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Embryonic lateral inhibition as optical modes: An analytical framework
for mesoscopic pattern formation
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Cellular checkerboard patterns are observed at many stages of embryonic development. We study an
analytically tractable model for lateral inhibition and show that the steady states are analogous to optical phonons
at the I" point, which have the wave number k = 0. We study the cases of cells arranged in linear and hexagonal
lattices. To determine how the final pattern is selected it is necessary to take into account the granularity of
the pattern and, analogously to solid-state physics, to redefine the basis and lattice sites in terms of a periodic
crystal. The sites and basis are determined by looking at the symmetries of inhibitory interactions between cells.
The redefined basis for cells placed in a linear lattice is composed by two cells which are embedded in another
linear lattice, while for cells placed in a hexagonal lattice the redefined basis consists of three cells embedded in
another hexagonal lattice. The pattern in hexagonal lattices can be driven into three different states: two of those
states are periodic checkerboards and a third in which both periodic states coexist. These observations provides

new predictions for experiments.
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I. INTRODUCTION

Pattern formation in living tissue is an emergent property
that arises from cell signaling. In his seminal work Alan
Turing proposed that the anatomical structure of an embryo
is determined by self-organized chemical patterns [1]. In his
theory the interplay between reactions and diffusion of two
chemical species gives rise to self-organized periodic struc-
tures. Although this model is difficult to implement in practice
with the restrictions proposed by Turing [2,3], variants of this
model system have been extensively studied theoretically [4]
and have been successfully used to describe the patterns of
living systems at the tissue level [5-7].

There is a subclass of patterns in living systems where
the characteristic length scale (A) is the size of two cells
[Figure 1(a)]. These are fine-grained patterns where protein
expression levels vary abruptly and regularly between cells,
reminiscent of checkerboards [Fig. 1(a)]. These patterns
appear in several examples of cellular tissues such as in the
arrangement of photoreceptor cells in the eye [8], sensory
hair cells in the auditory epithelium [9,10], and sensory
bristles in the fly thorax [11] among others. Lateral inhibition
has been proposed as a basic mechanism whereby a cell
inhibits the expression levels of a protein in its neighboring
cells. This is in contrast to Turing patterns where the pattern
is created by the negative feedback between the fast- and
slow-diffusing components. The Delta-Notch signaling
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system is a pathway frequently used by different species to
create these fine-grained tissue patterns [12].

Collier et al. [13] pioneered theoretical work in lateral
inhibition, analyzing a spatially discrete model for Delta-
Notch signaling that reproduced periodic and fine-grained
patterns. Since then, extensions of this and similar models
have incorporated different effects observed in experiments,
such as self-regulation (cis interactions) [14], state-dependent
coupling strength [15], time delay in signaling [16,17] and cis
interactions with time delay [18]. These models are difficult
to analyze analytically and they rely on numerical simulations
to determine how patterns emerge. In this work we propose
a generic model for lateral inhibition that is analytically
tractable, allowing us to understand pattern selection for
this class of systems. The model consists of the following
equation:

du,

dt

N .
= —uy—yu, + Qtey uf, e
=

cisregulation trans regulation

where the state of each cell placed in a lattice is represented
by the variable u, (e.g., the amount of active delta). The
model describes the effects of cis interactions where €2, (e.g.,
the source of active delta) is an internal component that
influences the production of u, and y > 0 is the strength of
nonlinear degradation. The cells are influenced by the state of
their N nearest neighbors u'") (trans regulation) with coupling
strength € [Fig. 1(b)]. The regime where € < 0 corresponds to
lateral inhibition.

We can write the continuum approximation for Eq. (1) for
cells placed in a linear lattice,

% = (2 — Du(x, 1) — yu’(x, 1)
2
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(a)

Lattice sites

FIG. 1. Periodic fine-grained patterns. (a) Example from the
auditory epithelium with a green fluorescent marker for actin adapted
from Ref. [9], where A depicts the characteristic wavelength of the
pattern. (b) Depiction of the notation used for Eq. (1). (c) Pattern in
a hexagonal lattice, where at each lattice point (blue points) there is
a basis structure with three cells, and (d) the possible basis structures
for a periodic pattern.

where x corresponds to the position in the line of cells
and Ax is the distance between the cells. A naive
stability analysis done on this continuum approxima-
tion, by linearizing Eq. (2) and using the test function
u(x,t) = u, + du(x,t), where u, =0, Su(x,t) = ape*+
and Q(x) =0 would show that for lateral inhibition (¢ <
0) the most unstable mode corresponds to k = oo with a
growth rate o = oo (Fig. 2). This is because neighboring
cells alternate between positive and negative values and in the
continuum approximation this corresponds to k = 00.

