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Determination of effective brain connectivity from activity correlations
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Effective connectivity embodied in transfer functions is derived from symmetric-network activity correla-
tions under task-free conditions via a recent causal spectral factorization method. This generalizes previous
covariance-based analyses to include frequency dependencies and time delays. Results are verified against
analytic solutions of equations that have reproduced many aspects of experimental brain dynamics and against
cases of more complex connectivity. Robustness to noise is also demonstrated.
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Complex networks occur in many fields, including neuro-
science, communications, the Internet, genetics, ecology, and
economics [1–6]. Many networks, such as those in economics
and the brain, have connectivities that are hard to observe
directly or can only be studied in their normal state via
the activity they support. This is especially true of effective
connectivities that measure strengths of active connections,
rather than all underlying structural connections [3,4]. In the
brain, relationships between network structure and dynamics
are essential to understanding signal propagation [2–4,7–16]
and are central to large-scale initiatives such as the Human
Connectome Project, the U.S. BRAIN Initiative, and the Eu-
ropean Human Brain Project.

Recent work showed that symmetric effective mesoscale
and macroscale (0.5 mm and above) brain connectivity can
be determined from the covariance matrix of the activity
they support [15,17,18], a result that generalizes to other
networks. This result relies on matrix diagonalization meth-
ods and neural field theory (NFT) results that showed how
to compute activity from effective connectivity and how to
relate NFT propagators to direct effective connection matri-
ces (deCMs) [17,18], which measure connection strengths
between brain regions, and to total eCMs (teCMs), which
include indirect influences and are equivalent to transfer func-
tions; NFT functional CMs (fCMs) are then calculated as
two-point activity correlations [17,18]. Each row and column
of a CM represents a brain region, while the entries represent
connection strengths between them [2–4].

Using general linear NFT [17,19] for signals that are
not strong enough to be nonlinear, without specializing to a
particular form, we recently showed that the deCM and teCM
correspond to bare and dressed propagators, respectively, and
can be used to compute the fCM [17,20]. Later, we showed
that symmetric deCMs can be determined from the covariance
matrix under task-free conditions, which is the most common
situation [18]. This enabled corresponding strengths of con-
nections to be determined, including those of connections that
could not be measured reliably by methods such as magnetic
resonance imaging (MRI) diffusion imaging.

Key aspects missing from most attempts to infer eCMs
from fCMs are treatment of time delays and frequency

dependence. These are straightforward to include in the for-
ward problem, but covariances are symmetric and do not
contain temporal information. Hence, these most common
fCMs cannot be used to infer delays or frequency dependen-
cies, which are critical to many brain phenomena. Correlation
matrices potentially carry the missing information and have
been used as generalized fCMs [17,21]. A recent paper [21]
introduced a method for approximately inferring the form
of deCMs by adjusting some of their entries to get the best
possible fit of their predicted fCMs to data. However, this
was restricted to one dynamical model and the authors noted
difficulties in choosing which entries to adjust, especially
because a 1000-node network has ∼106 CM entries. Meth-
ods for inferring links in discrete networks without self-
connections [22] and biomolecular networks [23] have also
been explored recently, as have complementary methods for
some classes of nonlinear networks [24–27].

In this article we show how to invert the correlation matrix
of linear activity in a symmetric brain network to determine
its teCM, including frequency dependencies and time delays.
We first identify the teCM with the dressed propagator or
transfer function [17]. The Fourier transform of the correlation
function is then expressed in terms of the transfer function,
which is found via Cholesky factorization of the correlation
matrix at each frequency, then causality is imposed via a
recent iterative method, and the propagator (Green func-
tion) is identified by adjusting the phases of the contribut-
ing modes to maximize the initial response to a δ function
input [28–30].

