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Population dynamics deals with the collective phenomena of living organisms, and it has attracted much
attention since it is expected to explain how not only living organisms but also human beings have been adapted
to varying environments. However, it is quite difficult to insist on a general statement on living organisms
since mathematical models heavily depend on phenomena that we focus on. Recently, it was reported that the
fluctuation relations on the fitness of living organisms held for a quite general problem setting. But, interactions
between organisms were not incorporated in the problem setting, though interaction plays critical roles in
collective phenomena in physics and population dynamics. In this paper, we propose interacting models for
population dynamics and provide the perturbative theory of population dynamics. Then, we derive the variational
principle and fluctuation relations for interacting population dynamics.

DOI: 10.1103/PhysRevE.99.042415

I. INTRODUCTION

Population dynamics aims to describe the population
growth of individuals that are able to multiply by themselves
[1–11]. Typical examples are organisms in living cells and
human beings. In the former case, they can increase their
populations by cell division; for the latter case, they can
multiply their numbers by giving birth. To sustain life and
to avoid extinction, the capability of multiplying via adapting
a varying environment is essentially important for organisms
and animals, respectively, and it critically distinguishes them
from physical systems, such as condensed matter composed
of electrons and spins. In particular, the adaption of human
beings to the varying environments is one of the biggest issues
since Darwin’s time [1–3].

On the other hand, since the discoveries of Jarzynski’s
equality [12] and Crooks’ relation [13], the study of stochastic
thermodynamics has attracted considerable attention [14]. Re-
cently, the relation between population dynamics and stochas-
tic thermodynamics has been intensively studied, and several
variants of the fluctuation relations (FRs) were discovered for
the fitness of organisms in a general problem setting [15,16].
However, there is a critical limitation in Refs. [15,16]. The
authors dealt with only one-body problems of organisms that
can multiply into two following some processes; as a result,
the population always grows or decays exponentially in the
models studied in Refs. [15,16]. On the other hand, models
that do not show exponential growth, such as logistic growth
models, ubiquitously appear in population dynamics [17], and
the FRs shown in Refs. [15,16] do not hold for them.

In this paper, we establish many-body perturbative theory
[18,19] of interacting population dynamics and derive sev-
eral FRs for interacting models in population dynamics. To
this end, we first propose a model that describes population
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dynamics with local interaction and derive a weakly inter-
acting model by using the perturbation expansion. Second,
we formulate the perturbative theory of population dynamics
and obtain the variational principle for interacting population
dynamics. Then, the variational principle with an optimal
strategy leads to the consistency condition, which plays an es-
sential role in deriving FRs for population dynamics. Finally,
we derive detailed FRs for interacting population dynamics.
We also obtain the Kawai-Parrondo-Broeck type FRs [20].

This paper is organized as follows. In Sec. II, we introduce
models with and without interaction and derive a model that is
investigated in this paper by using the perturbation expansion.
At the end of this section, we discuss the validity of the model.
In Sec. III, we derive the variational principle for the model.
The variational principle gives another representation of the
fitness and leads to a rich variety of mathematical relations.
In Sec. IV, we consider an optimal strategy and then derive
a consistency condition for it. We see that the variational
principle leads to the consistency condition. In Sec. V, we
derive several FRs. In particular, we derive some detailed
FRs and then the Kawai-Parrondo-Broeck type FRs. We also
explain that the consistency condition for the optimal strategy
plays a central role in the FRs. In Sec. VI, we derive an
integral FRs and a second-law-like inequality for interacting
population dynamics. In Sec. VII, we discuss our findings and
conclude this paper. In particular, we explain the meaning
and limitations of them. Furthermore, several proofs of the
findings in Secs. III, IV, and V are given in the Appendix.

II. MODELS AND ITS VALIDITY

In this section, we introduce several models and explain the
relations among them. We begin with a noninteracting model
for population dynamics and then introduce an interacting
model. Then, we consider the perturbative expansions of
population growth, phenotype-switching, and hopping terms,
and derive a model that is mainly investigated in this paper. At
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FIG. 1. Schematic of an example of the noninteracting model
for population dynamics. This system has four sites and three phe-
notypes. This model has three processes: hopping p1, phenotype
switching (mutation) p2, and population growth (multiplication) p3.
More specifically, p1 represents hopping from rt = [1, 1]ᵀ to rt+1 =
[2, 1]ᵀ, and p2 represents phenotype switching from ft = “red” to
ft+1 = “blue.” Furthermore, p3 depicts multiplication of a cell whose
phenotype is “green.” This dynamics is expressed by D0(·, ·).

the end of this section, we discuss the validity of this model
with numerical simulation.

A. Model without interaction

In Refs. [15,16], FRs for population dynamics were first
established. Here, we explain the model investigated in
Refs. [15,16], which does not involve interaction terms. First,
we define the basic setting and variables. We consider a
discrete-time model coupled with an environment and since
the biological processes on reproduction have periodicity in
general. We use rt and ft for the space coordinate and the
phenotypic state, respectively, and put xt := (rt , ft ). We also
denote the state of the environment at rt by yt (rt ) and the
history {yi(ri )}t

i=1 by Yt (rt ). Furthermore, let N (t )(xt ,Yt (·)) be
the number of organisms whose state is given by xt at time t ,
when the trajectory of the environment is given by Yt (·).

The simplest model for population dynamics with pheno-
type switching has two terms: population growth, phenotype-
switching, and hopping terms. In Ref. [15] and the other
literature, the following model was investigated:

N (t )(xt ,Yt (·)) = D0(xt , yt (rt ))
∑
{xt−1}

T0(xt |xt−1)

× N (t−1)(xt−1,Yt−1(·)). (1)

Note that Eq. (1) focuses on the mean values of organisms
by assuming that fluctuations around the mean values can be
ignored.

The dynamics of population growth, which distinguishes
population dynamics from other physical systems, such as
electronic and magnetic systems, is expressed by D0(·, ·)
(see Fig. 1). In general, multiplication tends to occur when
resources are rich and the density of a species is low; however,
this effect is ignored in Eq. (1). This motivates us to consider
the interaction effect on multiplication in this paper.

In the noninteracting case, T0(xt |xt−1) can be decomposed
as

T0(xt |xt−1) = T0(rt |rt−1)T0( ft | ft−1), (2)

where T0(rt |rt−1) and T0( ft | ft−1) are noninteracting
phenotype-switching and hopping terms, respectively. An
interaction effect on phenotype switching and hopping may
also be important, but in this paper, we do not get into this
problem.

B. Model with interaction

We extend the noninteracting model (1) by introducing
interaction effects on D0(·, ·) and T0(·|·). That is, we replace
D0(·, ·) and T0(·|·) by D(·, ·, ·) and T (·|·, ·) at time t , which
depend on N (t−1)(·, ·), respectively, and then we obtain

N (t )(xt ,Yt (·)) = D(xt , N (t−1)(·,Yt−1(·)), yt (rt ))

×
∑
{xt−1}

T (xt |xt−1, N (t−1)(·,Yt−1(·)))

× N (t−1)(xt−1,Yt−1(·)). (3)

The point of Eq. (3) is that the dependence of D(·, ·, ·) and
T (·|·, ·) at time t on N (t−1)(·, ·) can represent interaction
effects, such as the excluded volume effect.