In this work we determine the necessary conditions to
obtain noisy anticorrelated patterns and periodic alternating
patterns for u,, given the signaling strength (¢) between cells
and the profile of internal gene expression rate (£2,). We
do this by making an analogy with optical phonons from
solid-state physics [19], for which we need to represent the
arrangement of cells in terms of a crystal. A crystal will be
composed by lattice sites [blue points in Fig. 1(c)] and a

50

e<0
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FIG. 2. Linear stability analysis of Eq. (2), where k corresponds
to the wave number and « is the mode growth rate.
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FIG. 3. Impulse response for a linear chain of cells. We set 2, =
2,610, Where (a) corresponds to € < 0 and (b) to € > 0 for a finite
chain of 20 cells. Response to random input £2,, where (c) shows
the next-neighbor correlations (u,u,+) as a function of €, symbols
correspond to numerical simulations, and solid curve was obtained
analytically [Eq. (6)], and (d) examples of noisy anticorrelated
patterns as a function of €.

structure called the basis of the crystal [Fig. 1(d)]. The basis
is the repeating unit that is placed at each lattice site [see Fig.
1(c)]. The case of a one-dimensional chain of cells is explicitly
solved, and these results helps us to analyze the case of cells
placed in a hexagonal lattice. For the linear chain of cells
the basis is composed by two cells and the redefined lattice
sites correspond also to a linear chain. For cells placed in a
hexagonal lattice, the basis is composed of three cells [see
Fig. 1(d)] and the redefined lattice sites is also a hexagonal
lattice. In cells arranged in a hexagonal lattice we obtain (1) a
periodic pattern filled with the basis structure denoted B, 4 4
[Fig. 1(d)], (2) a pattern filled with the basis By, , [Fig. 1(d)],
or (3) a state where both B, ;4 and By, , coexist. Finally,
we observed that if the system is driven from a periodic
pattern filled with one basis to a pattern filled with the other
basis, hysteresis is observed. This provides new predictions
for experiments.

II. LINEAR REPONSE OF A CHAIN OF CELLS

We examine a one-dimensional chain of cells signaling
each other following Eq. (1). For this example, we define a
cell in the middle of the chain with index n = 0. Consider the
linearized version of Eq. (1) around u,, = 0, which is given by

du,
dt

X —Uy + e[un—l + un+1] + Qn~ (3)

As a first step to characterize its dynamics we study
the linear response function of the chain to the static input
Q, = Q,0,0, Where 8,y corresponds to the Kronecker §. The
linear response of an infinite chain is given by the following
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expression:

Up =

A In
Q, |:1 V1 4621| @

V1 —4e? 2e

(see Appendix A for details). Note in Eq. (4) that there is a
term proportional to €~ "l: therefore, if € < 0, then the values
of u,, alternate between positive and negative values [Fig. 3(a),
lateral inhibition], while for € > 0 the values of u, decay
smoothly [Fig. 3(b), lateral induction].

We next calculate the correlations in a chain of u, now
considering a stochastic input €2,, characterized by

(QuQ) = 028 (5)

The linear response function is used to calculate the corre-
lation between nearest neighbors (see Appendix B), which is

given by
(i) ~ 22 (1 1 )2 ©)
UpUp1) ~ —= |1 — —— ) .
=T e V1= ae

The correlations are zero for ¢ = 0 and they diverge to
—oo for € = —1/2; this is the same value found in Collier
et al. [13] by linear stability analysis. The divergence in
the correlation coefficient is characteristic of a critical point
[20], while its negative sign denotes that the neighbors are
anticorrelated. At this critical point (¢ = €.) the uniform state
u, = 0 becomes unstable. There is good agreement between
numerical and the analytical approximation given by Eq. (6)
[see Fig. 3(c)]. Examples of anticorrelated noisy patterns in
Fig. 3(d) show that as € decreases, the probability of having
alternating neighbors increases.

III. ANALOGY TO OPTICAL MODES

The results shown in Figs. 3(a) and 3(b) are reminiscent
of the optical and acoustic modes of phonons from solid-state
physics [19]. Phonons are vibrations in a periodic crystal. The
crystal is composed by a set of lattice sites, where at each
site there is a molecule with several atoms called the basis
(also termed as the crystal unit cell). If the basis is diatomic,
then two vibration modes are allowed. In the optical mode the
position of atoms alternate from positive to negative values
between neighbors, and in the acoustic mode this alternation
does not happen [19]. The linear response of u, for € < 0
[Fig. 3(a)] is analogous to the optical mode and for € > 0 to
the acoustic mode [Fig. 3(b)].

