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Pattern phase diagram of spiking neurons on spatial networks
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We study an abstracted model of neuronal activity via numerical simulation and report spatiotemporal
pattern formation and criticallike dynamics. A population of pulse coupled, discretized, relaxation oscillators is
simulated over networks with varying edge density and spatial embeddedness. For intermediate edge density and
sufficiently strong spatial embeddedness, we observe a spatiotemporal pattern in the field of oscillator phases,
visually resembling the surface of a frothing liquid. Increasing the edge density results in a distribution of
neuronal avalanche sizes which follows a power law with exponent one (Zipf’s law). Further increasing edge
density yields metastability between pattern formation and synchronization, before transitioning entirely into
synchrony.
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I. INTRODUCTION

Pulse coupled oscillator models (PCOs) are defined as
populations of relaxation oscillators, interacting in a pulselike
manner over some topology. Such models have provided
insight into the phenomenon of spontaneous synchronization
across fields, be it swarms of blinking fireflies, pulsing heart
cells [1], distributed computing systems [2,3], or traders in
financial markets [4,5]. PCOs have been prominent in neu-
rology, since they can demonstrably capture multiple features
of the rich dynamic behavior of biological neuronal systems,
such as metastability (with the same configuration alternat-
ing between synchronous and asynchronous behavior) [6],
spatiotemporal pattern formation (in the form of nonlinear
waves) [7–11], and critical dynamics [6,12,13].

Models used in this literature range from intricate (such
as the Hodgkin-Huxley model) to relatively simple (such as
integrate and fire oscillators). Deville and Peskin [6] studied a
population of discretized integrate and fire (DIF) oscillators,
arguably the most abstracted neuronal model to date. In spite
of its simplicity, the DIF model with all-to-all stochastic
interactions can successfully capture metastability and syn-
chrony [6], as observed in cortical networks. However, the
extent to which the DIF can replicate the phenomenology of
its more intricate counterparts is not well understood, which
is the motivation for the present paper.

Numerical studies have considered the DIF over quenched
nontrivial topologies, focusing either on synchrony in com-
plex networks [14] or on replicating temporal features of
biological neuronal networks [13]. Notably, in Ref. [13],
populations of cascading spiking neurons in laboratory-grown
cortical slices were found to follow a power law distribution
as well as a specific temporal profile. Both these features
were captured by a single simulation of a DIF model over a
regular lattice, revealing that criticallike behavior is possible
in DIF models. In Ref. [15] the DIF model was analytically

shown to be critical for random graphs, and conditions for
criticality were derived. However, criticality in spatial DIF
models remains little understood, in spite of the recent interest
around criticality in neuronal systems [16–18]. Furthermore,
pattern formation in DIF models has not been studied at all.

To address these two issues, we consider the DIF over
topologies ranging between two purposefully picked ex-
tremes: a random graph (which has been studied the most
in the literature so far) and a spatial graph (which does
not disregard the spatial nature of biological systems). Our
results showcase that spatial embeddedness endows the DIF
model with pattern formation and criticallike dynamics, and
therefore the unrealistic all-to-all annealing topology drasti-
cally restricts the phenomenology of the DIF. Specifically, for
sufficiently low spatial embeddedness, the field of oscillator
phases forms a spatiotemporal pattern, visually reminiscent
of the surface of a frothing liquid. Increasing the connection
density results in metastability between pattern formation and
synchrony (a behavior of biological neuronal networks [7]),
while the transition itself is characterized by criticallike dy-
namics. For even higher connection density, near-periodic
synchronous firing of all neurons ensues.

