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Microscopic models of reaction-diffusion processes on the cell membrane can link local spatiotemporal
effects to macroscopic self-organized patterns often observed on the membrane. Simulation schemes based
on the microscopic lattice method (MLM) can model these processes at the microscopic scale by tracking
individual molecules, represented as hard spheres, on fine lattice voxels. Although MLM is simple to implement
and is generally less computationally demanding than off-lattice approaches, its accuracy and consistency in
modeling surface reactions have not been fully verified. Using the Spatiocyte scheme, we study the accuracy
of MLM in diffusion-influenced surface reactions. We derive the lattice-based bimolecular association rates for
two-dimensional (2D) surface-surface reaction and one-dimensional (1D) volume-surface adsorption according
to the Smoluchowski-Collins-Kimball model and random walk theory. We match the time-dependent rates on
lattice with off-lattice counterparts to obtain the correct expressions for MLM parameters in terms of physical
constants. The expressions indicate that the voxel size needs to be at least 0.6% larger than the molecule to
accurately simulate surface reactions on triangular lattice. On square lattice, the minimum voxel size should be
even larger, at 5%. We also demonstrate the ability of MLM-based schemes such as Spatiocyte to simulate a
reaction-diffusion model that involves all dimensions: three-dimensional (3D) diffusion in the cytoplasm, 2D
diffusion on the cell membrane, and 1D cytoplasm-membrane adsorption. With the model, we examine the
contribution of the 2D reaction pathway to the overall reaction rate at different reactant diffusivity, reactivity,
and concentrations.
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I. INTRODUCTION

Many essential and intriguing intracellular biochemical
systems are mediated by the cell membrane. These systems in-
clude cell polarity establishment [1], symmetrical cell division
[2], modulation of signal transduction [3], and directed cell
migration [4]. Spatiotemporal patterns arising from protein
self-organization on the membrane [5], play a central role
in these systems. The proteins self-organize primarily by
reaction and diffusion processes. Membrane interactions can
be classified as surface-surface reactions, where membrane-
bound molecules react with each other, and volume-surface
reactions, where cytosolic molecules react with membrane
lipids or membrane-bound molecules.

To uncover the mechanisms underlying these systems,
reaction-diffusion modeling approaches have been useful
[6–10]. In general, the choice of modeling approach depends
on the time and length scales of the system [11,12]. When
the molecule copies are abundant and are well mixed in
the surface compartment, macroscopic modeling approaches
that apply rate [13] or reaction-diffusion [13,14] equation,
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are sufficient. If the molecule number is small or when the
molecules are not homogeneously distributed in the compart-
ment, mesoscopic methods based on the reaction-diffusion
master equation (RDME) [15–18] can be employed since they
account for both the fluctuations from a small number of
molecules and the spatial inhomogeneity across well mixed
compartment subvolumes [19,20].

Although macroscopic and mesoscopic approaches are
applicable for large scale simulations, the well mixed as-
sumption imposes several limitations. These approaches, for
example, cannot explicitly capture the effects of space at the
microscopic scale that arise from the interactions of finite-
sized molecules [21–23], fast rebinding of reactants [24–26],
and microscopic surface inhomogeneity such as lipid domains
and membrane-associated cytoskeletal structures [21,27–30].
The spatial effects can alter not only the diffusion behavior
[31–33], but also the reaction kinetics [22,28–30,34], leading
to different physiological outcomes. For example, clustering
of membrane receptors changes the response of signaling
network [26], fluctuation in protein copy number promotes
cell polarization in the absence of spatial cue [6], and rapid
protein rebinding affects spatiotemporal patterns on the mem-
brane [25] and amplifies noise during ligand interactions
[35]. Moreover, macroscopic and mesoscopic approaches
adopt the macroscopic reaction rate constant for all reactions,
which is not sufficient for irreversible bimolecular surface-
surface and one-dimensional volume-surface reactions be-
cause these time-dependent reaction rates do not reach steady
state [36,37].
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Microscopic approaches are more suitable to model sur-
face interactions for short time scales when the microscopic
spatial effects need to be directly accounted for [38–42].
In off-lattice microscopic particle-based methods, diffusion
is simulated in continuous space with Gaussian distributed
displacement. Bimolecular reactions are executed according
to the Smoluchowski-Collins-Kimball (SCK) [43,44] or the
Doi [45–47] physical model. In the former, the reaction
occurs either immediately or with a probability of reflection
when the distance between reactants equals to a predefined
reaction radius, whereas in the Doi model, the reaction occurs
with a fixed probability per unit time when the reactants are
closer than the radius. Off-lattice SCK methods that support
surface reactions include Smoldyn [48,49], CDS [50], and
eGFRD [51], while the Doi model is adopted by MCell
[52], ReaDDy [53,54], and SpringSaLaD [55]. Smoldyn also
recently included the option to support the Doi model. All of
these methods except MCell can simulate volume occupying
molecules. In a recent performance benchmark that did not
include CDS [42], Smoldyn displayed the fastest simulation
run time for a simple enzymatic reaction model in volume
compartment.

Schemes based on the microscopic lattice method1 (MLM)
[39,56] attempt to reduce the cost of resolving molecular
collisions by discretizing the space into fine molecule-sized
voxels. In the Spatiocyte scheme, for example, a molecule
only checks its destination voxel for occupancy before per-
forming a bimolecular reaction with the occupying molecule
or moving into it if it is vacant [56,57]. Consequently, Spati-
ocyte exhibits better run time and scaling performances than
Smoldyn when diffusing volume occupying molecules [56].
The run time of Spatiocyte is also comparable to Smoldyn
in the benchmark enzymatic reaction model [56]. The re-
duced computational cost and the simplicity of MLM imple-
mentation have promoted its applications in both biological
[38,57–61] and chemical [62–64] surface reactions. Nonethe-
less, biological surfaces such as cell and nuclear membranes
are not arranged as fixed lattice structures. Further, since
diffusion and reaction kinetics can be influenced by the lattice
arrangement [65–67], the accuracy of MLM compared to
off-lattice particle-based methods requires careful examina-
tion. Notably, a consistent approach is needed to determine
MLM parameters such as voxel size and on-lattice reaction
probability that can replicate the kinetics in continuous space.

In previous work, the SCK model was used together
with the Spatiocyte scheme to construct a general theoretical
framework of MLM for simulating reaction and diffusion
processes in three-dimensional (3D) space [56]. Within this
framework, the expressions for on-lattice reaction rate con-
stant, reaction and rebinding probabilities, and voxel size were
derived to reproduce off-lattice reaction kinetics consistently.
Here, we extend this framework for two-dimensional (2D)
surface-surface and one-dimensional (1D) volume-surface re-
actions. We also employ the SCK model to derive on-lattice
time-dependent rate coefficients for the surface reactions.
We then obtain the expressions for the MLM parameters
by equating the off-lattice rate equations with the on-lattice

1Also called Monte Carlo lattice gas model [39].

counterparts. In Sec. II of this paper, we introduce the ex-
isting continuum-based reaction kinetics theory for surface
reactions. In Sec. III, we derive the expressions for surface
reaction rates on lattice according to the Spatiocyte scheme
and verify them using the continuum theory. In Sec. IV,
we demonstrate the applicability of the derived expressions
for surface reactions that involve all dimensions. We also
look at the contribution of 3D and 2D reaction pathways to
the overall reaction rate. Finally in Sec. V, we discuss the
implications and limitations of this work.