This analogy to the optical modes is useful to analyze the
subcritical state (¢ < €.). We start by setting a uniform €2, =
Q, in Eq. (1). We redefine the chain of u, into s lattice sites
and at each site there is a basis with two components v, and w
[Fig. 4(a)]. The components v, corresponds to u, with n = 0
and even values of n, and the remainder corresponds to w;. In
this notation, Eq. (1) for the one-dimensional chain becomes

dvy

dt = —Us — VU: + G[U)S,] + ws] + Qm (7)
dwg 3
di = —ws; — yw; + €lvg + vl + Q2. (8)

i —;
ML S=}

FIG. 4. Potential well for a linear chain of cells. (a) Redefinition
of the crystal basis from a single-component basis u to a two-
component basis u, v (diatomic). (b) An example of a potential
®(v, w) with € < 1/2. The potential has minima at (4, —) (positive
v, and negative w;) and (—,+) (negative vy and positive wy).
(c) Time evolution of the continuum approximation of v(x,t) and
w(x, t) defined by Egs. (7) and (8) and (d) time evolution of the chain
of u, given by Eq. (1).

We rewrite Eqgs. (7) and (8) in the continuum approxima-
tion as

v _, e g 9)
=2ew—v—yv>+e x— 05

o Y ox2

Jw 2

_2€v—w—yw + eAx 8—+Qo, (10)
o dx?
where x corresponds to the position in the line tissue and Ax
is the distance between the lattice points. Assuming a uniform
stationary state for both v, and w;y, we then define a potential

vz—i—w2 v4+w4

Pv,w) =—-Q,(v+ w)+ > —2evw + y 2

(1)

for € < €, this is a double-well potential [Fig. 4(b)]. One
minimum of this potential we denote as the state (+, —) where
vy = ¢, and wy = —c,. The other minimum we denote as
(—, +), where vy = —c¢, and ws; = ¢,. From this potential we
expect that the steady states of Eq. (1) consists of anticorre-
lated neighbors.

To test this prediction we first simulated the continuum ap-
proximation given by Egs. (9) and (10) with periodic bound-
ary conditions and 2(x) = 0. We have set the initial con-
ditions to v(x,0) =0(x —x;) — O(x — xp) and w(x,0) =0,
where 6 (x) corresponds to the Heaviside function [Fig. 4(c)].
Note that v(x, 0) evolves into two fronts going to the sides,
the fronts finally settle to the value v(x, t) = c,, while w(x, 0)
evolves also into two fronts that are anticorrelated to those
of v(x,t) until they settle to the value w(x,t) = —c,. This
confirms the steady states shown in the potential of Fig. 4(b).
Finally, we simulate Eq. (1) for a linear chain of 20 cells
with periodic boundary conditions, setting the initial condition
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(a) . (b).
(C) . (d).

FIG. 5. Increase in cell anticorrelation with increasing coupling
strength. Stochastic patterns given by f, = 26(u,) — 1 generated
with noisy input €2,,, where black corresponds to f, = —1 and red to
fi=1.(@Qe=0,(b)e =—-0.1,(c)e = —0.2, and (d) ¢ = —0.3333.

to u,(t) = 8,0. In the same way as in the continuum ap-
proximation, two fronts going to the sides develop. The cells
settle to an alternating pattern where cells with label v, = ¢,
and cells with label w; = —c,. These fronts are reminiscent of
waves observed before in the Collier model [21].

As mentioned in the Introduction, naive linear stability
analysis of Eq. (2) shows that the most unstable mode is
k = oo. By redefining the cell arrangement in terms of lattice
sites and basis v and w we determine that the most unstable
mode is actually k = O (the I" point in optical phonons). From
this analysis the basis v and w is bistable due to coupling

(@ u u u u u

ATATATATA

by lateral inhibition. In the literature there are two types of
lateral inhibition models, one in which the system becomes
unstable due to cell-to-cell coupling, as shown here and in
Refs. [11,13,14], and another where single cells are intrin-
sically bistable [22]. The calculations for bistable systems
are straightforward and the minima of the potential are also
anti-correlated (see Appendix C).