C. Perturbation expansions of multiplication
and phenotype-switching terms

In general, it is difficult to compute physical quantities
on Eq. (3). We then consider the perturbative expansions of
D(·, ·, ·) and T (·|·, ·):

D(xt , N (t−1)(·,Yt−1(·)), yt (rt ))

= D0(xt , yt (rt )) +
∞∑

i=1

∑
{xt−1}

Di(xt , xt−1, yt (rt ))

× (N (t−1)(xt−1,Yt−1(·)))i (4)

and

T (xt |xt−1, N (t−1)(·,Yt−1(·)))

= T0(xt |xt−1) +
∞∑

i=1

∑
{x′

t−1}
Ti(xt |xt−1, x′

t−1)

× (N (t−1)(x′
t−1,Yt−1(·)))i. (5)

Equations (4) and (5) express nonlinear effects of population
growth, phenotype switching, and hopping due to interaction
that come from interaction.

D. Model with weak interaction

So far, we have explained noninteracting and interacting
models for population dynamics and the perturbation expan-
sions. Here, we introduce a model with weak interaction.
By considering the first-order expansion on D(·, ·, ·) and the
zeroth-order expansion on T (·|·, ·), we obtain

N (t )(xt ,Yt (·)) = D(xt , N (t−1)(·,Yt−1(·)), yt (rt ))

×
∑
{xt−1}

T0(xt |xt−1)N (t−1)(xt−1,Yt−1(·)), (6)
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where T0(·|·) is the transition matrix of phenotype switching
and hopping, and the interaction term D(·, ·, ·) is written as

D(xt , N (t−1)(·,Yt−1(·)), yt (rt ))

= D0(xt , yt (rt )) +
∑
{xt−1}

D1(xt , xt−1, yt (rt ))N (t−1)

× (xt−1,Yt−1(·)). (7)

Note that the first and second terms of the right-hand side
of Eq. (7) represent one-body and interaction growth terms,
respectively, and this model is almost the same with the model
dealt in Refs. [15,16] if we set D1(xt , xt−1, yt (rt )) = 0. Note
that N (0)(·, ·) is the population of the organisms at t = 0.
Hereafter, we denote it by N (0)(·) for simplicity since it does
not depend on the state of the environment Y0(·).

E. Validity of the model

We here discuss the validity of the model (6). The model
(6) is based on the mean populations of each phenotype
and higher-order cumulants of the populations, such as their
variances, are assumed to be small enough. Thus, the model
is valid when each population is large [10].

Next, we turn our attention to the interaction in the model
(6). We incorporate the interaction effect only in the growth
term; the reasons are as follows. The first one is that the inter-
action effect on phenotype switching and hopping is similar to
the interaction between spins in a spin model, such as the Ising
model and the Potts model. Thus, there are many works on it.
The second one is that when the number of organisms is larger,
it is expected that organisms are less likely to multiply due to
the exclusive volume effect and the exhaustion of resources.
And when an organism behaves like a catalyst, it promotes cell
division. This effect is essentially important to understand the
collective phenomena of population dynamics. The third one
is that the interaction effect of the growth term can effectively
describe the interaction effect on phenotype switching.

In Eq. (6), we have considered the time-delayed interaction
represented by D1(xt , xt−1, yt (rt )). The main reason is that cell
division and other biological phenomena have periodicity in
general, and it is natural to consider that there exists time
delay. On the other hand, the time-delayed interaction and a
simultaneous interaction are perturbatively the same; thus, the
results derived in this paper can be straightforwardly extended
to a model with a simultaneous interaction.

F. Numerical simulation

Here, we demonstrate how the fitness of an interacting
system behaves and compare its zeroth- and first-order ap-
proximations with it.

For simplicity, we fix the state of the environment and
consider an interacting system that has one site and two
phenotypes; so, we omit rt in this numerical simulation.
For phenotype switching, we set T0( ft = ft−1| ft−1) = 0.9
and T0( ft �= ft−1| ft−1) = 0.1. For population growth, we also
put D0( ft = 1) = 1.10, D0( ft = 2) = 1.02, and D1( ft , f ′

t =
ft ) = −0.010. We define N̄ (t ) as the total population at time t .
The precise definition will be given in the next section.
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FIG. 2. Comparison of the exact computation (red), the zeroth-
order perturbation approximation (green), and the first-order per-
turbation approximation (blue) of the fitness of an interact-
ing system. We consider a system composed of one site and
set T0( ft = ft−1| ft−1) = 0.9, T0( ft �= ft−1| ft−1) = 0.1, D0( ft = 1) =
1.10, D0( ft = 2) = 1.02, and D1( ft , f ′

t = ft ) = −0.010.

In Fig. 2, we compare the exact result, the zeroth-order
approximation, and the first-order approximation. This figure
shows that the exact result and the first-order approximation
show good agreement with each other at the beginning while
the zeroth-order approximation behaves in a different way
even for the same time. Due to the interaction effect, the
exact result and the first-order approximation do not show an
exponential growth; however, the zeroth-order approximation
shows an exponential growth since it ignores interaction.

As Fig. 2 also shows, the first-order approximation is valid
at the beginning in this setup because the population grows
and higher-order terms become important as time elapses.
Thus, the first-order approximation is expected to be valid
until higher-order terms dominate the system.

III. VARIATIONAL STRUCTURE OF INTERACTING
POPULATION DYNAMICS

This section aims to derive the variational principle for
interacting population dynamics, which provides another ex-
pression of the fitness of a population and makes it easy to
derive a consistency condition for the optimal strategy. To this
end, this section begins with the definition of the log fitness
of a population and then states its path integral expression.
Finally, we derive the variational principle for interacting
population dynamics.

A. Log fitness

We here focus on N (t )(xt ,Yt (·)) described by Eq. (6). We
then define the log fitness �tot

t (Yt (·)), which describes how
much the population grows in a given time, by

�tot
t (Yt (·)) := ln

N̄ (t )(Yt (·))
N̄ (0)

. (8)

where N̄ (t )(Yt (·)) := ∑
{xt } N (t )(xt ,Yt (·)) for any t � 1 and

N̄ (0) := ∑
{x0} N (0)(x0). Here,

∑
{xt } represents the summation

over all configurations of xt = (rt , ft ). Note that Eq. (8)
quantifies how much the total population grows logarithmi-
cally and does not depend on where organisms are and their
phenotype.
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B. First-order perturbative expression

We derive the path integral expression of the log fitness
(8) within the first-order perturbation. We first define the
forward path probability pf (Xt ) := ∏t

i=1 T0(xi|xi−1)p(x0) with
p(x0) := N (0)(x0)/N̄ (0) and Xt := {xi}t

i=0.
By using the first-order perturbation expansion, Eq. (8) can

be computed as

�tot
t (Yt (·)) ≈

t∑
i=1

ln
〈(

D0(xi, yi(ri ))

+ E (i,0)
1 (xi, yi(ri ),Yi−1(·))N̄ (0)

)〉
pf (Xt ), (9)

where

E (i,0)
1 (xi, yi(ri ),Yi−1(·))

:=
〈

D1(xi, xi−1, yi(ri ))
i−1∏
j=1

D0(x j, y j (r j ))

〉
pf (Xi−1 )

(10)

for i = 1, 2, . . . , t . We note that Eq. (9) has a similar structure
with the Green’s function in many-body systems [18,19].
The details for the derivation of Eq. (9) are shown in
Appendix A 1. In the rest of this paper, we derive the varia-
tional principle and FRs by using Eq. (9). Hereafter, we use
the equality when two quantities are perturbatively equal.

C. Variational principle

Then, we derive the variational principle on the log fitness
(8). It plays an important role in this paper since it leads to the
FRs shown later.

