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Lane formation and critical coarsening in a model of bacterial competition
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We study competition of two nonmotile bacterial strains in a three-dimensional channel numerically and
analyze how their configuration evolves in space and time. We construct a lattice model that takes into account
self-replication, mutation, and killing of bacteria. When mutation is not significant, the two strains segregate
and form stripe patterns along the channel. The formed lanes are gradually rearranged, with increasing length
scales in the two-dimensional cross-sectional plane. We characterize it in terms of coarsening and phase ordering
in statistical physics. In particular, for the simple model without mutation and killing, we find logarithmically
slow coarsening, which is characteristic of the two-dimensional voter model. With mutation and killing, we
find a phase transition from a monopolistic phase, in which lanes are formed and coarsened until the system is
eventually dominated by one of the two strains, to an equally mixed and disordered phase without lane structure.
Critical behavior at the transition point is also studied and compared with the generalized voter class and the Ising
class. These results are accounted for by continuum equations, obtained by applying a mean-field approximation
along the channel axis. Our findings indicate relevance of critical coarsening of two-dimensional systems in the
problem of bacterial competition within anisotropic three-dimensional geometry.
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I. INTRODUCTION

Competition and evolution of multiple biological species,
such as those in ecosystems, constitute one of the key sit-
uations where ideas of statistical physics can contribute to
quantitative understanding of biological problems and vice
versa [1–4]. Traditionally, theoretical approaches to such com-
petition processes often assumed uniform systems without any
spatial structure [1,5], which correspond to studying well-
mixed populations. However, recent experiments have shown
that, when multiple strains of bacteria are cultured on agar,
nontrivial domain structures are formed, which then inter-
play with their population and evolutionary dynamics [6–10].
Formation of clonal domains, as well as their spatiotemporal
evolution, were also observed in stem cell tissues and shed
light on mechanisms of homeostasis [11,12]. Those studies
have shown that many aspects of cell populations can be
characterized by universal scaling laws developed in statistical
physics, such as those for coarsening [10–12] and interface
fluctuations [6,9]. Also backed by a surge of theoretical in-
terests in evolutionary dynamics [3,4] and active matter [13],
interplay between competition and spatial degrees of freedom
has aroused increasing attention.

Recent experimental developments on microfluidic devices
[14] add another aspect to this problem. An advantage of
microfluidic systems is that one has control over the system
geometry. Indeed, it is now clear that the system geometry can
have a crucial impact on collective properties of cells [15,16].
One of the common geometries for long-time measurement
is a channel with open ends used to characterize growth and
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division of single cells, cell lineage, statistical properties of
cell populations, etc. [17–23]. As such, it is also a natural
geometry to use for studying competition problems.

Here we study competition of two nonmotile bacterial
strains in a channel with open ends. The two strains are
differently labeled but otherwise isogenic. We devise a sim-
ple model to investigate the possible existence of universal
macroscopic properties of the problem. In its simplest ver-
sion, the model consists of self-replication of cells, volume
exclusion, and escape from the open ends. Then we find that
initially mixed populations spontaneously segregate, forming
lane structures along the channel. Spatiotemporal evolution
of lanes can be characterized in terms of phase ordering in
the cross section of the channel. Remarkably, it turns out to
show logarithmically slow coarsening, characteristic of the
two-dimensional voter model [24,25], although our model has
three-dimensional geometry. We also generalize the model by
introducing mutation and killing of bacteria and find a tran-
sition from a monopolistic phase, in which lanes are formed
and coarsened until the system is eventually dominated by one
of the two strains to an equally mixed and disordered phase
without lane structure. Moreover, the characteristics observed
at the critical point between those two phases suggest the rele-
vance of the generalized voter class [25,26] known from stud-
ies of so-called absorbing-state transitions [27], though the
possibility of the Ising class is not ruled out either. These re-
sults are accounted for by continuum equations, which we ob-
tain by the mean-field approximation along the channel axis.

II. MODEL WITH SELF-REPLICATION ONLY

We consider two strains of nonmotile bacteria that self-
replicate inside an open channel with rectangular cross section
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FIG. 1. Illustration of the model with self-replication only.
(a) Sketch of the system. The channel is along the x axis and filled
with two strains of bacteria (yellow and purple). If lanes are formed
along the channel, their arrangement can be characterized by cross
sections. (b) Sketch of the time evolution rule (see text).

