shape of the vesicle is spherical. Np particles
with diameters σp are encapsulated inside this rigid shell. This
model possesses a wall potential energy EW and repulsive
energy ER between the particles. Thus, the total energy is

ERSSP = EW + ER. (1)

FIG. 1. Two models of a vesicle that contains particles. (a) RSSP
model. R and σ are the radius and thickness of the shell, respectively.
σp is the diameter of the included particle. (b) TLP model. The
exclusive volume of a vertex of the triangulated lattice is a sphere
of diameter σ . (c) The tethers of the lattice network are dynamically
changed. � is the tethering length.

The center of the shell is O, and its radius and thickness
are R and σ , respectively. The wall potential energy for the
position Pi of the ith particle is

VW(Pi ) =
⎧⎨
⎩0 for ||Pi − O|| < R − σ + σp

2
,

∞ otherwise.
(2)

The sum of the wall potential energy of each particle is EW =∑Np

i=1 VW(Pi ).
The repulsive potential energy between the ith and the jth

particles is given by

VR(di j ) = fR

(
σp

di j

)n

, (3)

where fR is the strength and di j is the distance between
the ith and the jth particles. The exponent n is regarded as
the softness of the particles. Considering the case in which
particles exist in three-dimensional infinite space at a constant
density, the potential energy of a particle diverges in the case
of n < 3. Therefore, the case of n < 3 is long-range repulsion,
and the case of n � 3 is short-range repulsion. The total
repulsive energy is ER = ∑Np

i �= j VR(di j ).

B. Triangular lattice and particles model

For modeling the flexible vesicle and particles, we used
a closed triangular lattice and soft particles and called it the
triangular lattice and particles (TLP) model. The total energy
of the model is

ETLP = ESA + ET + EB + EADE + EA + EV + ER. (4)

In order to consider the self-avoidance of the membrane,
the self-avoiding energy of the vertices and restriction of the
tethering length between the pairs of vertices are required.
Each vertex of the vesicle has an exclusive volume with a
diameter σ . The tethering length �i j of the ith and jth particles
within the vesicle is restricted to 1 � �i j <

√
3.
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The total self-avoiding energy of the vesicle and particles
is written as

ESA =
N∑

i=1

N∑
j=1

j �=i

V vv
SA(Li j ) +

N∑
i=1

Np∑
k=1

V vp
SA(sik ), (5)

V vv
SA(Li j ) =

{∞ if Li j � σ,

0 otherwise,
(6)

V vp
SA(sik ) =

{∞ if sik � (σ + σp)/2,

0 otherwise,
(7)

where N is the number of vertices, Li j is the distance between
the ith and the jth vertices, and sik is the distance between the
ith vertex and the kth particle.

The potential energy for the restriction of the tethering
length is [22]

ET = 1

2

N∑
i=1

∑
j(i)

VT(�i j ), (8)

with

VT(�i j ) =

⎧⎪⎨
⎪⎩

0, �i j < �max for a connected neighboring

vertex pair,

∞ otherwise.

.

(9)
Here, j(i) is the index of the connected neighboring vertices
of the ith vertex and �max is the maximum tethering length. To
avoid penetration of the membrane, �max �

√
3 is required.

The bending elastic energy Eb of the lipid bilayer mem-
brane, disregarding the energy of the higher-order terms, is
[13,14,50]

Eb =
∫

A
dA

[
κ

2
(H − C0)2 + κGK

]
, (10)

where H in the first term of the surface integral is the mean
curvature. The spontaneous curvature C0 is 0 when the lipid
numbers of the inner and outer layers are equal. In the second
term, κG and K are the Gaussian bending coefficient and
Gaussian curvature, respectively. In our model, the topology
of the vesicle does not change. In this case, the integral value
of the second term is constant. We consider the case of a
vesicle with a fixed topology and C0 = 0. Then, from Eq. (10),
the discrete bending curvature energy of the vesicle becomes
[28,29]

EB = κ

2

N∑
i=1

H2
i bi. (11)

The mean curvature Hi and the small area bi for the ith vertex
are written as

Hi = 1

bi
ni ·

∑
j(i)

mi j

li j
(xi − x j ) (12)

and

bi = 1

4

∑
j(i)

mi jli j . (13)

FIG. 2. Illustration of the fluid membrane around the ith vertex.
The triangulated lattice of the vesicle is shown by solid lines. The
virtual dual lattice in Ref. [29] is shown by dotted gray lines. The
length of the edge perpendicular to the link (i, j) is mi j . The area of
the dual lattice cell for the ith vertex is bi.