II. CONTINUUM-BASED REACTION KINETICS THEORY

Consider a many-body bimolecular reaction,

A + B −→ B, (1)

with A and B having radii rA and rB, and diffusion coefficients
DA and DB, respectively. According to the SCK model, when
the distance between a pair of A and B molecules is the sum
of their radii R = rA + rB, the two will react with an intrinsic
rate ka. The fraction of A remaining in the system is described
by the survival probability, Sirr,A(t ) = [A(t )]/[A(0)], where
[ ] denotes the concentration. When [B(0)] � [A(0)], the
survival probability of A is provided in the rate equation [36]:

dSirr,A(t )

dt
= −[B]k(t )Sirr,A(t ), (2)

where k(t ) represents the time-dependent rate coefficient. The
solution for the survival probability requires the integration of
the rate coefficient [Eq. (2.35) in Ref. [36]]:

Sirr,A(t, [B]) = exp[−[B]
∫ t

0
k(τ )dτ ]. (3)

According to the particle-pair formalism of the SCK model
[68–71], the many-body reaction can be approximated by a
simpler two-body problem. The time-dependent rate coeffi-
cient can thus be expressed as the product of ka and the
survival probability of an in-contact reactant pair:

k(t ) = ka

[
1 −

∫ t

0
preb(R, τ |R, 0)dτ

]
. (4)

Here, preb(R, τ |R, 0) specifies the rebinding-time probability
distribution for a reactive particle-pair separated by a distance
R at time τ , given that the pair was initially in contact.

The specific functional form of the rate coefficient de-
pends on the spatial dimension of the reactant diffusion. The
dimension is 2D for surface-surface reactions, whereas for
volume-surface reactions, it is determined by the target reac-
tant of the cytosolic molecule. The dimension is 3D when the
reactant is a membrane-associated molecule or 1D when the
cytosolic molecule reacts directly with the lipid membrane.
For clarity, we refer to the 1D volume-surface reaction as
adsorption. Since we have previously described the theory for
3D reactions [56], in the following subsections we provide the
theory for 2D surface-surface reaction and 1D volume-surface
adsorption.
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A. 2D surface-surface reaction

1. Irreversible reaction

The time-dependent rate coefficient for 2D association
reaction with radiation boundary condition is given in the
Laplace form as [36]

k2D(s) = ka2D

s[1 + ka2Dg̃(s)]
. (5)

Here, ka2D is the intrinsic rate constant with dimensions of
length L and time T, given by L2T−1, and g̃(s) is the Green’s
function for 2D diffusion defined as [72]

g̃(s) = K0(s̃)

2πDs̃K1(s̃)
. (6)

K0 and K1 are the modified Bessel functions of the second
kind, s̃ =

√
sR2/D, and D = DA + DB.

Equation (5) can thus be written as

k2D(s) = 2πDs̃
K1(s̃)

s[K0(s̃) + 2π s̃K1(s̃)/κ]
, (7)

with κ = ka/D. In the limit of small s̃, we can approximate
the modified Bessel functions:

s̃K1(s̃) ≈ 1 − 2 ln(s̃eγ /2) + 1

4
s̃2 + O(s̃4), (8)

and

K0(s̃) ≈ − ln(s̃eγ /2) − 2 ln(s̃eγ /2) + 1

4
s̃2 + O(s̃4), (9)

where γ = 0.5772156 is the Euler constant.
Using these approximations, the asymptotic expansion of

Eq. (7) can be expressed as

lim
s→0

sk2D(s)= 4πD

−2 ln [R
√

s/D] + ln 4 + ln [exp 2(4π/κ − γ )]

+ O(s)

= 4πD

ln [Cc/s]
+ O(s), (10)

with Cc = 4D exp(4π/κ − 2γ )/R2. The corresponding long-
time approximation is given as [73]

k2D

(
t � R2

D

)
= 4πD

(
1

ln(Cct )
− γ

(ln(Cct ))2
− 1.311

(ln(Cct ))3

+ 0.25

(ln(Cct ))4
+ O(t−1 ln(t )−2)

)
, (11)

where the relative error to the exact form is less than 1% at
t = 100R2/D.

The slow logarithmic decay of k2D(t ) originates from the
modified Bessel function and is fundamentally connected to
the recurrence property of the random walk in 2D. A random
walker in 3D has an asymptotically finite chance to escape
from the origin. However, in the lower dimensions (1D and
2D), the return probability is unity, as described by the Polya’s
theorem. In the case of 2D, the first passage time of returning
to the origin exhibits slow logarithmic decay [74], which in
turn causes the slow decay in k2D(t ). As a result, unlike in
the 3D reaction, the long-time rate coefficient in 2D does not
converge to a constant term. This behavior has been observed

in several experimental studies [22]. The lack of an apparent
steady state and the slow decay in the 2D reaction rate have
prompted the use of a time-dependent rate for the purposes of
modeling and analysis of experiments [22,75].

2. Steady-state rate constant

Szabo [36] provided an alternative way to define a steady-
state rate constant by coupling the irreversible bimolecular
reaction with the production of A species. Following this
strategy, a steady-state expression can be defined in terms of
the mean lifetime of A, τm [36]:

kss = 1

[B]τm
=

[
[B]

∫ ∞

0
Sirr,A(t )dt

]−1

=
[

[B]
∫ ∞

0
exp

(
−[B]

∫ t

0
k2D(τ )dτ

)
dt

]−1

. (12)

kss can be evaluated using the mean-field self-consistency
condition [36]:

kss = [sk̂(s)]s=kss[B]. (13)

Substituting the asymptotic form of k2D(s), as defined in
Eq. (10), into Eq. (13) yields

kss

2πD
≈ [ln 2 − γ − ln[R

√
kss[B]/D] + 1/κ]−1. (14)

Rewriting some variables in terms of the molecule area frac-
tion φ = πR2[B], and taking the small concentration limit
φ → 0 gives the following approximation:

kss

2πD
≈ [ln 2 − γ − ln[

√
2φy] + 1/κ]−1

≈
[

1

2
ln 2 − γ − 1

2
ln φ + 1/κ

]−1

. (15)

Finally, the steady-state rate constant for the radiation bound-
ary condition is obtained as

kss2D ≈ 4πD

ln 2 − 2γ − ln φ + 4π/κ
. (16)

Similar to the 3D effective rate constant in 1/kss3D = 1/ka +
1/(4πRD), the 2D steady-state rate constant depends on the
intrinsic rate ka and the relative diffusion coefficient D. Inter-
estingly, the 2D rate constant has the additional dependency
on the concentration of B. The steady-state constant given in
Eq. (16) is an extension of the solution based on the absorbing
boundary condition provided in Eq. (4.10) of Ref. [36].