We first discretize the brain into M regions to write
the synaptic activity that dominates brain metabolism and
measures like functional MRI and electroencephalography
(EEG) [31–33] as an M-element column vector �(t ) [17,18].
In brain connectivity studies to date, M usually lies between
30 and 1000 [4]. Weak signals suffice to establish the exis-
tence of a connection between two points, and it has been
extensively verified that most normal large-scale brain activity
is stable and approximately linear relative to a fixed point in
any case and that spontaneous activity can be closely approx-
imated as being white-noise driven [17–20,34,35]; certainly
axonal transmission between points also yields output spike
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rates that are equal to input rates. Linear NFT implies

�(t ) =
∫ ∞

−∞
T(t − t ′)N(t ′)dt ′, (1)

where N is a vector of external inputs and the propagator T
is identified as a spatiotemporal teCM [17] and has T(τ ) =
0 for τ < 0, from the causal requirement that no influences
can propagate into the past; temporally, T depends only on
τ = t − t ′ if the network structure is static, which is a good
approximation if it only changes on timescales much longer
than those of the activity that determines the fCM. Fourier
transforming Eq. (1) vs t gives

�(ω) = T(ω)N(ω), (2)

where ω is the angular frequency and T → 0 as |ω| → ∞
because of the limited bandwidth of physical systems. Once
T is known, the linear response to any stimulus can be
determined.

We define the fCM to be the correlation matrix of the
activity at times separated by an interval [17], with

C(τ ) = 〈�(t + τ )�T (t )〉, (3)

where the angle brackets indicate an average over t and the
superscript T denotes the transpose. We Fourier transform the
quantities in Eq. (3), and use Eq. (2), to find [17]

C(ω) = T(ω)T†(ω), (4)

where the dagger denotes a Hermitian conjugate and we have
assumed uncorrelated white-noise inputs with

〈N(ω)N†(ω)〉 = I. (5)

The approximation (5) has yielded successful comparisons of
NFT with a wide array of experimental results on the brain
in “resting” states in which no dominant external stimuli are
present [19]. Notably, Eq. (4) holds for the transfer function
of any linear system, while Eq. (5) and the following analysis
can be generalized to cases in which its right side is frequency
dependent.

Because C(τ ) and T(τ ) are real, C(−ω) = C∗(ω) and
T(−ω) = T∗(ω). Now C(ω) is Hermitian, so C†(ω) = C(ω)
and its eigenvalues are real. These eigenvalues are also pos-
itive because the Wiener-Khintchine theorem states that C
is the Fourier transform of the power spectrum, a positive-
definite quantity. Infinitely many causal T can satisfy Eq. (4).
To isolate the Green-function solution, we require that
det[T(t = 0)] be maximal so that T represents the response to
a δ-function input, which is the most temporally concentrated
possible.

Here we adapt the key results of Ref. [28] to our present
application; for full proofs see Ref. [28], which assumed that
the correlation function is well behaved over the frequency
range of interest, being continuous and square integrable,
properties that are generally satisfied for physical systems. For
computation, frequencies are discretized into 2F + 1 points
and frequencies are rescaled to lie in the range −π to π ,
with the endpoints of this range identified and ωp = p�ω

and �ω = π/F for p = −F, . . . , F ; corresponding discrete
times can be chosen to be tp = p�t with a time step �t .
In applications �t is the smallest resolvable scale and F�t

must be large enough that T(t ) is negligible at the ends of the
overall time interval. The method converges as F → ∞ [28].

The first step is to Cholesky factorize Eq. (4) to write

C(ωp) = K(ωp)K†(ωp), (6)

where K is a lower triangular matrix with nonnegative real
diagonal elements Kj j (ωp). Right multiplication of K by any
unitary matrix W yields another matrix that satisfies Eq. (6),
but if K or KW is inverse Fourier transformed, the corre-
sponding propagator is not necessarily causal. Hence, the next
step is to find a diagonal unitary matrix W(ωp) that transforms
K into a matrix T(0) whose diagonal entries are causal, with

T(0)(ωp) = K(ωp)W(ωp). (7)

A suitable form of W is [28]

W(ωp) = diag[K+
j j (ωp)/Kj j (ωp)], (8)

K+
j j (ωp) = exp

(∫ π

−π

eiθ + eiωp

eiθ − eiωp

ln |Kj j (θ )|
4π

dθ

)
. (9)

Here K+
j j (ωp) is a spectral factor of Kj j (ωp), meaning that

K+
j j (ωp) is causal and satisfies |K+

j j (ωp)| = |Kj j (ωp)|. We use
a fast Fourier transform to evaluate the right side of Eq. (9).