II. THE MODEL

Consider N identical oscillators over a undirected un-
weighted graph G. Each node is associated with a binary state
ai (1 fired, 0 not fired) and a discrete, non-negative phase φi.
We initialize all oscillator phases uniformly at random, and all
states at zero. We then apply a stochastic drive, by randomly
picking a small population of d oscillators and increasing their
phase by one unit.

a. Dynamics: Once the phase of an oscillator reaches the
threshold value � the oscillator is said to fire: its state is set to
one, and the phases of all its neighbors are increased by one.
This pulselike interaction results in avalanching events, which
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FIG. 1. Effect of long-range connectivity R on the topological
properties of a spatial graph with 1000 nodes and mean degree 10
(see Sec. II, paragraph b). For increasing R, local efficiency el drops
and global efficiency eg rises [el , eg defined in (1)], indicating a
gradual change from local to global strong connectivity.

we will refer to as cascades. The cascade continues as long
as new oscillators fire under the influence of their neighbors.
Crucially, an oscillator is only allowed to fire once per cascade,
a property dubbed refractoriness. This is realized in the model
through the state ai: an oscillator may fire only if its state starts
from zero. Thus, once the oscillator fires, and its state is set to
one, it is unable to fire again. The state remains one until the
cascade ceases. Then all fired oscillators are reset: (ai, φi ) ←
(0, 0), ∀ {i : ai = 1}. After resetting all fired oscillators, we
resume the stochastic drive, until a new cascade starts. The
number of oscillators that participated in the cascade is the
cascade size.

b. Topology: The graph G is a random geometric
graph [19], furnished with long-range connections. Random
geometric graphs are arguably the most parsimonious models
of spatial networks, constituting a canonical choice for the
current study. For N nodes, average degree E , and a ratio of
long-to-short range connections R, graph G is assembled as
follows:

(1) “Sprinkle” N points uniformly at random over a one-
by-one square space, with periodic boundaries.

(2) Find the unconnected pair of points with the minimum
Euclidean distance and connect them. Repeat, until E (1 − R)
edges have been drawn. We will refer to these edges as short-
range connections.

(3) Pick ER random pairs of nodes and connect them,
forming the long-range connections.

For low R we obtain a meshed, highly clustered graph. As
R increases, the graph gradually loses its spatial character:
long-range connections reduce clustering and increase navi-
gability (a transition known as the small-world effect [20]).
Navigability and clustering can be quantified by the global ef-
ficiency (eg ∈ [0, 1]) and local efficiency metrics (el ∈ [0, 1]),
respectively [21]. For unweighted graphs, eg, el are defined as

eg = e(G) E

N − 1
and el =

∑
i∈G

e(Gi )

N
, (1a)

where e(G) = 1

N (N − 1)

∑
i �= j∈G

1

di j
, (1b)

and where Gi is the subgraph of node i and its neighbors, and
di j is the minimum number of hops needed to travel from i to
j. The effect of R on the two metrics is shown for an example
network in Fig. 1.

c. Additional nomenclature: We measure time in discrete
“long” time, where an additional cascade corresponds to
an additional “long” time unit. In contrast, “short” time is
associated with the dynamics within a cascade. A total of
ns cascades are simulated, and the fractional size of the t th
cascade is denoted by ct (ct = 0 implying no cascading). The
phases φi form a field �t = (φ0, . . . , φN ). Both ct and �t

vary in time, forming time series: C = (c0, . . . cns ) and � =
(�0, . . . , �ns ). Both C and � are dependent on the parameters
E , R,�, N . However, for the sake of notational simplicity,
these dependences will remain implicit unless necessary.

d. Simulation parameters: Throughout the study, we fix
� = 5, d = N/103. We simulate 5 × 104 cascades, discard-
ing the first 104 events, to ensure that the dynamics have
reached stationarity. This results in ns = 4 × 104. Parameters
R, E , and N are specified for each experiment.

III. IDENTIFYING REGIMES

For sufficiently high mean degree E , we observe near-
periodic synchrony: cascades of scale O(N ) over regular time
intervals. We quantify this behavior with the help of the
metric h ∈ [0, 1], which is formally defined as the normalized
Herfindahl index of the temporal power spectrum of C, the
time series of cascades on the “long” time process. Values
of h near 1 correspond to asynchrony, and h near 0 implies
synchrony. For the sake of succinctness details on this method
can be found in Appendix A.

For sufficiently low R (less than approximately 0.21) and
for a range of E , we observe a spatiotemporal pattern in the �

field: low-phase patches are separated by high-phase “fences”
(see bottom row of Fig. 2). The pattern constantly shifts:
cascades are more likely to occur along the “fences,” relaxing
the oscillators and leaving a low-phase patch where a fence
once stood. Simultaneously, cascades are unable to propagate
through large patches and instead stop in their midst, leaving
a “fence” where a patch was. We dub this spatiotemporal
behavior froth.