By applying Jensen’s inequality to Eq. (9), we obtain the
inequality on Eq. (8):

�tot
t (Yt (·)) �

t∑
i=1

〈ln(D0(xi, yi(ri )) + Ẽ1(Xi,Yi(·))N̄ (0) )〉q(Xi )

−
t∑

i=1

KL(q(Xi )‖pf (Xi )), (11)

where

Ẽ1(Xi,Yi(·))

:= D1(xi, xi−1, yi(ri ))

⎡
⎣ i−1∏

j=1

D0(x j, y j (r j ))

⎤
⎦ (12)

for any set of path measures {q(Xi )}t
i=0. See Appendix A 2 for

details.
Next, we consider the equality condition of Eq. (11). We

here define the backward path probabilities by

pb(Xj |Yj (·)) := (D0(x j, y j (r j )) + Ẽ1(Xj,Yj (·))N̄ (0) )

× e−� j (Yj (·)) pf (Xj ), (13)

where

� j (Yj (·))
:= ln〈(D0(x j, y j (r j )) + Ẽ1(Xj,Yj (·))N̄ (0) )〉pf (Xj ) (14)

for j = 1, 2, . . . , t . Note that � j (Yj (·)) in Eq. (14) and
�tot

t (Yt (·)) in Eq. (8) satisfy

�tot
t (Yt (·)) =

t∑
j=1

� j (Yj (·)). (15)

Then, we have

�tot
t (Yt (·)) =

t∑
i=1

〈ln(D0(xi ) + Ẽ1(Xi,Yi(·))N̄ (0) )〉pb(Xi|Yi (·))

−
t∑

i=1

KL(pb(Xi|Yi(·))‖pf (Xi )). (16)

We note that Eq. (16) represents the relation between the log
fitness and the forward and backward path probabilities. See
Appendix A 3 for details.

As a result, we have the variational representation of the
log fitness given by

�tot
t (Yt (·))

= max
{q(Xi )}t

i=i

[
t∑

i=1

〈ln(D0(xi ) + Ẽ1(Xi,Yi(·))N̄ (0) )〉q(Xi )

−
t∑

i=1

KL(q(Xi )‖pf (Xi ))

]
. (17)

IV. OPTIMAL PROTOCOL

In this section, we consider the optimal protocol of pheno-
type switching. By using the nature of optimality, we derive
a consistency condition of the optimal protocol on the path
probabilities on the forward and backward processes. The
consistency condition plays an essential role in FRs in the next
section.

We first consider the expectation of the log fitness with
respect to the states of the environment and then derive
the consider condition by utilizing the nature of optimality.
In addition, we find a variational principle for the optimal
strategy.

A. Derivation of the fitness

We here derive the deviation of the fitness to consider prop-
erties of the optimal protocol and stochastic thermodynamic
structure [12–14,21–26] on population dynamics.

Let us write the path probability of the environment by
pe(Yt (·)). The expectation of �tot

t (Yt (·)) in Eq. (16) with
respect to pe(Yt (·)) is expressed as〈

�tot
t (Yt (·))

〉
pe (Yt (·))

=
t∑

i=1

〈ln(D0(xi ) + Ẽ1(Xi,Yi(·))N̄ (0) )〉pb(Xi,Yi (·))

−
t∑

i=1

[
IXi,Yi
b + KL(pb(Xi )‖pf (Xi ))

]
, (18)
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where

IXi,Yi
b :=

〈
ln

pb(Xi,Yi(·))
pb(Xi )pe(Yi(·))

〉
pb(Xi,Yi (·))

. (19)

Furthermore, we have defined

pb(Xi,Yi(·)) := pb(Xi|Yi(·))pe(Yi(·)) (20)

and

pb(Xi ) := 〈pb(Xi,Yi(·))〉pe (Yi (·)) (21)

for i = 1, 2, . . . , t . See Appendix B 1 for details.
Then, we consider the deviation of the fitness from the

optimal one. We then define

δ�tot
t (Yt (·))

:=
t∑

i=1

ln〈(D0(xi, yi(ri )) + Ẽ1(Xi,Yi(·))N̄ (0) )〉pf (Xi )+δpf (Xi )

−
t∑

i=1

ln〈(D0(xi, yi(ri )) + Ẽ1(Xi,Yi(·))N̄ (0) )〉pf (Xi ).

(22)

Due to the fact that �tot
t (Yt (·)) satisfies the maximization

formula (17), we have

δ�tot
t (Yt (·)) =

t∑
i=1

〈
pb(Xi|Yi(·))

pf (Xi )

〉
δpf (Xi )

. (23)

Then, by taking the expectation of the left-hand side of
Eq. (23) with respect to pe we have

〈
δ�tot

t (Yt (·))
〉
pe (Yt (·)) =

t∑
i=1

〈
pb(Xi )

pf (Xi )

〉
δpf (Xi )

, (24)

where

pb(Xi ) :=
∑
{Yi (·)}

pb(Xi|Yi(·))pe(Yi(·)) (25)

for i = 1, 2, . . . , t . See Appendix B 2 for details.

B. Optimal protocol

Next, we discuss the optimal strategy and the correspond-
ing fitness �̂tot

t . To this end, by letting p̂f (Xt ) be the optimal
forward path probability, we define the optimal backward path
probability p̂b(Xt ) by

p̂b(Xj |Yj (·)) := (D0(x j, y j (r j )) + Ẽ1(Xj,Yj (·))N̄ (0) )

× e−�̂ j (Yj (·)) p̂f (Xj ), (26)

where

�̂ j (Yj (·))
:= ln〈(D0(x j, y j (r j )) + Ẽ1(Xj,Yj (·))N̄ (0) )〉p̂f (Xj ) (27)

for j = 1, 2, . . . , t . Like Eq. (9), we also define

�̂tot
t (Yt (·)) :=

t∑
i=1

ln〈(D0(xi, yi(ri )) + Ẽ1(Xi,Yi(·))N̄ (0) )〉p̂f (Xi ).

(28)

Note that �̂ j (Yj (·)) in Eq. (27) and �̂tot
t (Yt (·)) in Eq. (28)

satisfy

�̂tot
t (Yt (·)) =

t∑
j=1

�̂ j (Yj (·)). (29)

The optimality condition is expressed as〈
δ�̂tot

t (Yt (·))
〉
pe (Yt (·)) = 0. (30)

Equation (30) is satisfied via

p̂b(Xi ) = p̂f (Xi ) (31)

for i = 1, 2, . . . , t . In this case, we have〈
�̂tot

t (Yt (·))
〉
pe (Yt (·))

=
t∑

i=1

〈ln(D0(xi, yi(ri )) + Ẽ1(Xi,Yi(·))N̄ (0) )〉p̂b(Xi,Yi (·))

−
t∑

i=1

ÎXi,Yi
b , (32)

where

ÎXi,Yi
b :=

〈
ln

p̂b(Xi,Yi(·))
p̂b(Xi )pe(Yi(·))

〉
p̂b(Xi,Yi (·))

. (33)

We can also express 〈�̂tot
t (Yt (·))〉pe (Yt (·)) as〈

�̂tot
t (Yt (·))

〉
pe (Yt (·))

= max
{q(Xi|Yi (·))}t

i=1

[
t∑

i=1

〈ln(D0(xi, yi(ri))

+Ẽ1(Xi,Yi(·))N̄ (0) )〉q(Xi|Yi (·))pe (Yi (·)) −
t∑

i=1

IXi,Yi

]
, (34)

where

IXi,Yi :=
〈

ln
q(Xi,Yi(·))

q(Xi )pe(Yi(·))
〉

q(Xi,Yi (·))
(35)

and

q(Xi,Yi(·)) := q(Xi|Yi(·))pe(Yi(·)), (36)

q(Xi ) := 〈q(Xi,Yi(·))〉pe (Yi (·)). (37)

We have shown the variational principle for
〈�̂tot

t (Yt (·))〉pe (Yt (·)).