To obtain a vertex normal of the ith vertex ni, we added the
surface normal vectors of the triangles that contain the ith
vertex, and the result was normalized to acquire a vector of
unit length. mi j = �i j[cot(θi j ) + cot(φi j )]/2, where θi j and φi j

are the angles of the opposite tether of the ith and jth vertices,
respectively, and xi is the position of the ith vertex, as shown
in Fig. 2.

The ADE energy is determined by the area difference
between the outer and the inner lipid layers �A and the
optimal area difference �A0, which depends on the number
of molecules in each layer, and is given as

EADE = κ̄

2

π

Aζ 2
(�A − �A0)2, (14)

where κ̄ is the bending coefficient and ζ is the thickness of
the bilayer [17]. The area difference is written by the mean
curvature as

�A = ζ

∫
A

HdA. (15)

The equation ignores lipid exchange between lipid layers
(flip-flop) because it is assumed that the exchange of lipid
molecules is sufficiently slow compared with the time scale
of the membrane transformations. When the dimensionless
area difference �a = ∫

HdA/(8π
√

A/4π ) is introduced, we
obtain

EADE = 8π2κ̄ (�a − �a0)2. (16)

To restrict the surface area A of the membrane, we intro-
duce a constraint energy as

EA = fA(A − A0)2, (17)

where fA is the constraint coefficient and A0 is the opti-
mal area, for which every tethering length is equal to (σ +
�max)/2.

To restrict the volume of the vesicle, we introduce the
volume energy EV , written as

EV = �μ

{
V − 4π

3

(
σp

2

)3

Np

}
. (18)
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FIG. 3. Sliced snapshots of the equilibrium state of the system of
the rigid spherical shell system with Np = 200 particles and �μ = 0.
The exponents n of repulsion are (a) 1, (b) 3, (c) 6, and (d) 12.

Here, �μ = μout − μin is the osmotic pressure difference
between the outside and the inside of the vesicle, and V is
its volume.

To reduce the mechanical rigidity [37], dynamic tethering
exchange [47] is applied to random pairs of triangles that
share an edge.

III. SIMULATIONS

To evaluate the distribution of the particles, simulations
based on the RSSP and TLP models were performed. To
investigate the stiffness of the membrane, only the TLP model
was used.

The simulations with both the RSSP and the TLP models
were performed based on the MMC method. Random
displacements of the particles and vertices of the vesicle were
adopted with a probability min[1, exp(−�E )], which depends
on the change in energy �E for each trial. Here, exp(−�E ) is
the Boltzmann factor. The maximum displacement �dv was
set to 0.1 for each vertex. In addition, to incorporate the effect
of the viscous fluid [51], the maximum displacement �dp of
each particle was defined as

√
σ/σp�dv. In the choice of the

maximum displacement for particle corresponding to that for
vertex, we employed the Stokes-Einstein equation. This rough
approximation of assuming a sphere for particles and vertices
is required since the diffusion coefficients are not obtained
experimentally. We defined 1 Monte Carlo step (MCS) as a
step unit during which every vertex and particle are moved,
on average, once. Random tethering exchange was performed
Nt = N/10 times for each MCS. This number was determined
empirically, with various Nt values for sufficient relaxation
of the lattice. Here, pseudorandom numbers were generated
using the Mersenne Twister method [52]. We set σp = 2 by
the ratio between the diameters of the giant vesicle and the
PSLB [2].