IV. CELLS IN AN HEXAGONAL LATTICE

Typical fine-grained pattern formation occurs in epithelial
tissues, single 2D layers of cells. As a good approximation
of these tissues, we analyze the case of cells placed in a
hexagonal lattice. Using the observations of a linear chain
of cells we analyze the response in u, to a random input
2, in epithelial tissues. Figure 5 shows the projection f, =
20(u,) — 1 for different steady states as a function of €. As in
the example of the previous section, we see that the likelihood
of being surrounded by anticorrelated neighbors increases as
the value of € decreases.

We proceed by analyzing the subcritical regime of Eq. (1)
by dividing u, into different components as in the previous
example. Again we consider a spatially uniform 2, = €2,.
Defining a basis with two variables as in the linear chain, and
rewriting Eq. (1), we notice that the interactions are asymmet-
ric. We redefine a basis in terms of three components v, w,
and z [Fig. 6(a)]. This basis is embedded in another hexagonal
lattice. In terms of lattice sites {s, s’} Eq. (1) becomes

dvgy 3
7 = —Vsy — )/U”/ + 6[wsfl,s’ + Wy ¢/ + Wy, s'+1

+ Z—1,9-1 + Zs—15 + Zs,s’] + Q,, (12)
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FIG. 6. Redefining the basis and metastable and stable points of ®(v, w, z). (a) Redefinition of the crystal basis from a single-component
(u) to a three-component basis (v, w, z) in hexagonal lattices. [(b) and (c)] Stable states (black symbols) and metastable states (white symbols)

of the potential ®(v, w, z) given by Eq. (18) projected onto the v-z axis for the parameters y = 0.1 and € = —2.
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FIG. 7. Conceptual double-well potential and corresponding pattern selection. (a) Double-well potential at €2, = 0, where the minima
represents the stability of the basis B, 4 4 and B, ,, and [(b) and (c)] simulations initiated with uniform initial conditions u, ,, = 0 except for
three cells set to (b) B, 4.4 and (c) By ... In this regime the final pattern supports a periodic repetition of either basis. For Q, > ., (d) the
single-well potential shows the basis By, , is stable. Simulations initiated with (e) B, 4.4 and (f) By, ..., show that the final pattern supports only
the basis By,,.,. For Q, < €., (g) the single-well potential shows the basis B, ;4 is stable. Simulations initiated with (h) B, 44 and (i) By ..

show that the final pattern supports only the basis B, 4 4.

dws g 3
7 = W,y — ng,s’ + E[Us,s’fl + Vg, s + Us+1,s
+Zs—l,s/—1 + Ts,s'—1 + Zs.s’] + Qo» (13)
dzs,s’ 3
7 = s s — VZS,S’ + E[vs,s’ + Us+1,s' + Us41,5'+1 + Wy, s/
+ Wy, s'+1 + ws+l,s’+1] + Qo~ (14)

If we perform a Taylor expansion to rewrite Eqgs. (12)—(14)
as a spatial temporal system we find

0

et - vy 42 S, (15)
ow 3
¥=3e[v+z]—w—yw + Q,+ €S, 2), (16)

9
a—f — 34wl —z—y2 +Q +eSw,w), (17

where S corresponds to the terms involving spatial derivatives.
Assuming that at steady state this continuum system settles
to k = 0, then also S = 0. Then we can define the following
potential:

vi 4 w? 427
P, w.2) ==+ w+2)+ ————
4 4 4
v+ w47
—3elvw + vz + wz] + VT. (18)
The state of the tissue becomes unstable at €, = —1/3

[13], and in this case we find the minima of this potential
and their stability numerically. Figures 6(b)-6(d) show the
position of the stable (black points) and the metastable states
(white points) projected onto the v-z axis from the potential
given by Eq. (18) as a function of 2, fore < €¢,. When 2, = 0
there are six stable states; three correspond to the basis B, 4.4
[Fig. 6(b)] mentioned in the Introduction [see Fig. 1(d)]. The
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t=0 t=1 t=2 t=13 t=4

FIG. 8. Coexistence of both base at 2, = 0. A simulation is initiated with uniform initial conditions and three cells forming the basis B, 4.4
and three cells forming By, ,. At the end (r = 4) the stable pattern contains clusters of both base which meet at interfaces.

other stable states correspond to the basis By, ,,. A simplified
picture is shown in Fig. 7(a) as a double-well potential where
each minima corresponds to a basis. In Fig. 7(b) we show a
numerical simulation of Eq. (1) for periodic boundary condi-
tions. A ¢t = O the initial conditions are uniform with u,, = 0
except for three cells that are set with the basis B, 4 4. We see
that as time passes the tissue is filled with the basis B, 4 4 until
it makes a periodic pattern. The pattern is characterized with
cells having u; ¢ > O being surrounded with six cells with
us ¢ < 0. We repeated the simulation, but now the initial three
cells are set with the basis By ,, , [Fig. 7(c)]. Again, the pattern
becomes periodic but cells with u; ¢ < 0 are surrounded with
six cells with u; ¢ > 0.