The impact of connection density on the frothing behavior
is depicted in rows 1 and 4 of Fig. 3. The size of the patches
increases along with E , until the patches grow to percolate
from top to bottom. Since each patch is the imprint of a
past cascade, patch sizes are linked to cascade sizes. Conse-
quently, this behavior can also be observed in the respective
complementary cumulative probability distribution (CCDF)
of cascade sizes, presented in rows 2 and 4 of Fig. 3.

As E increases, patches are enlarged, and the cascade
size CCDF extends farther towards the right. Eventually,
the CCDF forms a truncated power law with exponent one,
producing what is often referred to as Zipf’s law [22]. At the
same point, the probability of a global sized patch becomes
nonzero, indicating that spatial correlation length increases
beyond the system size. The presence of the truncated power
law and the increasing spatial correlation length is empirical
evidence of the system being near a self-organized critical
state. Simulating systems of increasing size reveals that the
truncation point moves towards the right as N increasing,
indicating that the near-critical behavior is not a finite-size
effect (see Appendix B for details). Further increasing E ,
results in a cascade size distribution typical of supercritical

042410-2



PATTERN PHASE DIAGRAM OF SPIKING NEURONS ON … PHYSICAL REVIEW E 99, 042410 (2019)

FIG. 2. Pattern formation and connectivity in a graph with 20k nodes. Columns correspond to graphs with different edge density E and
long-range connectivity R [left to right (E , R) is (7, 0), (12, 0), (12, 0.02)]. Bottom row: visualization of oscillator phases φ; note the formation
of synchronized patches. Top row: magnified segment of the graphs producing the dynamics below (as delineated by the black frame). Note
the increased synchrony in densely meshed node clusters. Increased E enlarges the patches, and increased R enables global synchrony.

dynamics. An example of supercritical frothing is depicted
in the bottom right panel of Fig. 3. Note the global-sized
patch (connected top-to-bottom) indicating spatial correlation
length comparable to the system size.

To quantify the presence of froth, and the associated scale
of the patches, we consider

s�(�λ) = 〈
H2

t (�λ)
〉
, (2)

where Ht (�λ) is the spatial Fourier transform of �t for the
wavelengths �λ = [λ1, λ2], and 〈.〉 is the average of multiple
realizations over time. We exploit the radial symmetry of the
model by taking the radial mean of s�(�λ):

S�(λ) = 1

2π |λ|
∫

�λ

s�(�λ) d�λ, (3)

where �λ is a circular shell of radius λ = ||�λ||.
Rows 3 and 6 of Fig. 3 reveal that frothing is accompanied

by a power law increase of S�(λ). The increase starts from
a low limit of λ, associated with the average spatial distance
between oscillators neighboring in the two-dimensional Eu-
clidean space, and persists up to a wavelength where S�(λ)
forms a “knee.” The wavelength associated with the “knee,”
dubbed the corner wavelength and denoted by χ , corresponds
to the largest spatial scale up to which the froth exhibits a
random, self-similar symmetry, as seen in rows 1 and 4 of
Fig. 3.

These observations allow us to numerically quantify the
presence of froth and the size of the patches, by fitting a
truncated power law over S�(λ) (see the red line in rows
3 and 6 of Fig. 3). The fitting method places the power
law truncation point at a wavelength that approximates χ .
Also, the goodness of fit (given by r2 ∈ [0, 1]) quantifies how
well S�(λ) follows a truncated power law. Details about this
method can be found in Appendix C.