3. Reversible reaction

In the SCK model for 2D reversible reaction,

A + B
ka2D�
kd2D

AB, (17)

a bound pair A-B dissociates with the rate constant kd2D

(T−1) into A and B, separated at distance R. The survival
probability of A, defined as Srev,A(t ), can be calculated using
the first variant of the multiparticle kernel theory (MPK1)
[76,77]. Although the closed form solution for Srev,A(t ) in 2D
is not available, it can be evaluated by numerically solving the
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normalized deviation defined as

Srev,A(t ) − Srev,A(∞)

Srev,A(0) − Srev,A(∞)
= L−1

[
1

s + λF̃ (s)

]
. (18)

Here, the term,

F̃ (s) = kd2D

λ
F̃gem(s) + [B]ka2D

λ
F̃irr (s; [B]′), (19)

is the diffusion factor function, Srev,A(∞) = kd2D/λ = 1/(1 +
[B]ka2D/kd2D) is the equilibrium value, λ = kd2D + [B]ka2D

is the chemical kinetics relaxation rate constant, and [B]′ =
λ/ka2D is the modified concentration. F̃gem(s) = 1 + ka2Dg̃(s)
contains the 2D Green’s function term g̃(s) as given in Eq. (6),
whereas the function,

F̃irr (s; c0) = c0ka2DS̃irr,A(s; c0)

1 − sS̃irr,A(s; c0)
, (20)

uses the term S̃irr,A(s; c0), which is the Laplace transform of
the irreversible reaction survival probability Sirr,A(t ; c0).

B. 1D volume-surface adsorption

Before describing the rate for volume-surface adsorption,
we first consider the 1D SCK model, where a single immobile
species B interacts with multiple mobile species A on a fila-
ment according to Eq. (1). Species A can collide with species
B from both sides of B, while there is no self-interaction
among A molecules. The time-dependent rate coefficient
of this reaction with radiation boundary condition is given
as [36]

k1D(t ) = ksa exp(κ2Dt/4)erfc(κ
√

Dt/4), (21)

with κ = ka/D denoting the ratio between the intrinsic ad-
sorption rate constant ka = ksa (unit LT−1) and the relative
diffusion coefficient D. At long time, Eq. (21) behaves asymp-
totically as

k1D(t → ∞) ≈ 2

√
D

πt
+ O(t−3/2). (22)

Next we consider a volume-surface adsorption system that
involves an adsorbing plane at x = 0 and bulk molecules at
x > 0. Initially, the molecules of concentration c0 are dis-
tributed uniformly in the bulk and are absent on the surface.
For a surface adsorption process that follows the radiation
boundary condition, the number of molecules adsorbed to the
surface varies as [Eq. (3.37) of Ref. [78]]

Ns(t ) = c0S

κ
{exp(κ2Dt )erfc(κ

√
Dt ) − 1 + 2κ

√
Dt/π},

(23)

where S is the area of the plane. The corresponding adsorption
rate is well described by the time-dependent adsorption rate
coefficient ksa(t ′):

dNs(t ′)
dt

= ksa(t ′)c0S. (24)

Note that the adsorption rate coefficient differs from the 1D
SCK rate by a factor of two: ksa(t ′) = k1D(t )/2, because in
the latter it occurs on both sides of the plane. At long time, the
adsorption rate coefficient becomes

ksa(t → ∞) ≈
√

D

πt
+ O(t−3/2). (25)

As the bulk molecules are adsorbed to the surface, a spatial
concentration gradient develops in the bulk. The spatialtempo-
ral concentration profile of the bulk molecules C(x, t ) follows
Eq. (3.35) of Ref. [78]:

C(x, t ) = c0

[
erfc

x

2
√

Dt
− exp

(
ksax

D
+ k2

sat

D

)
erfc

(
x

2
√

Dt
+ ksa

√
t

D

)]
. (26)

When adsorbed molecules can dissociate from the surface with a rate ksd (T−1), their number varies according to [Eq. (A.12) in
Ref. [48]]

Ns(t ) = c0Sksat
[
c1 exp

(
c2

2

)
erfc(c2) − c1 + c2 exp

(
c2

1

)
erfc(c1) − c2

]
c1c2(c2 − c1)

, (27)

where

c1 = ksa − √
k2

sa − 4Dksd

2
√

D

√
t, (28)

and

c2 = ksa + √
k2

sa − 4Dksd

2
√

D

√
t . (29)

III. MICROSCOPIC LATTICE METHOD

In this section, we derive the on-lattice rate coefficients
for 2D surface-surface reaction and 1D volume-surface

adsorption based on the Spatiocyte scheme [56,57]. A detailed
description of the scheme in 3D is given in Sec. IIB and
Algorithm I in Ref. [56]. For surface reactions, the scheme
remains the same as in the 3D case except that molecules
diffuse on the triangular lattice. In brief, a molecule of species
x hops randomly to one of its six nearest neighbor voxels at
each diffusion time step td = l2/4Dx, where l is the voxel size
(diameter) and Dx is the species diffusion coefficient. When
the destination voxel is occupied by a molecule belonging to
a nonreactive species, the move will be rejected because of
volume exclusion. If the destination voxel contains a reactant
molecule, the corresponding reaction will occur with prob-
ability Pa; otherwise, if the reaction fails, the molecule will
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remain in its original voxel. When a molecule dissociates into
two product molecules, the pair will be placed side-by-side
on the lattice. In volume-surface adsorption, a 3D species will
absorb to the surface with some probability upon collision
with the surface voxel. The simulation scheme for surface
reactions has been implemented in the Spatiocyte module of
the E-CELL SYSTEM, Version 4, software [79].

The particle-pair formalism of the SCK model and random
walk theory will be used in the derivation of on-lattice rate. In
MLM, the SCK rate coefficient in Eq. (4) is discretized into
[see Sec. II.C of Ref. [56] for derivation]

km = k′
a

[
1 −

m∑
n=0

Hn(s0|s1)

]
, for m, n ∈ N. (30)

k′
a is the initial lattice rate constant (see Appendix A),

Hn(s0|s1) is the rebinding-time probability distribution in
diffusion step n, and m is the simulation step. Rebinding here
refers to the next reaction event of an in-contact reactant pair
on lattice, s0 denotes the voxel at the origin, and s1 refers to
an element from the set of immediate neighbor voxels of s0.
The rebinding-time probability is a function of random walk
quantities such as Pn(sa|sb), the voxel occupation probability
from voxel sb to voxel sa, that is, the probability of being at
voxel sa after n steps, given that the walk started at voxel sb;
and Fn(sa|sb), the first-passage time distribution from voxel sb

to sa, that is, the probability of arriving at sb for the first time
on the nth step, given that the walk started at voxel sa. These
quantities depend on the lattice arrangement, dimension of
diffusion, and also the simulation scheme. The simulation
step m is related to the simulation time t ′ through the relation
2dDxt ′ = ml2, where d is the dimension of diffusion. In
the following subsections of 2D and 1D reactions, we will
derive the on-lattice rate coefficient based on the Spatiocyte
simulation scheme.

A. 2D surface-surface reaction

1. 2D diffusion

We first verify the diffusion behavior of molecules on
the 2D triangular lattice by analyzing their mean squared
displacement (msd). We simulated the random walks of the
molecules on the lattice and log their trajectories to obtain
the msd. Figure 1 shows that the log-log plot of the msd
scales as 〈r2〉 = 4Dt . In addition, we considered the influence
of volume exclusion on the tracer molecules by introducing
immobile obstacles on the lattice. The obstacle density is
quantified by φ, the ratio of the number of obstacles to the
total number of surface voxels. At φ = 0.3, the msd scales
nonlinearly at short time before becoming linear again at
long time (circle marker in Fig. 1). As the obstacle density
increases to the percolation threshold of the lattice at φ =
0.5, the msd exhibits nonlinear scaling, which is a sign of
anomalous diffusion [80].