V. FLUCTUATION RELATIONS

This section is the main part of this paper, in which we de-
rive several FRs for interacting population dynamics. At first,
we derive detailed FRs. These FRs resemble conventional FRs
in stochastic thermodynamics [14]. Then, we derive Kawai-
Parrondo-Broeck type FRs [20].

A. Detailed FRs

We define the deviation of the log fitness �̂tot
t (Yt (·)) as

��̂tot
t (Yt (·)) := �̂tot

t (Yt (·)) − �tot
t (Yt (·)). (38)
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We then have the following FR given by

e−��̂tot
t (Yt (·)) =

t∏
j=1

p̂b(Xj |Yj (·))
p̂f (Xj )

pf (Xj )

pb(Xj |Yj (·)) . (39)

Furthermore, Eq. (39) can be rewritten as

e−��̂tot
t (Yt (·)) =

t∏
j=1

p̂b(Yj (·)|Xj )pf (Xj )

pb(Xj,Yj (·)) (40)

and

e−��̂tot
t (Yt (·)) =

t∏
j=1

〈p̂b(Yj (·)|Xj )〉pf (Xj )

pe(Yj (·)) . (41)

Note that we have used Eq. (31) to derive Eqs. (40) and (41).
See Appendix C 1.

B. Kawai-Parrondo-Broeck type FRs

We also have the Kawai-Parrondo-Broeck type FRs [20]
represented by

〈
��̂tot

t (Yt (·))
〉

= KL(pe(Yj (·))‖〈p̂b(Yj (·) | Xj )〉pF (Xj ) ), (42)〈
��̂tot

t (Yt (·))
〉

=
t∑

j=1

KL( p̂f (Xj )‖pf (Xj ))

−
t∑

j=1

〈KL( p̂b(Xj |Yj (·))‖pb(Xj |Yj (·)))〉pe (Yj (·)), (43)

and 〈
��̂tot

t (Yt (·))
〉

=
t∑

j=1

KL( p̂f (Xj )‖pf (Xj ))

−
t∑

j=1

KL( p̂b(Xj,Yj (·))‖pb(Xj,Yj (·))), (44)

where

〈
��̂tot

t (Yt (·))
〉

:=
t∑

j=1

〈��̂ j (Yj (·))〉pe (Yj (·)). (45)

Through Eqs (40), (41), (43), and (44), we have proved
a variety of FRs for interacting population dynamics. See
Appendix C 2 for details.

VI. INTEGRAL FRS AND SECOND-LAW-LIKE
INEQUALITIES

Finally, we mention that, from Eq. (41), we can easily
derive integral fluctuation relations and second-law-like in-
equalities that characterize the efficiencies of the optimal
strategy and another.

We first define

〈e−��̂tot
t (Yt (·))〉 :=

t∏
j=1

〈e−��̂ j (Yj (·))〉pe (Yj (·)). (46)

Then, we have the Jarzynski-type equality

〈e−��̂tot
t (Yt (·))〉 = 1. (47)

By applying Jensen’s inequality to Eq. (47), we obtain the
following second-law-like inequality for Eq. (45):

〈
��̂tot

t (Yt (·))
〉
� 0. (48)

In the noninteracting limit, these relations recover relations
shown in Ref. [15].

VII. DISCUSSION AND CONCLUSION

In this paper, we have derived various types of FRs on in-
teracting population dynamics. In the previous works [15,16],
the interaction effect was ignored, but it is widely believed that
interaction plays a critical role in statistical mechanics. Thus,
the most important point of this paper is that we have dealt
with an interacting model for population dynamics, which
is expected to cover a wide range of models in population
dynamics. For instance, the SIR model is one of the most fa-
mous models with nonlinear terms [27]. The origin of the non-
linear terms is the interactions among susceptible, infected,
and recovered individuals. Furthermore, without interaction,
a model of population dynamics always shows exponential
growth. However, in most cases, it is not realistic; otherwise,
the system would be governed by the species and the model
would be broken down.

In Ref. [15], some properties of FRs are discussed. One
of the most important properties is that suboptimal strategies
may outperform the optimal strategy due to fluctuations of
the environment. Our FRs also insist that the above statement
holds even if an interaction exists. In the noninteracting
limit, the FRs found in this paper are identical with those in
Ref. [15]; so, our findings are viewed as a direct extension of
FRs in Ref. [15].

Finally, we discuss issues that we have not tackled in this
paper. First, we have not discussed the capability of each
organism to sense the state of the environment. However, by
incorporating it in the phenotype-switching and hopping rate
T0(·|·), we can directly extend the framework and the FRs
in this paper by following Refs. [10,15,16]. Second, we have
considered only the first-order correction. But, our framework
can be generalized straightforwardly to include higher-order
perturbation corrections. Another issue in interacting popu-
lation dynamics is the interaction effect on the phenotype-
switching and hopping rate T0(·|·). This issue may lead to
another modification; so, this is one of our future work.
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APPENDIX A: DERIVATIONS OF THE PERTURBATIVE
EXPRESSION OF THE LOG FITNESS AND THE

VARIATIONAL PRINCIPLE

By employing perturbation theory [18,19], we provide
the detailed derivations of Eqs. (9), (11), and (16) in this
Appendix.

1. Derivation of Eq. (9)

Here, we provide the detailed derivation of Eq. (9).
First, we compute the exact relation between N (t )(xt ,Yt (·))
and N (t−2)(xt−2,Yt−2(·)) by recursively using Eq. (6). Then,

we derive the first-order perturbative relation between
N (t )(xt ,Yt (·)) and N (t−2)(xt−2,Yt−2(·)) and that between
N (t )(xt ,Yt (·)) and N (t−3)(xt−3,Yt−3(·)) by ignoring higher-
order terms with respect to interaction D1. As a result, we
straightforwardly get the first-order perturbative relation be-
tween N (t )(xt ,Yt (·)) and N (0)(x0,Y0(·)).

a. Exact relation between N (t )(xt,Yt (·)) and N (t−2)(xt−2,Yt−2(·))
To obtain the path integral formulation of the fitness of the

population dynamics, Eq. (9), we need the relation between
N (t )(·, ·) and N (0)(·, ·). For the first step, by recursively insert-
ing Eq. (6), we have the exact relation between N (t )(·, ·) and
N (t−2)(·, ·) given by

N (t )(xt ,Yt (·)) = D0(xt , yt (rt ))
∑
{xt−1}

T0(xt |xt−1)D0(xt−1, yt−1(rt−1))
∑
{xt−2}

T0(xt−1|xt−2)N (t−2)(xt−2,Yt−2(·))

+ D0(xt , yt (rt ))
∑
{xt−1}

T0(xt |xt−1)E (t−1,t−2)
1 (xt−1, yt−1(rt−1),Yt−2(·))N̄ (t−2)(Yt−2(·))

×
∑
{xt−2}

T0(xt−1|xt−2)N (t−2)(xt−2,Yt−2(·)) + E (t,t−2)
1 (xt , yt (rt ),Yt−1(·))N̄ (t−2)(Yt−2(·))

×
∑
{xt−1}

T0(xt |xt−1)D0(xt−1, yt−1(rt−1))
∑
{xt−2}

T0(xt−1|xt−2)N (t−2)(xt−2,Yt−2(·))