We must now find a unitary matrix that transforms T(0)

with causal diagonal entries into a fully causal matrix T.
The problem of finding a causal solution of Eq. (4) was first
addressed over 60 years ago [36], but a recent highly efficient
method is used here [28]. This finds a succession of unitary
matrices V( j), j = 1, . . . , M, such that the leading m × m
submatrix of

T(m)(ωp) = T(0)(ωp)V(1)(ωp) · · · V(m)(ωp), (10)

is causal. The desired propagator is T(ωp) = T(M )(ωp).
The explicit form of the unitary V(m) is [28]

V(m)(ωp) =
(

X(m)(ωp)X(m)(ω0)−1 0
0 I

)
, (11)

where I is an (M − m) × (M − m) identity matrix. We define
the elements of X(m) such that X (m)

jk (tp) = 0 if j � m − 1 and

p < 0, and that X (m)
mk (tp) = 0 if p > 0. At the mth step we

define these elements to be components of the vectors

x jk = [
X (m)

jk (t0), X (m)
jk (t1), . . . , X (m)

jk (tF )
]T

, (12)

xmk = [
X (m)

mk (t0), X (m)
mk (t−1), . . . , X (m)

mk (t1−F ),w
]T

, (13)

where w is a dummy variable that only serves as a placeholder,
and for j = 1, . . . , m − 1, with [28]

xmk = �−1D−1�k (D∗)−11, (14)

x jk = (D∗)−1�∗
j xmk − δ jk (D∗)−11, (15)

for j = 1, . . . , (m − 1), k = 1, . . . , m, and 1 =
(1, 0, . . . , 0)T . Here,

� = I +
m−1∑
j=1

D−1� j (D∗)−1�∗
j , (16)
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where D is an upper-triangular (F + 1) × (F + 1) square ma-
trix, with elements Dlk = 0 if l > k, and Dlk = T (m−1)

mm (tk−l )
otherwise. For j = 1, . . . , (m − 1), � j is the (F + 1) × (F +
1) matrix with elements (� j )kl = 0 if k + l > F + 2, and
(� j )kl = T (m−1)

m j (t2−k−l ) otherwise, and �m = D∗.
The above algorithm guarantees that T(M )(tq) is real. This

follows by first noting that C(−ω) = C(ω)∗, so T(0)(−ωq) =
T(0)(ωq)∗. We then proceed inductively by supposing that
T(m)(tq) is real for some m. This means that D and � j are
real, which means that X(m)(−ωq) = X(m)(ωq)∗, so X(m)(tq)
and T(m+1)(tq) are thus real.

We noted above that right multiplication of T(M ) by a
constant orthogonal matrix yields another solution of Eq. (4).
We now restrict attention to symmetric systems and choose
this multiplier to make T(ω0) symmetric, using the singu-
lar value decomposition of T(M )(ω0). Writing T(M )(ω0) =
PD′RT , with D′ diagonal, we then define

T(ωp) = T(M )(ωp)RPT . (17)

The above steps yield an expression for a causal propaga-
tor, T(ω) = T(M )(ω), that aligns the phases of the modes of
T to maximize detT(t = 0) and thus yield the system Green
function (for the details of the proof see Ref. [28]). In some
applications, the Fourier form suffices to explore frequency-
dependent brain connectivity; otherwise, an inverse Fourier
transform yields T(τ ). In the brain context this determines the
teCM from the fCM. If one is not interested in time delays, the
zero-frequency components of these matrices are proportional
to the time-averaged connectivities.