The metric h [defined in Appendix A, Eq. (A2)] can be
used along with r2, to define empirical criteria for the iden-
tification of synchrony and frothing. Concretely, with mh, mr2

being two threshold constants, we have

h(E , R, N,�)

{
> mh, asynchrony
� mh, synchrony , (4a)

r2(E , R, N,�)

{
> mr2 , frothing up to scale χ

� mr2 , no frothing . (4b)

IV. TRANSITION DYNAMICS

The previously proposed criteria (4) require estimates for
the thresholds mr2 , mh, which we obtain through the experi-
ment presented in the current section. R and N are sampled
geometrically (as defined in Fig. 4), while E takes 75 values
evenly spaced in [5,20]. The results, shown in Fig. 4, reveal
abrupt transitions in the macroscopic behavior, allowing us to
draw three conclusions:
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FIG. 3. Rows 1 and 4: snapshots of the oscillator phase fields �t . Long-range connectivity R is zero. The mean degree E increases in the
reading direction: left to right and top to bottom E is 10, 11, 12, 13, 14, 15, 16, 18. The scale of the patterns χ increases along with E . Rows 2
and 5: CCDF of cascade sizes for the simulations of the respective column. As χ increases, the CCDF extends towards the left, at first forming
a power law and eventually a supercritical distribution (bottom rightmost panel). Rows 3 and 6: blue dots correspond to the temporal average
of the spatial spectral power S�(λ) defined in (3). The solid red line is a truncated power law fit of S�(λ), and the purple (dashed) line is the
corner wavelength χ , as determined by the method described in Appendix C.

e. Transition to synchrony: In the top row of Fig. 4 we
observe a sharp transition, from high to low h, implying that
the system suddenly moves from asynchrony to synchrony
beyond a value of E . As R increases, the transition shifts to
smaller E values, showing that spatial embeddedness delays
the onset of synchrony. The sharpness of the transition in-
creases with system size, revealing that this transition will
still be present—and even more prominent—in the thermo-
dynamic limit.

f. Frothing delays synchrony: The second row in Fig. 4
depicts a clear plateau of the r2 metric, implying the presence

of frothing dynamics over a range of E values. The frothing
regime is interposed between asynchrony and synchrony, with
its width decreasing as R increases. Therefore, while high R
systems enter synchrony, low R systems froth instead, imply-
ing that frothing is the mechanism that delays synchrony. The
presence of the frothing regime does not depend on size, since
the plateau of r2 persists—and even widens—along with N .

g. Scaling of χ : The bottom row of Fig. 4 shows that the
corner frequency χ increases with N . Specifically, for the
range of values in this study (N from 1.25k to 40k) plotting
χ

√
N makes simulation results for all N to collapse into a
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FIG. 4. Transitions in the DIF system: h, r2 and χ
√

N (defined in Eq. (A2), Appendix C paragraph 4, and Sec. III paragraph 5) as functions
of the mean degree E , for a number of system sizes N , with colder colors indicating larger system sizes (1.25k, 2.5k, 5k, 10k, 20k, 40k).
Long-range connectivity R is 0.1%, 0.4%, 1.6%, 6.25%, 25%, 100% from left to right. Low values of h indicate synchrony, and r2 near one
implies the presence of spatiotemporal patterns. Missing points in the bottom row indicate the absence of pattern formation, for the two largest
R values. Note the transitions (i) from high to low values of h and (ii) ascending and descending to a plateau of r2. The sharpness of both
transitions increases with N , demonstrating that larger systems exhibit more prominent patterns and sharper transitions between macroscopic
behaviors.

single universal curve, revealing the presence of a scaling law.
Finally, for all panels in the bottom row of Fig. 4, the peak
of χ coincides with the end of the r2 plateau, verifying that
frothing patterns become the most prominent on the verge of
synchrony.

V. EMPIRICAL REGIME DIAGRAM

To numerically investigate the macroscopic behavior of
the model over the E , R space, we fix N = 104 and vary R
over 70 evenly spaced values in the range [6, 20]. E takes 30
geometrically spaced values in [10−3, 1]. In order to use the
criteria (4), we need to set mh, mr2 . Visual inspection of the re-
sults in Fig. 4 reveals that mh = 5 × 10−2 and mr2 = 0.9 allow
criteria (4) to separate the macroscopic regimes adequately
well for illustrative purposes. The resulting empirical regime
diagram is depicted in Fig. 5, revealing four regimes:

Regime I: For low connection density the system exhibits
local cascades, with no frothing. The literature [6,23] refers to
this regime as asynchrony.