2. Irreversible reaction

The methods presented in this work are generalized for
any regular lattice arrangement, but we focus on the triangular
lattice since it is used to simulate surface-surface reactions in
the Spatiocyte scheme. The derivation of the rate coefficients

FIG. 1. Mean squared displacement (msd) of molecules on 2D
lattice. Molecules perform random walk on triangular lattice with
φ fraction of total surface voxels occupied by immobile obstacles.
Green solid line represents the expected msd behavior for normal
diffusion. Red dashed line denotes the linear scaling for φ = 0.3 at
long time. Simulation was performed with voxel size l = 0.01 μm
in a square compartment of length L = 5 μm. Diffusion coefficient,
D = 1 μm2 s−1.

for activation-limited (ka2D � D) and diffusion-influenced
(ka2D � D) reactions is treated separately because the simula-
tion scheme executes these two types of reaction in a distinct
manner.

In the activation-limited scheme, the generating function
for the rebinding-time probability distribution Hn(s0|s1) is
given as (see Appendix B 1 in Ref. [56] for derivation)

H (s0|s1; z) = PaF (s0|s0; z)

z + F (s0|s0; z)(Pa − 1)
, (31)

where Pa denotes the reaction probability. In terms of
P(s0|s0; z), the generating function of Pn(s0|s0), H (s0|s1; z)
becomes (see Appendix B 1 for full derivation)

H (s0|s1; z) = 1 − 1

PaP(s0|s0; z)
[
1 + (1−Pa )

PaP(s0|s0;z)

] . (32)

The generating function P(s0|s0; z) for the triangular lattice
in asymptotic form is given as (see Appendix B 2 for details)

P(s0|s0; z) ≈
√

3

2π
ln[12(1 − z)−1]{1 + O(1 − z)}. (33)

By substituting Eq. (33) into Eq. (32), we obtain the following
approximated form:

H (s0|s1; z) ≈ −b1

Pa

{
ln

(
E

1 − z

)}−1

, (34)

where E = 12 exp{b1(1/Pa − 1)} and b1 = 2π/
√

3. We then
apply singularity analysis (Fig. VI.4 of Ref. [81]) on Eq. (34)
to obtain the large n behavior:

Hn(s0|s1)≈ 2π√
3Pa

1

n

(
1

(ln En)2
− 2γ

(ln En)3
+ 3γ 2 − π2

2

(ln En)4
+ ...

)
.

(35)
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With Eq. (35), we evaluate the discrete sum in Eq. (30) using
the Euler-Mascheroni formula together with the definition of
recurrence in 2D random walk:

∑∞
n=0 Hn = 1. The solution in

high order m terms is given by

k2D
m = 2πk′

a2D√
3Pa

[
1

ln Em
− γ

(ln Em)2
+ γ 2 − π2

6

(ln Em)3
+ . . .

]
.

(36)

Finally, we apply the definition of initial rate for the triangular
lattice as given in Eq. (A5) and the relation ml2 = 4Dt ′ to
obtain the time-dependent rate coefficient:

k′
2D(t ) = 4πD

[
1

ln Clt
− γ

(ln Clt )2
+ γ 2 − π2

6

(ln Clt )3
+ . . .

]
, (37)

where Cl = 48D exp{b1(1/Pa − 1)}/l2.

In the derivation of the diffusion-influenced scheme, it is
convenient to work with the Laplace form of Eq. (30):

k̂′
2D(s) = k′

a2D[1 − Ĝ(s)]/s. (38)

Here Ĝ(s) is the Laplace form of the rebinding-time probabil-
ity density on lattice, defined as [see Eq. (D79) in Ref. [56]]

Ĝ(s) = β1[s + β − sF1(s1|s1)z − β2F (s1|s1; z)]−1, (39)

where

F (s1|s1; z) = 1 − z2P1(s0|s1)

P(s0|s0; z) − 1
, (40)

P1(s0|s1) = 1/6, F1(s1|s1) = 1/3, P1(s2|s1) = 1/2,
z = β2/(s + β2), β = β1 + β2, β1 = Pa/6td , and β2 = 1/td .
td = l2/2dDx here refers to the average time interval needed
for a molecule with diffusion coefficient Dx to hop across
one voxel. By applying the final value theorem, we get the
asymptotic form for Eq. (38) as

lim
s→0

sk̂′
2D(s) = k′

a2D[1 − lim
s→0

Ĝ(s)] = k′
a2D

[
1 − β1

lims→0[s + β − sF1(s1|s1)z − β2F (s1|s1; z)]

]

= k′
a2D

[
1 −

(
1 + β2

β1
lim
z→1

z2/6

P(s0|s0; z) − 1

)−1
]
. (41)

Finally, by taking the small z expansion together with Eq. (33),
we obtain the asymptotic rate coefficient expression:

lim
s→0

sk̂′
2D(s) = 2πk′

a2D

Pa

√
3

{
ln

[
12 exp{2π (1/Pa − 1)/

√
3}

1 − z

]}−1

= 4πD

ln
[
E

(
1 + 4D

l2s

)]
≈ 4πD

ln(Cl/s)
. (42)

By comparing the lattice and continuum rate coefficient,
we found that the asymptotic expression in Eq. (42) for the
diffusion-influenced scheme is the same as its continuum
counterpart shown in Eq. (10), while the time domain expres-
sion in Eq. (37) for the activation-limited scheme is consistent
with the continuum counterpart shown in Eq. (11). To match
the lattice and continuum rates, we need to impose the equality
Cl = Cc. It then implies that the reaction probability should be
chosen as

Pa =
[

1 +
√

3

2π

(
ln( f 2/12) + 4πD

ka2D
− 2γ

)]−1

, (43)

where f = l/R denotes the ratio of voxel to the molecule size.
Since probability Pa is positive, it sets an additional constraint:

ln f + 2π

κ
> − π√

3
+ ln 12

2
+ γ = C1. (44)

To satisfy the last inequality, f = l/R has to be adapted
according to the value of κ . Since κ is always positive, we

only need to set a lower bound expression for the voxel size:

ln f > C1 − 2π

κ
> C1, f > exp(C1),

l > exp(C1)R ≈ 1.005887R. (45)

In 3D MLM, accurate reaction kinetics requires the voxel
size of hexagonal close-packed (hcp) lattice to be larger than
the molecule by l ≈ 1.02086R [56]. If an hcp lattice volume
compartment is bounded by a triangular lattice surface, the 3D
voxel size condition would still satisfy Eq. (45). Therefore, all
surface and volume voxels in the model can adopt the same
hcp voxel size.

The accuracy of the lattice theory can be verified by
comparing the theoretical values for the rate coefficient k′

2D(t )
with the simulated values. We obtained the theoretical rate
coefficient from the numerical inverse Laplace transform of
Eq. (41). We simulated the reaction in Eq. (1) with Spa-
tiocyte at both the activation-limited (κ = 0.01 × 4π ) and
the diffusion-limited (κ = 100 × 4π ) regimes. We logged
the number of surviving A and used it to calculate the rate
coefficient. The discretization of the time derivative in Eq. (2)
gives the formula for discrete rate coefficient:

k j+1 = − S j+2 − S j

[B]S j+1 (t j+2 − t j )
, for j ∈ Z+, (46)

where j is the index of the discretized SA and t . The boundary
cases are computed as

k1 = − S2 − S1

[B]S1 (t2 − t1)
, kN = − SN − SN−1

[B]SN (tN − tN−1)
, (47)

where N denotes the final time step.
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(a) (b)

FIG. 2. Comparison of on-lattice simulations with on- and off-lattice theories for surface-surface reaction A + B −→ B. (a) Simulated
on-lattice time-dependent rate coefficients (solid lines) compared with on-lattice MLM theory in Eq. (41) (dashed lines). For better
visualization of the time-dependent behavior of the two extreme cases, the simulated and theoretical lines are normalized by the initial
theoretical value. (b) Simulated on-lattice survival probability of A (points) compared with off-lattice SCK theory in Eq. (48) (solid lines).
Activation-limited (κ = 0.01 × 4π ) and diffusion-limited (κ = 100 × 4π ) cases are indicated by the top and bottom lines, respectively.
Simulations were performed with Spatiocyte and the following parameters: Area = (6.5 × 6.5) μm2, R = 0.01 μm, l = 0.01 × 1.0209 μm,
DA = 1, DB = 0 μm2 s−1, Na = Nb = 423, duration = 0.2 s, logging interval = 10td .