If we increase further the value of €, > 0 [Fig. 6(c)],
the points indicating the metastable states move closer to the
points indicating the basis B, 4 4. After crossing a critical
value for €2., the stable points corresponding to B, 4.4 disap-
pear by colliding with a metastable point [Fig. 6(d)]. By in-
creasing the parameter €2, the double-well potential [Fig. 7(a)]
becomes a single-well potential [Fig. 7(d)], corresponding to
the basis By, . We simulate Eq. (1) in this regime and with
the same initial conditions as in Figs. 7(b) and 7(c); if the
simulation is initiated with the basis B, 4 4 [Fig. 7(e)], then
we see that the final pattern is filled with By, ,. The pattern
is not periodic due to a defect that arises from the initial
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FIG. 9. Hysteresis curve between patterns. The system is initi-
ated with a pattern filled with the basis B, 4 » and the parameter €2,
is swept back and forth between —60 and 60. The lower branch
corresponds to a pattern filled with the basis B, 4, and the upper
branch to B, ,, ;.

conditions. On the other hand, if the simulation is initiated
with the basis B, 4.4 Fig. 7(f)], then the final pattern is periodic
and filled with the basis B, 4 4. With these initial conditions
we get the same pattern as in Fig. 7(c). For the opposite case
where Qy < —, [Fig. 7(g)], we observe a periodic pattern
if initiated with the basis B, 44 [Fig. 7(h)] and defects if
initiated with By, , [Fig. 7(1)]. From these results we see that
by redefining the basis in hexagonal lattices in terms of v, w,
and z, the most unstable mode is k = 0.

V. EXPERIMENTAL PREDICTIONS

Finally, we discuss two experimental predictions. First, we
notice that at 2, = 0 both bases can coexist. We simulated
this regime by setting the initial conditions with three cells
with the basis B, 44 and another three cells with the basis
B4 u.u (see Fig. 8 at + = 0) while all others are set to u; ¢ = 0.
As time evolves we see that the final pattern is filled with
both bases that meet at different interfaces. As mentioned in
the Introduction, the parameter €2, is equivalent to the gene
expression rate of active Delta. It is possible that this state
with two coexisting bases can be reached in experiment by
modulating the amount of active Delta in cells.

Second, due to the multistability of the potential of
O (v, w, z) [Eq. (18)], it might be possible to observe hys-
teresis in the system. In Fig. 9 we show hysteresis curve,
where we quantified the percentage of cells that showed
us,y > 0 given the value of €2,. Starting with a pattern filled
with B, 4.4, noting as €2, changes there is a wide range of
values where B, 4 4 is stable, until it reaches a critical point
where it becomes unstable and the transition B, 44 — Bg.u.u
is observed. A further increase of this parameter changes
nothing. After that, if we decrease €2, at some critical point
we observe the transition By, , — B, 4.4. The critical points
for the transition B, 44 — B, and By, — By 4.4 are not
at the same position, meaning that the tissue shows memory.
Again this might be observed in experiment by changing the
amount of active Delta.

VI. CONCLUSIONS

In this work we have proposed an analytically tractable
model for lateral inhibition. We have shown how fine-grained
checkerboard patterns depend on the model parameters. By
making an analogy with optical modes from lattice phonons
we are able to determine how fine-grained patterns are se-
lected. Thus our model is a generic description of lateral inhi-
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bition that explains the transitions observed in more detailed
models [13-18].

We note that our model is a completely different mecha-
nism from that which produces hexagonal patterns in reaction-
diffusion systems. A canonical model that creates such pat-
terns is the Swift-Hohenberg equation with non-Boussinesq
conditions [23]. A reaction-diffusion with two components
can approximate the Swift-Hohenberg equation [24], in con-
trast to our system, which is a single-component model. The
Swift-Hohenberg equation is characterized by an instability
around a central mode k = k.. Here we have shown that the
most unstable mode in lateral inhibition is k = oo (Fig. 2). By
redefining the lattice structure and the basis of the cells, the
system behaves effectively as a multicomponent system where
the most unstable mode is k = 0. In terms of lattice vibrations
this corresponds to an optical phonon at the I" point.