+ E (t,t−1,t−2)
2 (xt , yt (rt ),Yt−1(·))(N̄ (t−2)(Yt−2(·)))2

∑
{xt−1}

T0(xt |xt−1)D0(xt−1, yt−1(rt−1))

×
∑
{xt−2}

T0(xt−1|xt−2)N (t−2)(xt−2,Yt−2(·)) + E (t,t−2)
1 (xt , yt (rt ),Yt−1(·))N̄ (t−2)(Yt−2(·))

×
∑
{xt−1}

T0(xt |xt−1)E (t−1,t−2)
1 (xt−1, yt−1(rt−1),Yt−2(·))N̄ (t−2)(Yt−2(·))

×
∑
{xt−2}

T0(xt−1|xt−2)N (t−2)(xt−2,Yt−2(·)) + E (t,t−1,t−2)
2 (xt , yt (rt ),Yt−1(·))(N̄ (t−2)(Yt−2(·)))2

×
∑
{xt−1}

T0(xt |xt−1)E (t−1,t−2)
1 (xt−1, yt−1(rt−1),Yt−2(·))N̄ (t−2)(Yt−2(·))

∑
{xt−2}

T0(xt−1|xt−2)N (t−2)(xt−2,Yt−2(·)),

(A1)

where

E (t,t−2)
1 (xt , yt (rt ),Yt−1(·)) =

∑
{x′

t−1}

∑
{x′

t−2}
D1(xt , x′

t−1, yt (rt ))D0(x′
t−1, yt−1(r′

t−1))T0(x′
t−1|x′

t−2)p(x′
t−2|Yt−2(·)), (A2)

E (t−1,t−2)
1 (xt−1, yt−1(rt−1),Yt−2(·)) =

∑
{x′

t−2}
D1(xt−1, x′

t−2, yt−1(rt−1))p(x′
t−2|Yt−2(·)), (A3)

E (t,t−1,t−2)
2 (xt , yt (rt ),Yt−1(·)) =

∑
{x′

t−1}
D1(xt , x′

t−1, yt (rt ))E
(t−1,t−2)
1 (x′

t−1, yt−1(r′
t−1),Yt−2(·))

∑
{x′

t−2}
T0(x′

t−1|x′
t−2)p(x′

t−2|Yt−2(·)).

(A4)

Equation (A1) can be simplified further as

N (t )(xt ,Yt (·)) =
∑
{xt−1}

∑
{xt−2}

[
D0(xt , yt (rt ))D0(xt−1, yt−1(rt−1)) + D0(xt , yt (rt ))E

(t−1,t−2)
1 (xt−1, yt−1(rt−1),Yt−2(·))N̄ (t−2)(Yt−2(·))

+ E (t,t−2)
1 (xt , yt (rt ),Yt−1(·))N̄ (t−2)(Yt−2(·))D0(xt−1, yt−1(rt−1))

+ E (t,t−1,t−2)
2 (xt , yt (rt ),Yt−1(·))(N̄ (t−2)(Yt−2(·)))2D0(xt−1, yt−1(rt−1))

+ E (t,t−2)
1 (xt , yt (rt ),Yt−1(·))E (t−1,t−2)

1 (xt−1, yt−1(rt−1),Yt−2(·))(N̄ (t−2)(Yt−2(·)))2
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+ E (t,t−1,t−2)
2 (xt , yt (rt ),Yt−1(·))E (t−1,t−2)

1 (xt−1, yt−1(rt−1),Yt−2(·))(N̄ (t−2)(Yt−2(·)))3
]

× T0(xt |xt−1)T0(xt−1|xt−2)N (t−2)(xt−2,Yt−2(·)). (A5)

b. First-order perturbative relation between N (t )(xt,Yt (·)) and N (t−2)(xt−2,Yt−2(·))
We here derive the first-order perturbative relation between N (t )(xt ,Yt (·)) and N (t−2)(xt−2,Yt−2(·)). By neglecting higher-order

terms in Eq. (A5) with respect to D1(·, ·), we have

N (t )(xt ,Yt (·)) ≈
∑
{xt−1}

∑
{xt−2}

[
D0(xt , yt (rt ))D0(xt−1, yt−1(rt−1)) + D0(xt , yt (rt ))E

(t−1,t−2)
1 (xt−1, yt−1(rt−1),Yt−2(·))N̄ (t−2)(Yt−2(·))

+ E (t,t−2)
1 (xt , yt (rt ),Yt−1(·))N̄ (t−2)(Yt−2(·))D0(xt−1, yt−1(rt−1))

]
× T0(xt |xt−1)T0(xt−1|xt−2)N (t−2)(xt−2,Yt−2(·)) (A6)

≈
∑
{xt−1}

∑
{xt−2}

(
D0(xt , yt (rt )) + E (t,t−2)

1 (xt , yt (rt ),Yt−1(·))N̄ (t−2)(Yt−2(·)))

× (
D0(xt−1, yt−1(rt−1)) + E (t−1,t−2)

1 (xt−1, yt−1(rt−1),Yt−2(·))N̄ (t−2)(Yt−2(·)))
× T0(xt |xt−1)T0(xt−1|xt−2)N (t−2)(xt−2,Yt−2(·)), (A7)

where

E (t,t−2)
1 (xt , yt (rt ),Yt−1(·)) =

∑
{x′

t−1}

∑
{x′

t−2}
D1(xt , x′

t−1, yt (rt ))D0(x′
t−1, yt−1(r′

t−1))T0(x′
t−1|x′

t−2)p(x′
t−2|Yt−2(·)), (A8)

E (t−1,t−2)
1 (xt−1, yt−1(rt−1),Yt−2(·)) =

∑
{x′

t−2}
D1(xt−1, x′

t−2, yt−1(rt−1))p(x′
t−2|Yt−2(·)). (A9)

c. First-order perturbative relation between N (t )(xt,Yt (·)) and N (t−3)(xt−3,Yt−3(·))
We then derive the first-order perturbative relation between N (t )(xt ,Yt (·)) and N (t−3)(xt−3,Yt−3(·)) by using the same

procedure. Then, we get

N (t )(xt ,Yt (·)) ≈
∑
{xt−1}

∑
{xt−2}

∑
{xt−3}

(
D0(xt , yt (rt )) + E (t,t−3)

1 (xt , yt (rt ),Yt−1(·))N̄ (t−3)(Yt−3(·)))

× (
D0(xt−1, yt−1(rt−1)) + E (t−1,t−3)

1 (xt−1, yt−1(rt−1),Yt−2(·))N̄ (t−3)(Yt−3(·)))
× (

D0(xt−2, yt−2(rt−2)) + E (t−2,t−3)
1 (xt−2, yt−2(rt−2),Yt−3(·))N̄ (t−3)(Yt−3(·)))

× T0(xt |xt−1)T0(xt−1|xt−2)T0(xt−2|xt−3)N (t−3)(xt−3,Yt−3(·)), (A10)

where

E (t,t−3)
1 (xt , yt (rt ),Yt−1(·)) =

∑
{x′

t−1}

∑
{x′

t−2}

∑
{x′

t−3}
D1(xt , x′

t−1, yt (rt ))D0(x′
t−1, yt−1(r′

t−1))D0(x′
t−2, yt−2(r′

t−2))

× T0(x′
t−1|x′

t−2)T0(x′
t−2|x′

t−3)p(x′
t−3|Yt−3(·)), (A11)