At large spatial and temporal system sizes, M and F are
large. The dominant computational cost derives from the
calculation of the matrix x jk in Eq. (15) m2 times at step
m. Because there are M steps and the calculation cost of the
matrix multiplication in Eq. (15) is only O(F 2) because D and
�k are Toeplitz, the total cost is O(M3F 2).

To demonstrate the accuracy and stability of our method on
brain networks, we test it on two cases with known analytic
solutions and one with more complicated connectivity. We
treat one-dimensional (1D) and 2D systems of unit linear
size with periodic boundary conditions and discretize them
spatially and temporally as above. In each case we use known
analytic and/or numerical test-case dynamics to generate a
test propagator T(t ) and calculate the resulting correlation
function C(ω).

In our test cases we discretize the system as described
above and consider the propagator from a point in the sys-
tem at t = 0. We define the elements of T to be Tjk (tp) =
u(x j, xk, tp), where the vector u satisfies

1

γ 2

∂2u(t )

∂t2
+ 2

γ

∂u(t )

∂t
+ u(t )

− ρ2∇2u(t ) − Au(t ) = δ(t )1k, (18)

where A is a symmetric constant matrix, ∇2 is a matrix
operator that implements the spatial second derivative on the
discrete grid, δ(t ) is a δ function at t = 0, and 1k represents a
spatial δ function at a chosen stimulus point xk . In the calcula-
tions here we use 2F = 2048. Equation (18) with A = 0 and
more general drive on the right has been successfully used in

FIG. 1. One-dimensional test inversion using Eq. (18) with
A = 0 to generate the input T, shown in black, for the parameters
in the text; the inverted T is shown in red (the curves overlap at this
scale). (a) The element of T for propagation from x = 0.22 at t = 0
to x and t = 0.05, 0.1, and 0.2 (narrowest to broadest curves). (b) The
element of T for propagation from x = 0.22 at t = 0 to x = 0.26 vs
t . (c) The element of T for propagation from x = 0.22 at t = 0 to
x = 0.46 vs t . (d) T for propagation from x at t = 0 to y at t = 0.15.

modeling a wide variety of brain dynamics and encompasses
long-range intracortical connections with approximately ex-
ponential fall-off, as is most easily seen when it is written in
integral form [19,37–39].

In the first test case we set M = 41, γ = 10, ρ2 = 0.05,
and A = 0 in Eq. (18), which is the telegrapher’s equation
that is widely used to represent brain activity [19,37,40]. The
1D solution is a flat-topped response [41] that spreads at
a speed of v = ργ and decays like exp (−γ t ), as seen in
Figs. 1(a)–1(c). Figures 1(b) and 1(c) show there is no re-
sponse at x until t = |x − xk|/v, followed by exponential de-
cay. The inversion is found to have an absolute error of ∼10−3.

The second test case solves Eq. (18) with A = 0 except
for two symmetric unit entries that link the spatial points at
0.24 and 0.73 to represent instantaneous long-range reciprocal
coupling, with other parameters as in the first case; more
general cases follow directly by adding more such reciprocal
connections. Figure 2 shows that the solutions are similar
to those in Fig. 1, except that the additional connections
cause activity to jump from x = 0.24 to x = 0.73 as the
pulses pass over the former. Secondary waves of activity then
emanate from x = 0.73 and jump back to x = 0.24, causing
the off-center peaks in the response. The accuracy of the
inversion is again high, but some small deviations are seen
in Fig. 2(c) prior to the arrival of the main response; these
are due to roundoff effects due to the sharp discontinuities in
the stimulus and propagator and are of the same order as the
negative discrepancy seen in Fig. 2(b).