For the RSSP model, we set the radius and the thickness
of the shell as 8.5 and 1, respectively. These parameters

FIG. 4. Sliced snapshots of the equilibrium state of the triangle
lattice system with Np = 200 particles and �μ = 0. The exponents
n of repulsion of (a) 1, (b) 3, (c) 6, and (d) 12.

correspond to the radius of the vesicle and the diameter
of the particles in the TLP model. The number of parti-
cles Np ranged from 1 to 210. For hard-sphere particles,
the volume fraction of Np = 210 particles is about 0.4. The
exponent of the repulsion was selected as n = 1, 3, 6, and
12. The case of n = 1 corresponds to long-range repulsion,
whereas n = 3, 6, and 12 correspond to short-range repulsion.
The case of n = 3 is a crossover between the two ranges. The
strength coefficient of the repulsion fR was set to 1. If the
distance of a particle pair was smaller than σp, then the energy
was greater than 1. Five simulation runs were carried out
with various random numbers for every condition. The initial
structure was prepared using the closest packed particles
inside the shell and subsequently randomly erasing excess
particles.

The initial structure for the simulation based on the TLP
model was constructed by filling Np particles inside a spher-
ical vesicle. In the simulation, the vesicle had N = 642 ver-
tices, �max = √

2.5, κ = 10, κ̄ = 10, �a0 = 1, fA = 10, and
�μ = 0 . Under these conditions with Np = 0, it was clear
that the optimal shape of the vesicle is a sphere with a radius
of 8.5. If we set σ to the actual membrane thickness, the
calculation time will be too long. Moreover, the effective
exclusive area of the membrane to internal particles is not
clear.

In addition, by means of changing the osmotic pressure
�μ, shape transformations were investigated. During the
simulation, the volume of the vesicle was gradually decreased
by increasing �μ from 0 to 1 by step size 0.1. Shape
relaxation of over 107 MCSs was performed under each
condition.

IV. RESULTS

For both models, we evaluated the distribution function of
the included particles, which is described in Sec. IV A. For
the TLP model, both the effective bending coefficient and the
surface tension of the vesicle were estimated, and these results
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FIG. 5. Distribution function h(r) of the particles in the spherical rigid shell for (a) n = 1, (b) n = 3, (c) n = 6, and (d) n = 12 and that
of the triangulated lattice for (f) n = 1, (g) n = 3, (h) n = 6, and (i) n = 12. The label of each peak is depicted in (e) and (j) for (a)–(d) and
(f)–(i), respectively.

are described in Sec. IV B. Finally, we investigated the shape
transformation when �μ is positive in the TLP model, and the
summarized results are described in Sec. IV C.

A. Distribution of particles

Snapshots of the equilibrium state of the system with the
rigid spherical shell and Np = 200 particles are shown in
Fig. 3. For n = 1, the particles are localized both near the shell
and around the center. For n = 3, 6, and 12, the localization
is dissolved and particles can be found in the entire interior of
the shell.

Snapshots of the equilibrium state of the system with the
triangular lattice vesicle and Np = 200 particles are shown
in Fig. 4. For n = 1, most of the particles are localized near
the membrane. For n = 3, 6, and 12, the particles are almost
randomly distributed inside the vesicles. When n = 1, some
particles come very close to each other near the membrane.

In order to analyze the particle distribution quantitatively,
it is advantageous to consider it along the radial direction.

Therefore, the distribution function

h(r) =
〈

�c(r)

�V (r)ρ

〉
s,t

(19)

was defined as a function of the distance r from the center of
the shell or the vesicle. Here, c(r) is the number of particles
in the interval of the radius between r − δ and r + δ with δ =
0.25. In addition, �V (r) is the volume of this interval, and ρ

is the particle number density inside the vesicle. The operator
〈· · · 〉s,t means averaging over the samples obtained with the
different random number seeds and MCSs in the equilibrium
state. An error of h(r) is likely to occur at positions extremely
close to r = 0, as the sampling space there is very small.