We compared the rate coefficients from the simulations
with the theoretical values from Eq. (37). Figure 2(a) displays
good agreements for both at activation-limited (κ = 0.01 ×
4π ) and diffusion-limited (κ = 100 × 4π ) regimes for t � td .
Next, we compared the simulated survival probability of the
same reaction with the continuum-based theory, where the
values are numerically evaluated according to

S2D
irr,A(t, [B]) = exp

[
−[B]

∫ t

0
k2D(τ )dτ

]
. (48)

As shown in Fig. 2(b), the simulated results overlap almost
perfectly with the continuum-based theory, thus, confirming
the accuracy of MLM.

In a previous 2D reaction study on uncrowded lattice
[82], the diffusion-limited reaction kinetics follows k2D(t ) ∼
t a, where a is a constant. The kinetics of 2D activation-
limited reaction, however, is generally described by the rate
constant of classical reaction kinetics. As demonstrated by
the theoretical and simulated lattice reaction kinetics in this
work, k2D(t ) of activation-limited reaction decays slowly [κ =
0.04π in Fig. 2(a)]. Therefore, up to a certain extent, the
activation-limited k2D(t ) can be approximated by the classi-
cal kinetics rate constant. For diffusion-limited reaction, the
asymptotic logarithmic decay in k2D(t ) is significantly more
apparent. The behavior at the intermediate time can be well
approximated by k2D(t ) ∼ t−1/2, as shown previously in Ref.
[75]. In a recent work [37], the logarithmic function of the
asymptotic k2D(t ) is further simplified to give an effective
formula k2D(t ) ∼ t c, where c is a function of the intrinsic
rate and the diffusion coefficient. The simplified form of the
time-dependent rate can be relatively accurate and convenient
in describing 2D reaction kinetics but care should be taken to
ensure the assumption, the observation time regime, and the
physical parameter range are satisfied. On the other hand, the
lattice rate coefficient derived in this work is based on the SCK
model, which is more general and valid for both activation-
and diffusion-limited reactions.

3. Reversible reaction

Accurate simulation of reversible reaction A + B
ka2D�
kd2D

C

according to the SCK model needs to satisfy the local detailed
balance. This is achieved in MLM by adopting a rate constant
k′

d2D for the dissociation reaction such that the relation,

k′
a2D

k′
d2D

= ka2D

kd2D
, (49)

is satisfied.
We perform numerical simulations to confirm the abil-

ity of MLM to correctly reproduce the steady state and
time-dependent behaviors in the reversible reaction. Associ-
ation rates in the activation-limited (κ = 0.01) and diffusion-
limited (κ = 100) cases were used in the simulation, while
the dissociation rate kd2D is set to be 10 times larger than the
association rate. Simulated result is compared with the MPK1
theory in Eq. (18), obtained by numerical Laplace transform.
The outcome shown in Fig. 3 indicates good agreement be-
tween the simulation and theory for time scales ranging from
td until equilibrium.

Since reactions in MLM take place stochastically, we
examine the steady-state distribution of molecule number in

the reversible homodimerization reaction, A + A
ka2D�
kd2D

B, with

association and dissociation rates, ka2D = 0.001 μm2 s−1 and
kd2D = 1 s−1, respectively. The simulation schemes of ho-
modimerization and heterodimerization reactions are identical
except in their reaction probabilities, which differ by a factor
of two [see Eq. (A10)]. We initialize the simulation with 169 A
monomers in a compartment of unit volume with voxel size
l = 0.01. The steady-state distribution of the number of B
dimers obtained from the simulation is shown in Fig. 4. The
result of the simulation is consistent with the analytical solu-
tion from the chemical master equation [Eq. (43) in Ref. [83]].
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FIG. 3. Survival probability of A in the surface-surface reaction

A + B
ka2D�
kd2D

C. Dashed curves are the values calculated according

to the MPK1 theory given in Eq. (18); solid lines are the sim-
ulation results of Spatiocyte. Association rates in the activation-
limited (κ = 0.1) and diffusion-limited (κ = 100) regimes are cho-
sen. Simulation parameters are as follows: kd2D = 10ka2D, surface
area = (6.5 × 6.5) μm2 with periodic boundary, R = 0.01 μm, l =
0.01 × 1.0209 μm, DA = DC = 0 μm2 s−1, DB = 1 μm2 s−1, Nb =
20, Nb = 401, duration = 10 s.

We next investigate the effects of volume exclusion on
the steady-state distribution by increasing the voxel size,
while retaining the number of molecules and the compartment
size. With l = 0.09, the steady-state distribution shifts to the
right. This result is qualitatively consistent with the crowding-
influenced reaction as predicted by the thermodynamic theory
[84] and the master equation [83]. However, we note that the
exact quantitative behavior simulated on a crowded lattice
would not necessarily agree with the continuum description
in all conditions because of the different degrees of molecule
obstruction between on- and off-lattice representations, as
demonstrated in Ref. [67]. It would require further analysis
to exactly match the on-lattice crowding-influenced reaction
kinetics with the continuum behavior, which is beyond the
scope of the current work.

4. Generalization of MLM theory for other lattice arrangements

The expression of the MLM parameter derived for triangu-
lar lattice can be generalized to other lattice arrangements that
adopt MLM. In general, the variable Cl in Eq. (37) takes the
form of

Cl = 4b2D exp{(1/Pa − 1)/b1}/l2, (50)

where b1 and b2 are coefficients present in the highest order
term of the generating function P(s0|s0; z):

P(s0|s0; z) ≈ b1 ln

(
b2

1 − z

)
. (51)

FIG. 4. Steady-state probability distribution of dimers from a
reversible homodimerization reaction. The reaction is given by

A + A
ka2D�
kd2D

B, with ka2D = 0.001 μm2 s−1 and kd2D = 1 s−1. The

histogram on the left is simulated at an uncrowded condition with
voxel size l = 0.01 μm. Dashed line is the analytical solution of
the chemical master equation (CME). Histogram on the right is
obtained with the same parameters except with a larger voxel size,
l = 0.09 μm, resulting in a crowded compartment. The diffusion
coefficient of A is 1 μm2 s−1, the length of the square compartment
is 1 μm and the initial number of A is 169.