E (t−1,t−3)
1 (xt−1, yt−1(rt−1),Yt−2(·)) =

∑
{x′

t−2}

∑
{x′

t−3}
D1(xt−1, x′

t−2, yt−1(rt−1))D0(x′
t−2, yt−2(r′

t−2))T0(x′
t−2|x′

t−3)p(x′
t−3|Yt−3(·)),

(A12)

E (t−2,t−3)
1 (xt−2, yt−2(rt−2),Yt−3(·)) =

∑
{x′

t−3}
D1(xt−2, x′

t−3, yt−2(rt−2))p(x′
t−3|Yt−3(·)). (A13)

d. First-order perturbative relation between N (t )(xt,Yt (·)) and N (0)(x0,Y0(·))
We derive the path integral representation of N (t )(xt ,Yt (·)) in the first-order perturbation by recursively repeating the above

procedure. As a result, we have

N (t )(xt ,Yt (·)) ≈
∑
{xt−1}

∑
{xt−2}

· · ·
∑
{x0}

[
t∏

i=1

(
D0(xi, yi(ri)) + E (i,0)

1 (xi, yi(ri),Yi−1(·))N̄ (0)
) × T0(xi|xi−1)

]
N (0)(x0), (A14)
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where

E (i,0)
1 (xi, yi(ri ),Yi−1(·)) =

∑
{xi−1}

∑
{xi−2}

· · ·
∑
{x0}

D1(xi, xi−1, yi(ri ))
i−1∏
j=1

[D0(x j, y j (r j ))T0(x j |x j−1)]p(x0), (A15)

Xt = {xi}t
i=0, Yt (r) = {yi(r)}t

i=1, and Yt (·) = {yi(·)}t
i=1. We have also defined

N̄ (i)(Yi(·)) =
∑
{xi}

N (i)(xi,Yi(·)), (A16)

p(i)(xi|Yi(·)) = N (i)(xi,Yi(·))
N̄ (i)(Yi(·)) . (A17)

As mentioned in the main text, we denote N (0)(x0,Y0(·)), p(x0|Y0(·)), and N̄ (0)(Y0(·)) by N (0)(x0), p(x0), and N̄ (0), respectively,
since Y0(·) = y0(·), which is the state of the environment at time t = 0, does not affect the initial state N (0)(x0).

In the path integral formulation, Eq. (A14) can be expressed as

N (t )(xt ,Yt (·)) ≈
∑
{xt−1}

∑
{xt−2}

· · ·
∑
{x0}

t∏
i=1

[(
D0(xi, yi(ri)) + E (i,0)

1 (xi, yi(ri ),Yi−1(·))N̄ (0)
)
T0(xi|xi−1)

]
p(x0)N̄ (0) (A18)

=
〈

t∏
i=1

(
D0(xi, yi(ri )) + E (i,0)

1 (xi, yi(ri ),Yi−1(·))N̄ (0)
)〉

pf (Xt )

N̄ (0) (A19)

=
t∏

i=1

〈(
D0(xi, yi(ri )) + E (i,0)

1 (xi, yi(ri),Yi−1(·))N̄ (0)
)〉

pf (Xt )N̄
(0), (A20)

where

pf (Xt ) =
[

t∏
i=1

T0(xi|xi−1)

]
p(x0), (A21)

and Xt = {xi}t
i=0.

We here define the log fitness by

�tot
t (Yt (·)) = ln

N̄ (t )(Yt (·))
N̄ (0)

; (A22)

then, it can be rewritten as

�tot
t (Yt (·)) = ln

〈
t∏

i=1

(
D0(xi, yi(ri)) + E (i,0)

1 (xi, yi(ri),Yi−1(·))N̄ (0)
)〉

pf (Xt )

(A23)

=
t∑

i=1

ln
〈(

D0(xi, yi(ri )) + E (i,0)
1 (xi, yi(ri),Yi−1(·))N̄ (0)

)〉
pf (Xt ). (A24)

Thus, we have finished the derivation of Eq. (9).

2. Derivation of Eq. (11)

By using Jensen’s inequality, we derive Eq. (11). First, we rewrite Eq. (8) as follows:

�tot
t (Yt (·)) = ln

N̄ (t )(Yt (·))
N̄ (0)

(A25)

= ln

〈
t∏

i=1

(
D0(xi, yi(ri)) + E (i,0)

1 (xi, yi(ri),Yi−1(·))N̄ (0)
)〉

pf (Xt )

(A26)

=
t∑

i=1

ln
〈(

D0(xi, yi(ri )) + E (i,0)
1 (xi, yi(ri),Yi−1(·))N̄ (0)

)〉
pf (Xt ) (A27)

=
t∑

i=1

ln〈(D0(xi, yi(ri )) + 〈Ẽ1(Xi,Yi(·))〉pf (Xi−1 )N̄
(0) )〉pf (Xt ) (A28)
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=
t∑

i=1

ln〈〈(D0(xi, yi(ri)) + Ẽ1(Xi,Yi(·))N̄ (0) )〉pf (Xi−1 )〉pf (Xt ) (A29)

=
t∑

i=1

ln〈(D0(xi, yi(ri)) + Ẽ1(Xi,Yi(·))N̄ (0) )〉pf (Xi ). (A30)

Then, we apply Jensen’s inequality to Eq. (A30), and then we get

�tot
t (Yt (·)) �

t∑
i=1

〈ln(D0(xi, yi(ri)) + Ẽ1(Xi,Yi(·))N̄ (0) )〉q(Xi ) −
t∑

i=1

KL(q(Xi )‖pf (Xi )). (A31)

We have obtained Eq. (11).

3. Derivation of Eq. (16)

We see that the the equality (16) is attained by inserting the backward path probability (13). By setting

q(Xi ) = pb(Xi|Yi(·)), (A32)

we have

〈ln(D0(xi ) + Ẽ1(Xi,Yi(·))N̄ (0) )〉pb(Xi|Yi (·)) − KL(pb(Xi|Yi(·))‖pf (Xi )) = ln〈(D0(xi ) + Ẽ1(Xi,Yi(·))N̄ (0) )〉pf (Xi ) (A33)

for i = 1, 2, . . . , t . As a result, we get

t∑
i=1

〈ln(D0(xi ) + Ẽ1(Xi,Yi(·))N̄ (0) )〉pb(Xi|Yi (·)) −
t∑

i=1

KL(pb(Xi|Yi(·))‖pf (Xi ))

=
t∑

i=1

ln〈(D0(xi ) + Ẽ1(Xi,Yi(·))N̄ (0) )〉pf (Xi ). (A34)

Thus, we have Eq. (16).

APPENDIX B: DERIVATIONS OF STOCHASTIC
THERMODYNAMIC RELATIONS

In this Appendix, we provide the detailed derivation of the
expectation value of the fitness with respect to the environ-
ment, Eq. (18), and its deviations with respect to the forward
path probability, Eqs. (23) and (24).