Regime II: For low long-range connectivity, and over a
midrange of E , frothing appears in the � field. We refer to
this regime as a frothing regime.

Regime III: Starting from froth and sufficiently increas-
ing E results in a regime where we intermittently observe the
phenomenology of regimes II and IV. The CCDF of cascade
sizes is characteristic of a supercritical system, with slower
than power law decay, and global-sized cascades appearing
regularly. This regime is dubbed a metastable regime.

Regime IV: For high connection density, the system
undergoes a discontinuous limit cycle. As the average phase
increases with time, cascades remain local in scale, until a
global-sized cascade occurs, resulting in the relaxation of the
phase field. Then the buildup of phase synchronization begins
anew. We refer to this regime as synchrony.

VI. DISCUSSION

We have numerically investigated the behavior of dis-
cretized integrate and fire oscillators, with slow stochastic

drive, over spatial graphs. Remarkably, when placed over spa-
tial topologies these models give rise to nontrivial dynamics:
spatiotemporal patterns form, where large clusters of relaxed
nodes act as natural barriers against cascading, while jagged
strips of near-firing nodes facilitate long distance propagation
of cascades. This pattern can give rise to critical dynamics
with cascading events sizes following a power law with ex-
ponent one. Further increasing the number of edges results in
metastability between pattern formation and synchrony, and
eventually drives the model into synchrony.

FIG. 5. Empirical regime diagram of the DIF model over the
space of degree density and long-range connectivity (E , R). We ob-
serve four regimes: asynchrony (I), pattern formation (II), synchrony
(IV), and metastability between pattern formation and synchrony
(III). The regime boundaries are drawn based on the criteria defined
in (4).
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Our findings show that taking into consideration the fun-
damentally spatial character of neuronal networks drastically
extends the phenomenological overlap between the DIF and
more intricate neuronal models. Specifically, while previous
works have already indicated that spatial embeddedness may
delay the onset of synchrony [24], we showcase that the
underlying mechanism is spatiotemporal pattern formation.
This observation provides solid grounds for the usage of the
DIF model in the study of pattern formation and critical
dynamics in neural networks. Further numerical studies could
shed light on the role of additional neuronal properties (leak-
iness, nonlinear response curves, and inhibition) on pattern
formation and criticality in neuronal systems.

The presented model can also account for the evolution
of the macroscopic behavior of laboratory-grown neuronal
systems. As laboratory-grown neuronal networks mature,
dendrites grow longer connecting neurons more densely over
longer distances [25,26]. In our analysis, this process can
be understood as an increase of long-range connectivity
and overall connection density (parameters R and E ). We
therefore expect to see different dynamical regimes as the
system matures: from subcritical dynamics to near-periodic
synchrony. Indeed, this has been observed in practice: as
laboratory-grown cultures mature, they exhibit near-periodic
global cascades [25–27]. More crucially, in such cultures,
cascades that do not grow to reach global proportions follow
a truncated power law [26], a property also captured by the
studied model (see Sec. V, regime III).

In spite of the extensive simulations in the current study,
the exact mathematical nature of the regime transitions of
the model is not well understood—and could constitute the
subject of future works. Additionally, to the best of the
authors’ knowledge, frothing has not been so far empirically
observed in physical systems. This is surprising considering
the generality of the conditions under which frothing arises.
A possible explanation could be that detecting froth requires
knowledge of the phase, an attribute of oscillators that is
typically less prominent and harder to measure than their
state. In any case, further works are warranted, focusing on
the empirical detection of frothing in pulse coupled oscillator
systems.
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APPENDIX A: QUANTIFYING SYNCHRONY

The near-periodic behavior of the time series of cascade
sizes C can be detected in the frequency domain, where
peaks appear in the power spectrum. The concentration of
the spectral power around these peaks is quantified using the
Herfindahl-Hirschman index. Since the data are discrete, we
will be using the discrete Fourier transform. Let PC ( f ) be the

FIG. 6. CCDF of cascade sizes, for increasing system size N and
zero long-range connectivity R = 0. The CCDF forms a truncated
power law of exponent one (as indicated by the black dashed line).
The truncation point moves farther to the right as N increases,
indicating that the truncation is a finite-size effect. The overall
network density E differs for each system size N .