Our model brings a new framework to studying and un-
derstanding pattern selection in both natural and synthetic
biological fine-grained systems. Particularly attractive exper-
imental scenarios for testing these ideas are in vitro cellular
systems with synthetic intercellular signaling pathways such
as recently reported by Matsuda et al. [25]. Disrupting Delta-
Notch communication between cells in this system using
a chemical inhibitor yielded a uniform expression of Delta
across the tissue. Removal of the inhibitor allowed Delta-
Notch signaling to initiate and caused the evolution of a fine-
grained pattern of Delta expression. This mimics our model’s
behavior when the coupling strength is modulated from ¢ = 0
to € < €.. This and similar experimental systems [26,27] also
raise the possibility of controlling the initial expression levels
of Delta, or an equivalent signal, which would be analogous
to modulating €2, in the model. Our analysis makes the exper-
imental prediction that by modulating the expression levels a
system with lateral inhibition can be driven to a regime where
the two basis coexist or show hysteresis.

Finally, our analysis suggests that embryonic pattern for-
mation by local cell signaling has two regimes. A regime
where the steady state is composed by acoustic modes, this
is the reaction-diffusion scenario proposed by Turing and a
regime composed by optical modes that corresponds to the
fine-grained patterns of lateral inhibition.
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APPENDIX A: RESPONSE FOR A LINEAR
CHAIN OF CELLS

The first step to calculate the steady state for a linear chain
of cells is finding the response for i, which corresponds to
the cell at the center of the chain. We do this recursively by
solving explicitly the case of finite chains. The steady state of
the chain is given by

—u, + G[un—l + Mn-H] + Qoan,o = 0, (Al)

and we impose a condition for symmetry around u such that
we can rewrite Eq. (Al) forn = 0 as

—up + 2€usr; + 2, =0 (A2)
and for the rest of the chain
—uy + €lup_1 + ttyy1] = 0. (A3)

The solutions for chains with five, seven, and nine cells are
given, respectively, by

Q, 2¢?
=1- : (A4)
Uupy 1-— 62
Q, 2¢?
=l (AS)
Up 1-— ==
Q, 2¢2
2 =1- — (A6)
U 1 =

and therefore we can infer for an infinite chain that the
response is given by

(AT)

2

1—
I—..

Due to the periodicity of the fraction we can rewrite it as

Q, 2¢?
T I=Q
2

A8
U 1 (A8)

and then the response of the cell in the middle is given by
%
J1—4e2’

Inserting the solution given by Eq. (A9) into Egs. (A1) and
(A2) we find

Uy = (A9)

(A10)

U, =

Q, [1—\/1—7462}“1
A1 —4e? 2e '

APPENDIX B: NEXT-NEIGHBOR CORRELATIONS
FOR A LINEAR CHAIN OF CELLS

We rewrite the responses for 2, = 2,68, as u, = QyGy,
where G, are analogous to Green functions. Suppose that now
the chain is forced by an input €2,, with the following spatial
correlation:

(Qngn/> = ngz(sn,ll’s (B1)

then the response of the chain is given by the convolution i, =
G, * Q,. The correlations between two cells in the chain is
given by

(Ut ) = 20&'22 Z Gl1+mGn’+mv (BZ)
m=0
this expression is easily simplified by rewriting Eq. (A1) in
terms of G,; by multiplying it by G, we find
G2 — 8,0G,

nf = nflGn + Gn+1Gns (B3)
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and if we set n = 0 and n’ = 1, then their correlations can be
written as

oo
(upu) = 2032 Z G%mH. (B4)

m=0
Using only the first term in the sum we get the
approximation

ot 203 <1 1 )2 ®5)
uoup) ~ 21— —— | .

€ 1 —4e2
APPENDIX C: EXTENSION TO BISTABLE SYSTEMS

The extension of Eq. (1) to the bistable case is given by

du,
dt

N
= au, — yu2+§2n+62ufp, (C1H

i=1

where a > 0 makes the units bistable. For the linear lattice the
equivalent to Egs. (7) and (8) are

3 9?
—v=26w+oev—yv3+eAx2—w+Qo, (C2)
ot dx?

3 9*
—w=26U+O(w—J/U)3+6Ax2—v+Qm (C3)
ot 0x2

and the potential for this case corresponds to

v+ w? v+ wt
(v, w) = —Q,(v+ w) — aT—Zevw+yT.
(&2))

A quick parameter sweep shows that there is also a double-
well potential where v and w are also anticorrelated.
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