The distribution function h(r) of the RSSP model is shown
in Figs. 5(a)–5(d). Here, r is scaled by Ra, which is defined by
A0 = 4πR2

a . In the distributions for Np � 210, the maximum
number of peaks is two, one, two, and four for n = 1, 3, 6,
and 12, respectively. The peak observed in the vicinity of
the shell [blue line in Fig. 5(e)] is referred to as p0

m. Then,
for n = 6 and 12, the peaks occurring in order from the
shell side are sequentially referred to as p1

m, p2
m, and p3

m in
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TABLE I. Radial position r/Ra of the peaks of the distribution
h(r) of the RSSP model for Np = 200. Peak labels are explained in
the caption to Fig. 5(e).

n p0
m p1

m p2
m p3

m pc

1 0.82 0.09
3 0.82
6 0.82 0.59 0.36
12 0.82 0.59 0.38 0.15

Fig. 5(e). For n = 1, the peak near the center of the shell is
pc in Fig. 5(e). The radial position r for Np = 200 is listed
in Table I. The smallest observable number of particles of
each peak is reported in Table II. The peak series pi

m (i =
0, 1, 2, 3) for n = 6 and 12 exhibit an equi-interval, with the
distance between neighboring peaks being almost equal to the
diameter of the particle when Np is 200.

The distribution function h(r) of the TLP model is shown
in Figs. 5(f)–5(i). The distributions for n = 1, 3, 6, and 12
have one, one, two, and four peaks, respectively. The radial
position r for Np = 200 and the smallest observable number
of particles in each peak are listed in Tables III and IV. These
peaks also exhibit an equi-interval for n = 6 and 12, with the
distance between adjacent peaks being almost equal to the
diameter of the particle when Np is 200.

The height of peak p0
m in the TLP model is lower than that

of the RSSP model (Fig. 5). Furthermore, the variance of peak
p0

m in the TLP model is larger than that of the RSSP model. In
the TLP model, peak pc is not observed.

B. Stiffness of the membrane

The effective bending coefficient κeff and effective surface
tension γeff of the vesicles under each condition (n, Np) were
evaluated from the fluctuations of the membrane by means of
the method in Refs. [30] and [31].

The surface shape of the vesicle r(θ, φ) can be expanded
[30,31] into spherical harmonics Y m

l (θ, φ) and coefficients
um

l (θ, φ), as

r(θ, φ) = a

[
1 +

lM∑
l=2

l∑
m=−l

um
l (θ, φ)Y m

l (θ, φ)

]
. (20)

The cutoff wave number lM is determined by (lM + 1)2 = N .
If we consider only the bending energy EB and surface

tension γ , the total energy is E = EB + γ A. The excess
energy �E compared to the energy of the sphere with radius

TABLE II. The smallest number Np of particles for which each
peak (pi

m, pc) appears in the RSSP model [Fig. 5(e)].

n p0
m p1

m p2
m p3

m pc

1 5 160
3 10
6 10 60 170
12 10 55 130 180

TABLE III. Radial position r/Ra of the peaks of the distribution
h(r) of the TLP model for Np = 200 [Fig. 5(j)].

n p0
m p1

m p2
m p3

m

1 0.81
3 0.81
6 0.81 0.56
12 0.81 0.58 0.35 0.14

a, which is the average radius of the vesicle, is given by

�E = κeff

2

lM∑
l=2

l∑
m=−l

∣∣um
l

∣∣2
(l + 2)(l − 1)[l (l + 1) + Q],

(21)
where Q = γeffa2/κeff [31]. If we assume that the averaged
excess energy is 1

2 kBT for each (l, m),〈∣∣um
l

∣∣2〉
a2

= kBT

κeff

1

(l + 2)(l − 1)[l (l + 1) + Q]
(22)

is found. To estimate κeff and γeff , we employed 〈|um
l |2〉 at

l = 2, 3, . . . , 24 for N = 642 vesicles.
The effective bending coefficient κeff is plotted in Fig. 6(a)

as a function of the number of particles Np for various n’s.
When Np is greater than approximately 100, the slope of
κeff/Np for n = 1 is much larger than that in the other cases
of exponents n = 3, 6, and 12. The slopes obtained from the
low- and high-Np regions are listed in Table V.

The effective surface tension γeff is plotted in Fig. 6(b) as
a function of the number of particles Np. When Np is less than
approximately 100, γeff increases similarly for any n, whereas
when Np is greater than approximately 100, the slope becomes
steeper for larger n, as reported in Table VI.