On the other hand, the reaction probability has the following
general form:

Pa =
[

1 + b1

(
ln(1/b2) + 4πD

ka2D
− 2γ

)]−1

. (52)

The expression for the probability has the following constraint
on the voxel size:

l > exp

(
γ − 1

2b1
+ ln b2

2

)
R. (53)

Here, as an example, we consider the square lattice, a
popular lattice choice to simulate surface reactions. The co-
efficients for square lattice are given as b1 = 1/π and b2 =
8 [Eq. (A.187) in Ref. [65]]. The corresponding reaction
probability is

Pa =
[

1 + 1

π

(
ln(1/8) + 4πD

ka2D
− 2γ

)]−1

, (54)

with the voxel size constrained by

l > 1.04722R. (55)

Therefore, to recapitulate the correct continuum rate, the voxel
size in square lattice has to be about 5% larger than the
molecule size. This voxel size is substantially larger than the
0.6% required by the triangular lattice. The different voxel
size requirements reflect the influence of lattice arrangement
on the first-passage time behavior and emphasize the im-
portance of choosing the right MLM parameters to generate
accurate reaction kinetics.
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B. 1D volume-surface adsorption

We next formulate the on-lattice 1D rate coefficient accord-
ing to the SCK model and apply the rate expression to the
problem of volume-surface adsorption.

In 1D lattice, the generating function for the voxel occu-
pancy probability from origin to origin is defined as [85]

P(s0|s0; z) = 1√
1 − z2

. (56)

The corresponding first passage time distribution, obtained
by the relation F (s0|s0; z) = 1 − 1/P(s0|s0; z) [Eq. (I.18) in
Ref. [85]), is given by

F (s0|s0; z) = 1 −
√

1 − z2. (57)

Substituting Eq. (57) into Eq. (31) yields the generating
function for the rebinding-time probability distribution,

H (s0|s1; z) ≈ −√
2(1 − z)

Pa
, (58)

where we consider only the highest order term
√

1 − z in the
limit of z → 1.

The corresponding large n coefficient is obtained from the
generating function according to the rule given in Fig. VI.4 of
Ref. [81] as

Hn(s0|s1) ≈ 1

Pa

√
2πn3

. (59)

Applying Eq. (59) to the Noyes’ rate formula in Eq. (30), we
obtain the asymptotic form for the 1D rate coefficient:

k1D
m ≈ k′

a1D

√
2

Pa
√

πm.
. (60)

Using the definitions of the initial lattice rate constant given
in Eq. (A13) and the 1D simulation step size ml2 = 2Dt , we
have the rate expression as a function of time:

k′
1D(t → ∞) ≈ 2

√
D

πt
. (61)

Note that Eq. (61) shares the same time-dependent form as the
continuum-based theory given in Eq. (22).

For volume-surface adsorption, the definitions for the ini-
tial adsorption rate constant in Eq. (A17) and the 3D simu-
lation step size relation nl2 = 6Dt are used in Eq. (60). The
resulting adsorption rate coefficient is given as

k′
sa(t → ∞) ≈ 1

2
√

2

√
D

πt
, (62)

which shares the same long-time scaling behavior with the
continuum-based theory in Eq. (25) up to the same order. In
contrast to the 3D and 2D cases, the long-time expression
for the 1D rate coefficient does not depend on the reaction
probability and the voxel size.

Since the long-time rate coefficient has the same form in
both lattice and continuous spaces, we only need to match
the initial lattice rate constant k′

sa with the adsorption rate
constant ksa in continuum. This gives an expression for the
reaction probability in terms of the adsorption rate constant,

diffusion coefficient, and voxel size (derivation is shown in
Appendix A 3):

Pa =
√

2ksal√
3D

. (63)

To examine the accuracy of MLM in simulating the ad-
sorption kinetics, we performed Spatiocyte simulations us-
ing the derived expression for the reaction probability. We
used a large number of cytosolic A molecules in a cuboid
compartment with a cross sectional area (1 μm)2 and length
4 μm. An adsorbing plane is placed in the middle of the
cuboid compartment, allowing adsorption from both sides of
the surface. The number of adsorbed molecules at each time
step is monitored.

Figure 5(a) shows the time series of A on the adsorbing
plane for irreversible (adsorption only) and reversible (ad-
sorption and desorption) reactions. Simulated results agree
well with the expected values according to the continuum
theories for the irreversible reaction in Eq. (23) and reversible
reaction in Eq. (27). The good fit can be seen at both strongly
(ksa = 500 μm s−1) and weakly (ksa = 50 μm s−1) adsorbing
rates. To examine the spatialtemporal concentration profile,
we counted the number of cytosolic molecules near the ad-
sorbing plane in the irreversible adsorption. The resulting
concentration profile along the axis perpendicular to the ad-
sorbing plane are shown in Fig. 5(b). The simulation results
coincide very well with the curves of continuum-based theory
in Eq. (26).

IV. APPLICATION OF SURFACE REACTIONS

A cytosolic molecule can react with a membrane-bound
reactant via two possible pathways: It can either perform 3D
diffusion in the cytoplasm and then directly react with the
membrane-bound reactant exposed to the cytosol or it can
bind first to the membrane and then perform 2D diffusion
before reacting with the reactant. Both of these pathways
are often adopted simultaneously in the cell. Previous works
have investigated how each pathway contributes to the overall
process [86–89]. Here we apply the Spatiocyte scheme with
the derived MLM expressions to simulate surface reactions
comprising all dimensions. We study the contribution of each
pathway to the overall reaction rate under the influence of
different diffusivity and reactivity.

We consider a cuboid compartment of dimension H × L ×
L, depicting the cytoplasmic volume. The top surface of the
cuboid is reflective, whereas the bottom surface represents an
absorbing lipid membrane. Each of these surfaces has the area
L × L. Within the system, there are two elementary species, A
and B, with radius r = 0.005 μm. Ac denotes the cytosolic
state of A that diffuses freely in the bulk at a rate of Dc. Ac can
reversibly associate with the membrane to become Am:

Ac
ksa�
ksd

Am. (64)

The ratio of the membrane association constant over the
dissociation constant is the equilibrium constant, ksa/ksd =
Keq. Upon the adsorption onto the membrane, Am performs
2D diffusion at a rate of Dm. On the membrane, B molecules
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(a) (b)

FIG. 5. (a) Time series of adsorbed molecules simulated with irreversible (IA, triangle and circle markers) and reversible (RA, plus and
square markers) adsorptions. In each case, strong (ksa = 500 μm s−1) and weak (ksa = 50 μm s−1) adsorption rates were tested. In the reversible
adsorption, the membrane dissociation rates are ksd = 62.5 and 6250 s−1, corresponding to the association rates ksa = 50 and 500 μm s−1,
respectively. Solid and dashed lines represent the continuum-based values according to the irreversible and reversible reaction formulas in
Eqs. (23) and (27), respectively. (b) The concentration profile of cytosolic A along the axis perpendicular to the adsorbing surface at x = 0 for
the given time points. The adsorption is irreversible with the rate ksa = 50 μm s−1. Theoretical lines shown are according to the continuum-
based theory in Eq. (26). Simulation parameters are as follows: l = 0.01 μm, DA = 1 μm2 s−1, and initial number of cytosolic molecules
Na = 1000.

are initialized to be immobile and randomly distributed with
concentration [B]0.

A can react with B via the 3D pathway,

Ac + B
ka3D−−→ AB, (65)

or the 2D pathway,

Am + B
ka2D�
kr

AB. (66)

ka{2D,3D} denotes the intrinsic association rate constants for 2D
and 3D reactions, whereas kr represents the dissociation rate
constant.