1. Derivation of Eq. (18)

The expectation value of the fitness with respect to the
environment is easily computed by taking the expectation of
Eq. (16). To derive Eq. (18), we rewrite the second term of the
right-hand side of Eq. (16). For i = 1, 2, . . . , t , we have

〈KL(pb(Xi|Yi(·))‖pf (Xi ))〉pe (Yi (·))

=
∑
{Xi}

∑
{Yi (·)}

pe(Yi(·))pb(Xi|Yi(·)) ln
pb(Xi|Yi(·))

pf (Xi )
(B1)

=
∑
{Xi}

∑
{Yi (·)}

pb(Xi,Yi(·)) ln
pb(Xi|Yi(·))

pf (Xi )
(B2)

=
∑
{Xi}

∑
{Yi (·)}

pb(Xi,Yi(·)) ln
pb(Xi,Yi(·))

pe(Yi(·))pf (Xi )
(B3)

=
∑
{Xi}

∑
{Yi (·)}

pb(Xi,Yi(·))
(

ln
pb(Xi,Yi(·))

pe(Yi(·))pb(Xi )
+ ln

pb(Xi )

pf (Xi )

)

(B4)

=
∑
{Xi}

∑
{Yi (·)}

pb(Xi,Yi(·)) ln
pb(Xi,Yi(·))

pe(Yi(·))pb(Xi )

+
∑
{Xi}

pb(Xi ) ln
pb(Xi )

pf (Xi )
(B5)

= IXi,Yi
b + KL(pb(Xi )‖pf (Xi )). (B6)

Thus, we can transform the expectation value of Eq. (16) with
respect to pe(Yt (·)) into Eq. (18).

2. Derivations of Eqs. (23) and (24)

The deviation of δ�̂tot
t (Yt (·)) defined in Eq. (22) with re-

spect to p̂b(Xi|Yi(·)) always vanishes since �̂tot
t (Yt (·)) satisfies

Eq. (17). Thus, we obtain Eq. (23). As explained in the main
text, by taking the expectation of the left-hand side of Eq. (23)
with respect to pe, we get Eq. (24).

3. Derivation of Eq. (34)

The proof is given as follows.
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Proof. We first define

�
({q(i,0)(Xi|Yi(·))}t

i=1

) =
t∑

i=1

〈
ln

(
D0(xi, yi(ri )) + Ẽ (i,0)

1 (Xi,Yi(·))N̄ (0)
)〉

q(i,0)(Xi|Yi (·))p(i,0)
e (Yi (·)) −

t∑
i=1

IXi,Yi . (B7)

We have, as the derivative of �({q(i,0)(Xi|Yi(·))}t
i=1) with respect to q( j,0),

δ

δq( j,0)(Xj |Yj (·))�
({q(i,0)(Xi|Yi(·))}t

i=1

) =
〈

ln
(
D0(x j, y j (r j )) + Ẽ ( j,0)

1 (Xj,Yj (·))N̄ (0)
) − q( j,0)(Xj |Yj (·))

q( j,0)(Xj )

〉
δq( j,0)(Xj |Yj (·))p( j,0)

e (Yj (·))
.

(B8)

The condition that Eq. (B8) is zero is expressed as

q( j,0)(Xj |Yj (·)) ∝ (
D0(x j, y j (r j )) + Ẽ ( j,0)

1 (Xj,Yj (·))N̄ (0)
)
q( j,0)(Xj ). (B9)

From Eq. (31), we have

p̂b(Xj |Yj (·)) = (
D0(x j, y j (r j )) + Ẽ ( j,0)

1 (Xj,Yj (·))N̄ (0)
)
e−� j (Yj (·)) p̂f (Xj ) (B10)

∝ (
D0(x j, y j (r j )) + Ẽ ( j,0)

1 (Xj,Yj (·))N̄ (0)
)
p̂b(Xj ) (B11)

for j = 1, 2, . . . , t .

Equation (B11) attains the maximization of Eq. (B7), and
thus we have Eq. (34). �

APPENDIX C: DERIVATIONS OF FLUCTUATION
RELATIONS

We here elaborate on the derivation of the FRs of interact-
ing population dynamics, Eqs. (39), (40), (41), (43), and (44).

1. Derivations of Eqs. (39), (40), and (41)

We first define the deviation of the log fitnesses �̂ j (Yj (·))
for j = 1, 2, . . . , t as

��̂ j (Yj (·)) := �̂ j (Yj (·)) − � j (Yj (·)); (C1)

then, we have the FRs given by

e−��̂ j (Yj (·)) = p̂b(Xj,Yj (·))
p̂f (Xj )

pf (Xj )

pb(Xj,Yj (·)) , (C2)

e−��̂ j (Yj (·)) = p̂b(Yj (·)|Xj )pf (Xj )

pb(Xj,Yj (·)) , (C3)

e−��̂ j (Yj (·)) = 〈p̂b(Yj (·)|Xj )〉pf (Xj )

pe(Yj (·)) . (C4)

We prove Eqs. (C2), (C3), and (C4). From Eq. (13), we have

pb(Xj |Yj (·))
e−� j (Yj (·)) pf (Xj )

= D0(x j, y j (r j )) + Ẽ1(Xj,Yj (·))N̄ (0). (C5)

Equation (C5) holds for the optimal forward and backward
path probabilities; thus, we have the equality given by

pb(Xj |Yj (·))
e−� j (Yj (·)) pf (Xj )

= p̂b(Xj |Yj (·))
e−�̂ j (Yj (·)) p̂f (Xj )

. (C6)

With simple calculation, we get

e−��̂ j (Yj (·)) = e−(�̂ j (Yj (·))−� j (Yj (·)) (C7)

= p̂b(Xj |Yj (·))
p̂f (Xj )

pf (Xj )

pb(Xj |Yj (·)) (C8)

= p̂b(Xj,Yj (·))
p̂f (Xj )

pf (Xj )

pb(Xj,Yj (·)) . (C9)

We have obtained Eq. (C2), which is one of the FRs on Xj and
Yj (·). From Eq. (C9), we obtain

e−��̂ j (Yj (·)) = p̂b(Yj (·)|Xj )pf (Xj )

pb(Xj,Yj (·))
p̂b(Xj )

p̂f (Xj )
(C10)

= p̂b(Yj (·)|Xj )pf (Xj )

pb(Xj,Yj (·)) . (C11)

Note that from Eq. (C10) to Eq. (C11), we have used p̂b(Xj ) =
p̂f (Xj ) given in Eq. (31). Thus, we have obtained Eq. (C3),
which is another type of the FRs on Xj and Yj (·). Then, we
consider the FR on Yj (·). From Eq. (C11), we can easily have

e−��̂ j (Yj (·)) pb(Xj,Yj (·)) = p̂b(Yj (·)|Xj )pf (Xj ). (C12)

By summing both sides of Eq. (C12) with respect to Xj , we
have

e−��̂ j (Yj (·)) pe(Yj (·)) = 〈p̂b(Yj (·)|Xj )〉pf (Xj ). (C13)

Thus, we have

e−��̂ j (Yj (·)) = 〈p̂b(Yj (·)|Xj )〉pf (Xj )

pe(Yj (·)) . (C14)

We have obtained Eq. (C4), which is the FR on Yj (·).
We finally prove Eqs. (39), (40), and (41) by using

Eqs. (C2), (C3), and (C4), respectively. By multiplying
Eq. (C2) with respect to j, we have

e−��̂tot
t (Yt (·)) =

t∏
j=1

e−��̂ j (Yj (·)) (C15)

=
t∏

j=1

p̂b(Xj |Yj (·))
p̂f (Xj )

pf (Xj )

pb(Xj |Yj (·)) . (C16)
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We have thus obtained Eq. (39), which is one of the FRs on Xt

and Yt (·). Similarly, by multiplying Eq. (C3) with respect to j,
we have

e−��̂tot
t (Yt (·)) =

t∏
j=1

e−��̂ j (Yj (·)) (C17)

=
t∏

j=1

p̂b(Yj (·)|Xj )pf (Xj )

pb(Xj,Yj (·)) . (C18)

Thus, we have obtained Eq. (41), which is another type of
the FRs on Xt and Yt (·). Again, by multiplying Eq. (C4) with
respect to j, we have

e−��̂tot
t (Yt (·)) =

t∏
j=1

e−��̂ j (Yj (·)) (C19)

=
t∏

j=1

〈p̂b(Yj (·)|Xj )〉pf (Xj )

pe(Yj (·)) . (C20)

We have obtained Eq. (40), which is the FR on Yt (·).