C. Transformation of the vesicle

Under the osmotic pressure condition of �μ � 0 for the
TLP model, various shapes of the vesicle appeared in the
simulations. The phase diagram of the shapes is described
later.

Most of the obtained shapes seem to be almost axisym-
metric. In this paper, shapes which fluctuate around the
sphere are referred to as “spheres.” The shapes of ellipsoids
(x2/a2 + y2/b2 + z2/c2 = 1) with a > b = c and a < b = c
are referred to as “prolates” and “oblates,” respectively. The
“stomatocyte” is a shape with a dent. The “discocyte” is a
shape with two dents facing each other. The “dumbbell” is
a shape which is narrower in the middle than on each end.

TABLE IV. The smallest number Np of particles for which each
peak (pi

m) appears in the TLP model [Fig. 5(j)].

n p0
m p1

m p2
m p3

m

1 5
3 5
6 20 120
12 20 90 125 175
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FIG. 6. (a) The effective bending coefficient κeff and (b) the
effective surface tension γeff as a function of the number of particles
Np, for κ = κ̄ = 10 and repulsion exponent n = 1 (red symbols),
n = 3 (green symbols), n = 6 (orange symbols), and n = 12 (blue
symbols). Solid lines show the average lines of the best fit for each n
with Np in the interval [1:100] (black line), for n = 1 with Np in the
interval [100:210] (red line), and for n = 12 with Np in the interval
[100:210] (blue line).

The remaining shapes did not exhibit axial symmetry. During
the simulations, the ellipsoid with a �= b �= c (“ellipsoid”)
and the strained discocyte and dumbbell shapes were ac-
quired. In addition, a collapsed shape was obtained, with flat
membrane areas and a very large mean curvature edge. The
shapes obtained under each condition (n, Np) are shown in
Fig. 7. To depict the results, which are dependent on the seed
of the random numbers, we used a pentagonal symbol includ-
ing five triangles, where the color of each part corresponds to
a certain shape.

For �μ = 0, a sphere was obtained (Fig. 7; blue). The
region of the sphere becomes wider with an increasing number
of particles Np and the exponent of repulsion of the particles
n. When �μ increases, the shapes deform toward an ellipsoid
from a spherical form (Fig. 7; green). The region for n = 1

TABLE V. Parameters and standard errors obtained for the
regression line κeff = β1Np + β0 in the Np intervals [1:100] and
[100:210].

[1:100] [100:210]

n β1 β0 β1 β0

1 0.002 ± 0.002 6.2 ± 0.1 0.007 ± 0.03 5.8 ± 0.4
3 0.002 ± 0.002 6.1 ± 0.1 0.003 ± 0.02 5.8 ± 0.3
6 0.004 ± 0.002 6.1 ± 0.1 0.001 ± 0.02 6.1 ± 0.4
12 0.003 ± 0.002 6.1 ± 0.1 0.001 ± 0.02 6.2 ± 0.3

is thinner than the region for n = 3, 6, and 12. The shapes
transform to a discocyte from the ellipsoid when �μ increases
further (Fig. 7; turquoise). For Np = 200, this region was not
observed in our simulations. For even larger values of �μ,
a stomatocyte is observed when Np = 50 (Fig. 7; magenta).
For n = 1 and Np = 200, the region of the dumbbell (Fig. 7;
red) is achieved adjacent to the ellipsoid region. The collapsed
shape was observed under the conditions Np = 50 and n = 1
and 3 in the region �μ (Fig. 7; black). In addition, prolate
and oblate shapes were rarely seen, and strained shapes were
achieved at the boundary of two axisymmetric shape regions.

V. DISCUSSION

To investigate the relationship between the stiffness of the
membrane and the repulsion of the encapsulated particles, we
propose two vesicle models. One takes a rigid spherical shell
as the vesicle (RSSP model), while the other uses a flexible
triangulated lattice as the vesicle (TLP model). Snapshots
(Fig. 3 and 4) suggested that particles form layers inside both
vesicles. To further investigate these layers, we analyzed the
distribution function h(r).