temporal spectral power of C for frequency f :

ĥ =
∑

f

[PC ( f )

N

]2

, N =
∑

f

PC ( f ), (A1)

h = ĥ − ns

1 − ns
. (A2)

The ĥ metric takes values in [0,1] and quantifies the concentra-
tion of PC ( f ) around a few frequencies. During asynchrony,
the only significantly contributing frequency is the zeroth,
resulting in near-zero values of PC ( f ) for f > 0 and therefore
h near one. In contrast, during synchrony, higher harmonics
carry considerable amount of power resulting in a lower h
index. Discerning between synchrony and asynchrony does
require a threshold value of h, which we determine empir-
ically in this study to be equal to 5 × 10−2 (see Section V
paragraph 1 for details).

APPENDIX B: CASCADE SIZE CCDF FOR INCREASING
SYSTEM SIZE

In order to ensure that the observed criticallike dynamics
are not due to a finite-size effect, we simulate increasing
system sizes for R = 0 and for 70 values of E linearly spaced
in the range [6,20]. For each system size, a value of E can
be found for which the truncation point of the power law
moves at its rightmost. We dub this value Ec(N ). The CCDF of
cascade sizes for connection density Ec(N ) is shown in Fig. 6.
The simulated system sizes, along with the corresponding
Ec(N ), can be found in the legend of the same figure. The
plotted CCDFs reveal that the power law truncation point is
moving farther towards the right as N increases, indicating
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that the truncation is a finite-size effect, and therefore that the
simulated systems are indeed near criticality.

APPENDIX C: QUANTIFYING SPATIOTEMPORAL
PATTERN FORMATION

We observe that in the case of frothing patterns, S�(λ)
follows a power law increase, over a band of wavelengths.
The upper limit of the band χ is associated with the largest
cell size of the frothing pattern. The lower limit of the band
is proportional to the size of the mesh used to estimate the
� field. In the current study,

√
N oscillators are placed along

each dimension of the two-dimensional Euclidean space, re-
sulting in an lower wavelength limit of 4π/

√
N .

Higher frequency components also reside in the � field,
for example due to the randomness in the placement of the os-
cillators. These higher frequency components may introduce
noise in the spatial spectrum of �, through a process known
as aliasing. Specifically in the case of data produced by pro-
cesses with power law spectra, aliasing results in the measured
spectrum progressively resembling white noise as we move
to smaller wavelengths [28]. As a treatment, we ignore the
values of the measured spectrum for small wavelengths, by
doubling the lower limit derived in the previous paragraph to
λmin = 8π/

√
N .

To determine the corner wavelength χ , we consider the
frequency response function of a linear low-pass filter:

g(λ; p1, p2, p3, p4) = p1√
1 + (λ/p3)−2p4

+ p2 (C1)

and fit it to S�(λ), according to the following equation:

(p∗
1, p∗

2, p∗
3, p∗

4)

= argmin
p1,p2 ,

p3,p4

∑
λ�λmin

[S�(λ) − g(λ; p1, p2, p3, p4)

S�(λ)

]2

,

(C2)

where p1, p2, p3, p4 are fitting parameters. Equation (C1)
describes a power law increase with exponent p4, up to the
wavelength p3 where the function forms a visual “knee.”
From that point onwards, the value of (C1) remains nearly
constant at p1 + p2. For the sake of illustration, and to enable
comparison between different S�(λ) curves, we position the
truncation point χ at p∗

3.
Initial solutions to the problem in (C2) were ob-

tained via the particle swarm method, and refined with a
Levenberg-Marquardt local search. Examples of the fitted
g(λ; p∗

1, p∗
2, p∗

3, p∗
4) are depicted in rows 3 and 6 of Fig. 3

(red solid line), along with the corresponding S�(λ) values.
The quality of the fits can be assessed via the r-squared
metric, to which we will refer to as r2. Specifically, r2 is
used to determine whether a simulation exhibits frothing: a
high value of r2 implies that Eq. (C1) provides a good fit,
providing evidence in support of the presence of froth in the �

field.
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