To quantify the dominance of the 2D pathway, we mea-
sured the fraction of the 2D equilibrium rate in the total
reaction rate, as in Ref. [88]:

f2D = kon2D

kon2D + kon3D
= 1

1 + kon3D/kon2D
. (67)

kon{2D,3D} represents the macroscopic effective rates for the
2D and 3D association reactions. The kon3D/kon2D ratio is
calculated using the simulated equilibrium concentrations ac-
cording to the formula,

kon3D

kon2D
= 1

[Ac]eq

(
kr[AB]eq

ka2D[B]eq
− [Am]eq

)
, (68)

which is derived by solving the rate equations for Eqs. (66)
and (65) at equilibrium.

We examined the dominance of the 2D pathway with
changes in Dc/Dm, [B]0, and the association reaction prob-
ability, Pa{2D,3D} for the 2D and 3D pathways. We fixed other
variables such as the sizes of the system and molecule, kr , Keq,
ka2D/kr , and the initial concentration [Ac]. We used the typical
cytosolic rate for Dc (10 μm2 s−1) with Dc/Dm ratio ranging
from 1 to 1000. Keq = 0.15 μm and ksd = 10 s−1 are within
the biologically realistic values [90,91].

From the simulation results in Fig. 6, we can observe the
overall decreasing trend of f2D as the ratio Dc/Dm increases.
The exact value of f2D depends on the reaction probability and
the concentration of reactant [B]0. When the association reac-
tion is diffusion limited (Pa2D = Pa3D = 1) and the reactant
concentration is low ([B]0 = 100 μm−2), f2D becomes more
than 50% for Dc/Dm between 1 and 30. When Dc/Dm > 30,
the 3D pathway becomes dominant instead. At very high [B]0

(500 μm−2), the 3D pathway is dominant for all ratios of

FIG. 6. Contribution of 2D reaction pathway in surface reac-
tions. The fraction of 2D reaction pathway that contributes to the
overall surface reaction is indicated by f2D and is plotted against
Dc/Dm. The fraction is obtained at varying reaction probabilities,
Pa = Pa2D = Pa3D and concentration of the membrane-associated
reactant [B] (unit μm−2). Simulation parameters are as follows:
R = 0.01 μm, l = 0.01 × 1.0209 μm, L = 1 μm, H = 2L, Dc =
10 μm2 s−1, [Ac] = 5 μM = 3000 μm−3, Keq = 0.15 μm, ksd = 10
s−1, ka2D/kr = 0.001 μm2.
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Dc/Dm. When the association reaction is activation limited
(Pa2D = Pa3D = 0.01), f2D is still larger than 50% for Dc/Dm

in the range [1,30], and becomes less than 50% when the ratio
is higher than 30. However, unlike in the diffusion-limited
case, f2D in activation-limited reaction is less sensitive to the
changes in [B]0.

In typical cells, membrane-associated molecules diffuse
10–100 times slower than their cytosolic counterpart. In such a
condition, our simulation results imply the following: The 2D
reaction pathway will dominate the overall reaction, provided
the concentration of membrane-associated reactant is low,
its diffusion on the membrane is fast, and the reaction is
activation limited. Conversely, the 3D reaction pathway will
become dominant when the diffusion of membrane species is
slow or when the membrane-associated reactant is abundant
and reacts with high probability upon collision.

V. DISCUSSION AND CONCLUSION

MLM surface reactions have not been verified in terms
of their consistency with continuum-based theory. To address
this issue, we used the theoretical framework of MLM [56] to
derive the correct expressions for 2D surface-surface reaction
and 1D volume-surface adsorption on lattice. By employing
the SCK model and the random walk theory, we showed
that the 2D lattice reaction exhibits the same long-time be-
havior as the continuum-based theory. After equating the on-
lattice rate expression with that of the continuum theory, we
obtained the formula for the reaction probability in terms of
physical and lattice parameters.

Furthermore, the positively valued reaction probability im-
poses an additional constraint on the voxel size: It should
be larger than the molecule at least by about 0.6% for the
triangular lattice and by 5% for the square lattice. These
constraints also meet the minimum voxel size requirement of
the corresponding lattice arrangement in 3D [56]. If the voxel
size is exactly the same as the molecule, the simulated time-
dependent reaction kinetics will deviate from the expected
behavior in continuum. Such deviations should be carefully
considered especially when simulating reactions containing
nonlinear terms.

In 2D reversible reaction, we showed that correct equi-
librium and time-dependent behaviors can be achieved by
dissociating the substrate into an in-contact pair of product
molecules, with a rate constant satisfying the local detailed
balance. In 1D volume-surface adsorption, the long-time
asymptotic behavior of MLM has the same form as in the
continuum-based theory. The Spatiocyte scheme also gener-
ated spatiotemporal adsorption kinetics that is consistent with
continuum theory when the correct expression for reaction
probability was used.

Finally, we studied the contribution of a 2D reaction path-
way in a surface reaction model with Spatiocyte simulations.
We found that the dominant surface reaction pathway can be
sensitive to the surface reactant concentration, intrinsic reac-
tion rate, and the relative diffusivity of reactants between the
bulk and the surface. For example, the 2D reaction pathway
would play a significant role in regulating the overall rate for
a system that has a sparse membrane-associated reactant with
activation-limited rate constants.

The main advantage of MLM when modeling intracellular
reaction-diffusion processes is its ability to capture the micro-
scopic properties of molecules directly without incurring high
computational cost. As an illustration, it only takes minutes
for Spatiocyte to simulate thousands of molecules with a time
step of μs for a duration of seconds on a single CPU core (see
performance in Ref. [56]). Spatiocyte takes physical quantities
comprising molecule size, diffusion coefficient, and intrinsic
reaction rate as input, and generates time-series output such
as molecule copy number and trajectory.

At present, Spatiocyte supports surface reactions with var-
ious geometries at the cellular scale. It has been successfully
used to capture the influence of microscopic effects on the
behavior of cells at the macroscopic scale. These include the
formation of a high density ring over the entire bacterium
cell membrane as a result of transient membrane association
and rebinding of proteins [57], the clustering of proteins
on the red blood cell membrane from oxidative stress [61],
and the oligomerization of receptors and its influence on
ligand binding kinetics [92]. As the spatiotemporal resolu-
tion of imaging techniques continues to advance [93], time-
dependent reaction kinetics and molecular trajectories will
become more accessible. These high resolution experimental
data coupled with efficient microscopic simulation techniques
such as MLM will provide a complementary way to inves-
tigate mechanisms underlying various biological reaction-
diffusion processes.

The uniform voxel size adopted by MLM reduces compu-
tational complexity and consequently, contributes to its low
computational cost. However, in surface systems requiring
realistic simulation of distinct-sized molecules with nonspher-
ical structures, additional considerations would be needed for
MLM to be applied. One potential solution is to reduce the
voxel size and let a single molecule occupy more than one
voxel according to its size and shape. Alternatively, we can
represent molecules with distinct shapes and sizes off-lattice
and perform hybridized simulation with on-lattice molecules.
The implementation and accuracy of such schemes compared
to fully off-lattice methods would require further examina-
tion. Another future milestone for MLM is to establish and
verify its consistency in highly crowded environments. The
on-lattice rate has to be reformulated to account for the many-
particle interaction. The resulting lattice theory should then be
compared and matched with the continuum-based theory.
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APPENDIX A: LATTICE INITIAL RATE CONSTANT

In this section, we provide the derivation for the initial rate
constant on lattice for heterodimerization and homodimeriza-
tion reactions. We describe the solutions for triangular and
square lattices. Consider two reacting species A and B, where
A molecules are stationary and B are diffusing with relative
diffusion coefficient D. The two species associate irreversibly

to form a complex with an initial rate constant k′
a: A + B

k′
a−→ C.