Though repulsive particles tend to separate from each
other, they are confined within the vesicles due to the effect
of the hard-core repulsion of the wall. For 2 � Np � 50,
most particles are arranged in the vicinity of the membrane,
r/Ra � 0.76, by the repulsive nature and confinement by
the vesicles. In such a state, when a particle is added to
the center of the vesicle, the repulsion from the particles
near the membrane acts strongly on the added particle. Then
the particle moves to the vicinity of the wall, r/Ra � 0.76,
so as to minimize the energy of the system. This opti-
mized configuration corresponds to the peak p0

m of h(r) in
Fig. 5. Especially for n = 1, the result corresponds to the

TABLE VI. Parameters and standard errors obtained for the
regression line γeff = β1Np + β0 in the Np intervals [1:100] and
[100:210].

[1:100] [100:210]

n β1 β0 β1 β0

1 0.010 ± 0.002 0.48 ± 0.09 0.013 ± 0.002 0.1 ± 0.3
3 0.010 ± 0.001 0.51 ± 0.08 0.016 ± 0.001 −0.1 ± 0.2
6 0.007 ± 0.001 0.51 ± 0.08 0.018 ± 0.002 −0.5 ± 0.3
12 0.008 ± 0.001 0.50 ± 0.08 0.025 ± 0.002 −1.3 ± 0.2

042418-8



EFFECT OF PARTICLES WITH REPULSIVE … PHYSICAL REVIEW E 99, 042418 (2019)

FIG. 7. Simulation results of the shape transformation that reduces the volume. The pentagonal symbol has five triangles, with the color
of each triangle corresponding to the shape. (a) n = 1, (b) n = 3, (c) n = 6, and (d) n = 12. The number aligned vertically is �μ. (i), (ii),
and (iii) indicate Np = 50, 100, and 200, respectively. The sphere is blue. The ellipsoid is green. The strained discocyte (st. dis.) is mint. The
discocyte is turquoise. The repetitions of discocyte and stomatocyte (dis./sto.) are pink. The stomatocyte is magenta. The strained dumbbell is
light orange. The repetitions of prolate and dumbbell (pro./dum.) are brown. The dumbbell is red. The prolate is dark blue. The oblate is gray.
The repetitions of discocyte and oblate (dis./obl.) are orange. The collapsed shape (col.) is black.

electrostatic phenomenon in which charges are distributed
on the surface of conductors. When the number of particles
exceeds a certain number, some particles are arranged in the
center of the vesicle, away from the membrane, so as to
minimize the energy of the system. As a result, peaks pc and
p1

m of h(r) have appeared in Fig. 5. Therefore, the difference in
repulsive energy between the radial direction and the angular
direction dominates the stable configuration of particles. In
the case of particles with short-range repulsion, the particles
can be located in the middle region, 0.12 � r/Ra � 0.76,
because the repulsive energy between distant particles is low.
The particles gathered into the layer form as a new wall,
whereupon multiple layers are recursively formed inside the
vesicle. Particles with long-range repulsion are rarely seen
in the middle region. In contrast, particles with short-range
repulsion are often arranged in the middle region. In the TLP
model, the arrangement of the particles around p0

m changes
according to the vesicular shape, and the whole energy of the
vesicle also changes. As a result, the arrangement of the parti-
cles on the center side becomes unstable, as shown in the ab-
sence of peak pc in Fig. 5(f). In addition, because the radius of
the RSSP model and the average radius of the TLP model are
equal, the storage area of particles near the membrane surface
is larger in the TLP model. Therefore, the formation of the
particle layer near the center of the vesicle is suppressed. For

these reasons, peak pc is not observed in the TLP model. The
number of peaks of h(r) which appeared in the TLP model is
smaller than that in the RSSP model (Tables I and III). Under
the constraint of the wedge, an arrangement of particles is
formed from the narrow corner [41]. This result agrees with
our result, which shows that the order of particles begins in a
narrow domain.