The third test case solves the telegrapher’s equation on a
25 × 25 grid in 2D, with M = 625 points, γ = 25, and other
parameters as in Fig. 1. The analytic result in Fig. 3(a) shows
the expected spreading ring of activity [37], concentrated at
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FIG. 2. One-dimensional test inversion using Eq. (18) and the
parameters of Fig. 1, but with A 
= 0 for unit entries corresponding to
bidirectional connections between x = 0.24 and x = 0.73. The input
T is shown in black, and the inverted T is shown in red. (a) The
element of T at t = 0.1, 0.2, and 0.3 for propagation from x = 0.22
at t = 0 to x at t = 0.1, 0.2, and 0.3 (narrowest to broadest curves).
(b) The element of T for propagation from x = 0.22 at t = 0 to
x = 0.26 vs t . (c) The element of T for propagation from x = 0.22 at
t = 0 to x = 0.46 vs t . (d) T for propagation from x at t = 0 to y at
t = 0.15.

the leading edge at radius r = vt with a decreasing tail be-
hind it, of amplitude ∝ (v2t2 − r2)−1/2 exp(−γ t ). Figure 3(b)
shows that the inversion provides a good approximation to the
analytic result, aside from residual fourfold symmetry from
the grid, that decreases as the discretization is made finer.
In particular, in Fig. 3(c) we see that the radial position of
the peak response agrees closely between the inputted and
inverted cases. It is seen that the inversion preserves the profile
of the response, with the propagator being approximately zero
before the response arrives and decreasing as expected after
the peak. The peak is slightly broader and lower in amplitude
in Fig. 3(d) due to discretization.

To check the robustness of the inversion to experimental
noise, we also carry out calculations in which Gaussian noise
is added to C before inversion, of a form that preserves the
symmetry properties of C. Then the algorithm is applied to
see how closely the original T can be recovered from the noisy
C. The results (not shown) imply that the norm of the error in
the inversion is linear in the norm of the perturbation added to
C, so the method is robust to low-level noise.

We have shown that the correlation-based fCM C can
be used to infer the causal teCM or transfer matrix T in
symmetric systems, including time delays and frequency de-
pendencies, using a recent causal spectral factorization that
we demonstrate to be accurate and robust. These results

FIG. 3. Two-dimensional test inversion using Eq. (18) with M =
625, γ = 25, A = 0, and other parameters as in Fig. 1. (a) Analytic
T to point (x, y) at t = 0.15 from the origin at t = 0. (b) Inverted
T to point (y, x) at t = 0.15 from (0,0) at t = 0. (c) Azimuthally
averaged radial position of the peak response vs t , with analytic T
shown as a solid black curve and inverted T shown as a dashed red
curve. (d) Azimuthally averaged T vs t for propagation to a distance
0.2 from the stimulus point.

generalize prior analyses [18] and can be used to analyze brain
networks obtained via EEG and magnetoencephalography
measurements. Once T is known it can be used to predict
the linear response to any stimulus, including those seen in
evoked response experiments and spontaneous EEG.

The present method differs from prior techniques for re-
lated problems, including those mentioned at the start of this
paper and dynamic causal modeling [21,42,43], which often
require a specific dynamic model to be assumed at each node
and cannot always handle networks with large numbers of
nodes. In contrast, our method assumes no specific dynamics
aside from approximate linearity and can treat large networks;
for example, the case in Fig. 3 uses 625 nodes. This should
motivate more extensive measurement and analysis of brain
activity correlations. The method is also relevant to other com-
plex networks discussed in the introduction, whose structure
is difficult to measure directly, but is more readily probed via
the activity they support. Qualitatively, the present method
is equivalent to inferring the response of a drumhead to the
impact of a single raindrop (the teCM) by measuring only
the correlations of its vibrations when excited by a rainstorm
(the fCM).

The Australian Research Council supported this work un-
der Laureate Fellowship Grant No. FL1401000225 and Center
of Excellence Grant No. CE140100007.
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