The number of reactions that occur in the simulation time
interval t ′ in the continuum can be approximated by the law
of mass action, and is related to the lattice space by

	[C] = k′
a[A][B]t ′

= number of reactions on lattice as a function
of reaction probability, (A1)

where [ ] denotes the species concentration.

1. Initial rate constant for 2D reaction

On 2D lattice, the number of reactions in the interval t ′
according to the continuum-based framework is given as

	NC = k′
a2DNANBt ′

S
, (A2)

where Ni is the number of molecules of species i, 	NC is the
changes in molecule number Nc, and S is the surface area.

The number of reactions in a step interval t ′ on lattice can
be estimated as

	NC = P′
aNBNA

Nsv
, (A3)

where Nsv = Sd/(π l2/4) is the number of surface voxels and
d is the packing density of the lattice type, and P′

a = Paα is
the actual reaction probability during the encounter.

In the activation-limited scheme (see Sec. II.B. in Ref. [56]
for a detailed description of the scheme), we have t ′ = td and
P′

a = Pa. Thus,

k′
a2D = PaS

td Nsv
,

= πPaD

d
. (A4)

Note that the physical unit of k′
a2D is [L2T−1], which is

consistent with the continuum rate constant. For triangular
lattice we have d = π

√
3/6 and Nsv = 2S/(

√
3l2). Hence, the

lattice initial rate is given as

k′
a2D = 2

√
3PaD, (A5)

and is valid for both the activation-limited and diffusion-
influenced schemes. For square lattice, we have d = π/6, and
the initial rate is

k′
a2D = 6PaD. (A6)

In homodimerization reaction A + A
k′

a−→ C, the number of
reactions according to continuum framework is

	NC = k′
a2DNA(NA − 1)t ′

S
, (A7)

whereas on lattice we have

	NC = P′
aNA(NA − 1)

2Nsv
. (A8)

From these two equations, the lattice rate constant is derived
as

k′
a2D = PaS

2td Nsv
,

= πPaD

2d
, (A9)

which differs from Eq. (A4) by a factor of 2. For the triangular
lattice, the rate constant is given as

k′
a2D =

√
3PaD, (A10)

where the relative diffusion coefficient D is defined as the
sum of the two diffusion coefficients DA.

2. Initial rate constant for 1D reaction

The number of reactions in interval t ′ according to the
continuum framework is given as

	NC = k′
a1DNANBt ′

L
, (A11)

where L denotes the length of the 1D system.
To be compatible with the continuum framework, we have

the following assumptions in the derivation of the lattice
rate constant: (i) Each voxel can accommodate more than
one molecule; (ii) A molecules are static whereas B are
mobile with a relative diffusion coefficient D. Then the num-
ber of reactions that takes place in a simulation step on lattice
can be approximated by

	NC = PaNANB

NL
, (A12)

where NL = L/l denotes the number of lattice voxels in
length L.

Finally, the initial lattice rate constant is given by

k′
a1D = Pal

td
,

= 2DPa

l
, (A13)

with unit [LT−1].

3. Initial rate constant for volume-surface adsorption

Consider a cuboid compartment with an adsorbing plane
placed at its center. Molecules A diffuse in the bulk with a
diffusion coefficient DA. Adsorption occurs on both sides of
the plane. According to the continuum theory, the number of
adsorbed molecules in time step t ′ is approximated by

	Ns = 2k′
saNAt ′S

V
, (A14)

where Ns is the number of molecules adsorbed, NA is the initial
number of molecules in the bulk, S is the area of the plane, and
V is the volume of the cuboid compartment.

In the case of hcp lattice, the number of adsorptions to the
plane is approximated by

	Ns = Pa
2Nsv

Nv

3

12
NA, (A15)

where Nsv is the number of surface voxels (triangular lattice),
Nv = √

2V/l3 is the number of volume voxels (hcp lattice),
and Pa is the reaction probability. Note that 3/12 is the
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probability that a molecule adjacent to the plane hops onto the
plane in one step and 2Ns/Nv is the probability of a randomly
distributed molecule A is located adjacent to the plane.

By equating these two expressions and solving for ksa, we
obtain

k′
sa = Pal

2
√

6td
. (A16)

Finally, with the diffusion time step definition td = l2/6DA,
the initial lattice adsorption rate constant is expressed
as

k′
sa =

√
3PaDA√

2l
, (A17)

where the unit is [LT−1].

APPENDIX B: DERIVATION OF GENERATING FUNCTION

1. 2D rebinding-time probability distribution function

First, we express the generating function H (s0|s1; z) as given in the main text, in the following form:

H (s0|s1; z) = PaF (s0|s0; z)

z + F (s0|s0; z)(Pa − 1)

= PaF (s0|s0; z)

z[1 − F (s0|s0; z)(1 − Pa)/z]

= Pa

z

{
F (s0|s0; z) + (1 − Pa)

z
F (s0|s0; z)2 +

[
(1 − Pa)

z

]2

F (s0|s0; z)3 + . . .

}
. (B1)

Let F (s0|s0; z) = 1 − 1/P(s0|s0; z) as 1 − x and q = 1 − Pa, we have

H (s0|s1; z) = Pa

z

{
1 − x + q

z
(1 − x)2 +

[
q

z

]2

(1 − x)3 + . . .

}
, (B2)

in which the regular z terms are neglected since z = 1. Finally, by rearranging the generating function in terms of x, we obtain

H (s0|s1; z) = Pa{1 + q[1 + q + q2 + . . . ] − x[1 + 2q + 3q2 + . . . ] + x2q[1 + 3q + 6q2 + . . . ] + . . . }

= Pa

{
1 + q

1 − q
− x

∞∑
n=1

nqn−1 + x2q
∞∑

n=1

n(n + 1)

2!
qn−1 + . . .

}

= Pa

{
1

1 − q
− x

(q − 1)2
− x2q

(q − 1)3
− x3q2

(q − 1)4
− . . .

}

= Pa

{
1

1 − q
− x

(q − 1)2

1

1 − xq
q−1

}

= 1 − x

Pa
[
1 + x(1−Pa )

Pa

] . (B3)

2. Voxel occupancy probability on triangular lattice

The voxel occupancy probability from origin to origin, Pn(s0|s0) for the triangular lattice is given as [65,94]

Pn(s0|s0) = 1

6n

n∑
j=0

(
n

j

)
(−3)n− jb j, (B4)

where

b j =
j∑

k=0

(
j

k

)2(2k

k

)
. (B5)

The corresponding probability generating function is expressed as

P(s0|s0; z) = 6

πz
√

c
K(k′), (B6)

where c = (a + 1)(b − 1),

a = 3

z
+ 1 −

√
3 + 6

z
and b = 3

z
+ 1 +

√
3 + 6

z
, (B7)
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and K(k′) is the complete elliptic integral of the first kind with

k′ =
√

2(b − a)

c
. (B8)

Finally, the asymptotic expansion of P(s0|s0; z) in terms of the asymptotic form for K(z) is derived as [see Eq. (A.198) in
Ref. [65]]

P(s0|s0; z) ≈
√

3

2π
ln[12(1 − z)−1]{1 + O(1 − z)}. (B9)
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