In order to investigate the effect of the internal particles
on the stiffness of the membrane, we estimated the effective
bending coefficient κeff and the effective surface tension γeff

from the fluctuation of the vesicular membrane. From these
results, we found that κeff is always smaller than κ . If we use
the equation κr

eff = κ − [3kBT/(4π )] ln(lM), where only the
excess bending energy is assumed to contribute to the total
excess energy [53–56], κr

eff is about 0.9κ , which is larger than
our results. However, we separated the excess energy from
the bending energy and the surface tension in our analysis,
therefore the pure κeff is obtained, which is smaller than κr

eff .
We also found that the effective surface tension γeff as a
function of Np for n = 12 rapidly increased at Np = 100,
where the packing fraction of the particles (4/3)π (σp/2)3/V
is 0.25. This is consistent with the characteristic of surface
tension obtained in a numerical study using hard spheres
and a hard wall [39]. The major part of the excess energy
of the vesicle is due to surface tension γ A. The effective
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bending coefficient is almost independent of Np with an ex-
ception in the case of n = 1. This is because the pressure and
surface tension are increased as represented by the Young-
Laplace equation. This equation is a linear function of �μ

when the curvature is fixed. However, the effective internal
pressure should be described as a nonlinear function of Np. As
a result, the effective surface tension is a nonlinear function of
Np. When n = 1, the equation is considered to be invalid since
the internal pressure is anisotropic.

For Np � 100, the value of neither κeff nor γeff is dependent
on the exponent n. Therefore, it is suggested that the deforma-
tion of the vesicle due to the change in osmotic pressure is
independent of n when Np is small. For Np � 100 in Fig. 6,
deformation depends on n. Comparing the case of n = 1
with the other cases, it is suggested that the particles with
long-range repulsion (n = 1) strongly suppress the fluctuation
of the mean curvature Hi of the vesicular membrane. On the
other hand, the particles suppress the fluctuation of the surface
area A weakly. This suggests that the short-range repulsion
of particles suppresses the large deformation of the vesicular
shape that is observed when n = 1 (Fig. 7).

The shapes of the vesicles with a reduced volume were
simulated by increasing the osmotic pressure difference �μ.
As shown in the phase diagram (�μ, Np) in Fig. 7, only under
the condition n = 1 and Np = 200 were dumbbell-shaped
vesicles obtained. This shape is reminiscent of the twin shape
observed experimentally [2,4]. For the same �a0 value, the
shape of the vesicle without included particles becomes a
discocyte with a lower energy, rather than a dumbbell [16].
Therefore, even if the vesicle contains particles, if n = 3,
6, or 12, their repulsion is not strong enough to overcome
the stiffness of the membrane and the shape of the vesicles
settles as a discocyte. However, in the case of n = 1, when
the number of particles in the vesicle increases, the number
density of the particles in the particle layer (p0

m) in the vicinity
of the membrane becomes nonuniform, so that two regions
with relatively high number densities (two polar regions) are
generated on two opposite sides. By long-range repulsion
acting between the two polar regions, the vesicle is extended
along the axis passing through both poles while maintaining
the size of the polar regions [Fig. 8(a)]. As a result, at �μ > 0,
the equatorial portion of the vesicle becomes narrow, reducing
the volume of the vesicle. In such a process, dumbbell shapes
have been induced as a result of particle-vesicle interaction.
For a negative osmotic pressure, �μ < 0, experiments and
theoretical studies in Refs. [48], [57], and [58] were conducted
to polymerize microtubules encapsulated in a vesicle, and
deformation of a vesicle into a lollipop shape was observed by
the MMC simulation [Fig. 8(b)]. Polymerized microtubules
stretch in one direction, as shown in Fig. 8(b). The end regions
[circles in Fig. 8(b)], which are in contact with the membrane,
can be considered the polar regions repelled through the
long-range repulsion in our model, as shown in Fig. 8(a).
According to this analogy, even in a vesicle containing par-
ticles with a negative �μ, there exists the possibility that
protrusions, as seen in the lollipop shape, will occur. The
sign of the osmotic pressure difference �μ determines which
shape will be assumed, dumbbell or lollipop.