2. Derivations of Eqs. (43) and (44)

We first prove the following Kawai-Parrondo-Broeck type
fluctuation relations:

〈��̂ j (Yj (·))〉pe (Yj (·))

= KL( p̂f (Xj )‖pf (Xj ))

− 〈KL( p̂b(Xj |Yj (·))‖pb(Xj |Yj (·)))〉pe (Yj (·)) (C21)

and

〈��̂ j (Yj (·))〉pe (Yj (·))
= KL( p̂f (Xj )‖pf (Xj )) − KL( p̂b(Xj,Yj (·))‖pb(Xj,Yj (·))).

(C22)

By taking the logarithm of Eq. (C8), we have

��̂ j (Yj (·)) = ln

(
p̂f (Xj )

p̂b(Xj |Yj (·))
pb(Xj |Yj (·))

pf (Xj )

)
(C23)

= ln

(
p̂f (Xj )

pf (Xj )

pb(Xj |Yj (·))
p̂b(Xj |Yj (·))

)
(C24)

= ln
p̂f (Xj )

pf (Xj )
− ln

p̂b(Xj |Yj (·))
pb(Xj |Yj (·)) . (C25)

By taking the expectation of Eq. (C25) with respect to
p̂b(Xj,Yj (·)), we have

〈��̂ j (Yj (·))〉pe (Yj (·))

=
〈

ln
p̂f (Xj )

pf (Xj )
− ln

p̂b(Xj |Yj (·))
pb(Xj |Yj (·))

〉
p̂b(Xj ,Yj (·))

(C26)

= KL( p̂f (Xj )‖pf (Xj ))

−〈KL( p̂b(Xj |Yj (·))‖pb(Xj |Yj (·)))〉pe (Yj (·)). (C27)

Thus, we have obtained Eq. (C21). With almost the same
procedure, we can prove Eq. (C22). Summing up Eqs. (C21)
and (C22) with respect to j, respectively, leads to Eqs. (43)
and (44).

[1] E. Mayr, Systematics and the Origin of Species, From the
Viewpoint of a Zoologist (Harvard University Press, Cambridge,
MA, 1999).

[2] S. Gavrilets, Fitness Landscapes and the Origin of Species
(MPB-41) (Princeton University Press, Princeton, NJ, 2004),
Vol. 41.

[3] G. Meszéna, M. Gyllenberg, F. J. Jacobs, and J. A. J. Metz,
Phys. Rev. Lett. 95, 078105 (2005).

[4] H. R. Thieme, Mathematics in Population Biology (Princeton
University Press, Princeton, NJ, 2018).

[5] J. Hofbauer and K. Sigmund, Evolutionary Games and Popula-
tion Dynamics (Cambridge University Press, Cambridge, 1998).

[6] P. Turchin, Complex Population Dynamics: A Theoreti-
cal/Empirical Synthesis (Princeton University Press, Princeton,
NJ, 2003), Vol. 35.

[7] D. L. Hartl, A. G. Clark, and A. G. Clark, Principles of
Population Genetics (Sinauer, Sunderland, 1997), Vol. 116.

[8] R. Lande, S. Engen, and B.-E. Saether, Stochastic Population
Dynamics in Ecology and Conservation (Oxford University
Press, Oxford, 2003).

[9] M. C. Donaldson-Matasci, C. T. Bergstrom, and M. Lachmann,
Oikos 119, 219 (2010).

[10] O. Rivoire and S. Leibler, J. Stat. Phys. 142, 1124 (2011).

[11] O. Rivoire, J. Stat. Phys. 162, 1324 (2016).
[12] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[13] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
[14] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
[15] T. J. Kobayashi and Y. Sughiyama, Phys. Rev. Lett. 115, 238102

(2015).
[16] T. J. Kobayashi and Y. Sughiyama, Phys. Rev. E 96, 012402

(2017).
[17] A. Tsoularis and J. Wallace, Math. Biosci. 179, 21 (2002).
[18] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski (unpub-

lished).
[19] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-

particle Systems (Dover, New York, 2003).
[20] R. Kawai, J. M. R. Parrondo, and C. Van den Broeck, Phys. Rev.

Lett. 98, 080602 (2007).
[21] C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011).
[22] C. Jarzynski, Phys. Rev. E 56, 5018 (1997).
[23] U. Seifert, Phys. A (Amsterdam) (unpublished).
[24] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
[25] J. Kurchan, J. Phys. A: Math. Gen. 31, 3719 (1998).
[26] H. Miyahara and K. Aihara, Phys. Rev. E 98, 042138 (2018).
[27] W. O. Kermack and A. G. McKendrick, Proc. R. Soc. London

A 115, 700 (1927).

042415-12

https://doi.org/10.1103/PhysRevLett.95.078105
https://doi.org/10.1103/PhysRevLett.95.078105
https://doi.org/10.1103/PhysRevLett.95.078105
https://doi.org/10.1103/PhysRevLett.95.078105
https://doi.org/10.1111/j.1600-0706.2009.17781.x
https://doi.org/10.1111/j.1600-0706.2009.17781.x
https://doi.org/10.1111/j.1600-0706.2009.17781.x
https://doi.org/10.1111/j.1600-0706.2009.17781.x
https://doi.org/10.1007/s10955-011-0166-2
https://doi.org/10.1007/s10955-011-0166-2
https://doi.org/10.1007/s10955-011-0166-2
https://doi.org/10.1007/s10955-011-0166-2
https://doi.org/10.1007/s10955-015-1381-z
https://doi.org/10.1007/s10955-015-1381-z
https://doi.org/10.1007/s10955-015-1381-z
https://doi.org/10.1007/s10955-015-1381-z
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevLett.115.238102
https://doi.org/10.1103/PhysRevLett.115.238102
https://doi.org/10.1103/PhysRevLett.115.238102
https://doi.org/10.1103/PhysRevLett.115.238102
https://doi.org/10.1103/PhysRevE.96.012402
https://doi.org/10.1103/PhysRevE.96.012402
https://doi.org/10.1103/PhysRevE.96.012402
https://doi.org/10.1103/PhysRevE.96.012402
https://doi.org/10.1016/S0025-5564(02)00096-2
https://doi.org/10.1016/S0025-5564(02)00096-2
https://doi.org/10.1016/S0025-5564(02)00096-2
https://doi.org/10.1016/S0025-5564(02)00096-2
https://doi.org/10.1103/PhysRevLett.98.080602
https://doi.org/10.1103/PhysRevLett.98.080602
https://doi.org/10.1103/PhysRevLett.98.080602
https://doi.org/10.1103/PhysRevLett.98.080602
https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/10.1103/PhysRevE.56.5018
https://doi.org/10.1103/PhysRevE.56.5018
https://doi.org/10.1103/PhysRevE.56.5018
https://doi.org/10.1103/PhysRevE.56.5018
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1088/0305-4470/31/16/003
https://doi.org/10.1088/0305-4470/31/16/003
https://doi.org/10.1088/0305-4470/31/16/003
https://doi.org/10.1088/0305-4470/31/16/003
https://doi.org/10.1103/PhysRevE.98.042138
https://doi.org/10.1103/PhysRevE.98.042138
https://doi.org/10.1103/PhysRevE.98.042138
https://doi.org/10.1103/PhysRevE.98.042138
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1927.0118