In order to analyze the stiffness of the membrane, we
employed Eq. (22). If the term Q in Eq. (22) is neglected and

FIG. 8. Illustrations of (a) the dumbbell shape with particle
clusters (corresponding to n = 1, Np = 200, �μ = 0.6) and (b) the
lollipop shape with two particles [48]. Arrows show the repulsion be-
tween particles. The repulsion between separated particles is shown
in green, and the repulsion between neighboring particles is shown
in blue.

the change in the small area is considered, the fitting error
of the stiffness estimation is reduced. However, the stiffnesses
of the bending and stretching are essentially different and need
to be analyzed separately. By separating these two changes, it
is possible to investigate the effect of the particles.

The exponent n is a characteristic feature related to the
range of the repulsion between two particles. However, it
is difficult to extract the exponent from the interaction of
complex colloidal particles because it is necessary to examine
not only the entropy but also the internal energy. For example,
the intramolecular interaction in a colloidal particle made of a
polymer, which is often referred to as the excluded-volume
effect among those monomers, is regarded to have a long-
range nature [59]. Therefore, the strength of the interaction
between these two colloids is related to the monomer density
in each colloid. We expect that the larger spatial variance of
the distribution g(r), where r is the distance of a monomer
from the center of the polymer chain, corresponds to the
longer range of the repulsive force between these colloids. The
variance should be a function of the degree of polymerization,
microscopic length, or magnitude of intramolecular repulsion
of the monomers. Consequently, it is considered that the
steric interaction among the deformable colloidal particles,
which we call “soft repulsion” in this work, is an important
factor determining the range of the interaction between these
colloids.

In our model, we take into account the soft-core repulsion
of encapsulated particles, so that the transformations of the
vesicles mainly occurred by minimizing the internal energy.
Our results do not exclude the possibility that depletion
interaction induces transformation of the vesicle. However,
we confirmed that the long-range steric repulsive interaction
between particles induces transformation. If we consider the
steric interaction shielded by the membrane and the particles
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within it, the neck of the dumbbell may become narrower and
may show two spheres.

Although simple long-range repulsion, such as the
Coulomb force acting between particles, is not effective in the
solution, the collective effect of the internal structure, such
as the microtubule extending into the vesicle [Fig. 8(b)], and
the coherent structures of particles may generate long-range
interactions that act between regions of the membrane.

VI. CONCLUSION

We performed Monte Carlo simulations with the RSSP
and TLP models of a vesicle containing numerous soft-core
particles. The results of both models were analyzed by means
of the distribution of the int ernal particles. In addition, in
order to evaluate the effect of particles on the vesicular shape
and the stiffness of the membrane, we used the TLP model.

With an increase in the number of internal particles, the
effective bending coefficient and surface tension increased.
In comparison, the long-range repulsive particles resulted in
a greater bending elastic coefficient. Furthermore, the short-
range repulsive particles induced a greater surface tension.
This fact suggests that long-range repulsion promotes large
deformations of the vesicle. When the volume of the vesi-
cle containing particles decreased, the particles with long-
range repulsion caused a dumbbell shape, which is similar

to the twin vesicle observed experimentally [2,4]. We found
that the repulsion between the flexible vesicle and the particle
layers (pi

m) contributes to the transformation of the vesicular
shape into the dumbbell shape. Analysis of the particle dis-
tribution showed that the particles were stratified depending
on the exponent of the repulsion. It is unknown yet whether
this stratification is experimentally observable. If the exper-
imental observation technique is enhanced, a comparison of
our results and the experimental results will be possible. To
reproduce the large deformation together with the distribution
of particles, it is necessary to consider other effects, such as a
locally different osmotic pressure and an enhancement of the
lipid exchange rate depending on the membrane curvature.

We showed that the behavior and structure of collective
particles are important for understanding the shape of vesicles
including particles. In order to evaluate these effects, a study
with a large number of particles will be necessary.

Further studies with various sizes of the particles and
membrane and also with various strengths of repulsion be-
tween particles should be performed, and the model under
consideration of shielding of repulsion is needed as a more
realistic model.

We believe that our results will help further studies. Per-
haps organisms may utilize different repulsive forces depend-
ing on the molecules participating in the involved biological
events.
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