(Fig. 1) as used in actual experiments [17,18,22]. The channel
consists of a three-dimensional lattice of size Lx × Ly × Lz

(see, e.g., Refs. [3,10,22,28] for the validity of lattice models
to characterize statistical properties of cell populations). The x
axis is taken along the channel. We impose the open boundary
condition at the channel ends and the periodic one at the
walls. Each site is occupied by a cell of genotype s(x, y, z, t ) ∈
{−1, 1} (shown in yellow and purple, respectively, in Fig. 1).
Each cell has a division age τrep. Following an experimental
observation of Escherichia coli [22], here we assume the
gamma distribution for τrep [29]. When the division time
comes, the cell replicates a daughter with the same genotype
s at one of the six nearest-neighbor sites. This neighbor is
chosen as follows: First, the direction is chosen to be longi-
tudinal or transverse, with respect to the channel axis, and
then one of the neighbors is selected at equal probability. As a
result, neighbors in the x direction are chosen with probability
1/4 and those in the yz direction with probability 1/8. This
stochastic rule reflects the situation in which cells are partially
oriented along the channel because of the excluded volume
effect [17,30]. Figure 1(b) illustrates an example in which
the replication takes place in a direction perpendicular to the
channel walls. In this case, the generated daughter cell pushes
the existing cell toward either end of the channel, which is
again chosen randomly. The row of cells is pushed thereby,
and the one at the extremity is expelled from the system.
The total number of the cells is therefore conserved. If the
replication occurs along the channel, then the row of cells is
pushed similarly.

Both of the divided cells renew their τrep according to the
gamma distribution. In the following, we fix the parameters of
the gamma distribution so that the mean is E [τrep] = 50 and
the variance is Var[τrep] = 200. Simulations were carried out
by using Gillespie’s algorithm [31] with continuous time.

Figure 2(a) and Supplemental Movie S1 [32] show time
evolution of the system from a random initial condition.
The initial condition is generated by setting s(x, y, z, 0) = +1
with probability p0 and s(x, y, z, 0) = −1 otherwise, inde-
pendently at each site, with p0 = 0.5 corresponding to the
nonbiased situation. Then we find that the two, initially mixed

(a)

(b)

FIG. 2. Lane formation and subsequent coarsening in the model
with self-replication only. (a) Three-dimensional view of the sys-
tem with Lx = Ly = Lz = 100. The two strains are indicated by
yellow (s = −1) and purple (s = +1). The left and right figures
show the configuration at different times, t = 0 (initial condition)
and t = 50 000, respectively. See also Supplemental Movie S1
[32]. (b) Time evolution of the two-dimensional magnetization field
φ(y, z, t ) (�:φ > 0, �:φ � 0) at t = 0, 300, 1500, 5000 from left to
right. The system size is Lx = Ly = Lz = 200. See also Supplemental
Movie S2 [32].

strains of bacteria segregate in the course of time, forming
lanes along the channel. Moreover, typical width of those
lanes grows with time (see the Supplemental Movie [32]).
This suggests the relevance of coarsening and dynamic scaling
in statistical physics [33], which describes, e.g., how the
domains of up and down spins evolve in the ferromagnetic
phase of the Ising model. There is an obvious analogy because
our variable s is also dichotomous, but the time evolution of
our model does not satisfy the detailed balance (in this sense
nonequilibrium) and is anisotropic by construction.

To characterize the observed anisotropic coarsening, we
introduce the following local “magnetization”:

φ(y, z, t ) := 1

Lx

Lx∑
x

s(x, y, z, t ), (1)

which is a function of cross-sectional coordinates (y, z) and
time. The sign of φ(y, z, t ), denoted by sgn[φ(y, z, t )], indi-
cates the strain that takes the majority in each line along the
channel. Figure 2(b) and Supplemental Movie S2 [32] show
space-time evolution of sgn[φ(y, z, t )]. They clearly show
the growth of length scales—an important characteristic of
coarsening processes—in cross sections. On the other hand,
the intricate structure of the observed patterns does not seem
to be characterized by a single growing length scale; as a
matter of fact, the domain interfaces are irregular down to the
smallest length scale of the system, i.e., the lattice constant.
It is contrasted with coarsening in the ferromagnetic Ising
model and that of other curvature-driven interfaces, for which
interfaces are smoothed by effective surface tension [33].

One of the standard method for characterizing coarsening
is to measure the total length of the domain interfaces. For
our model, we use sgn[φ(y, z, t )] to determine the domains
and measure the interface density ρ(t ), defined by the fraction
of site pairs with the opposite signs [Figs. 3(a) and 3(b)].
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FIG. 3. Results for the model with self-replication only, averaged over 10 independent realizations. The data in (a) and (b) and (d)–(h) are
obtained with the system size Lx = Ly = Lz = 300. The data in (a)–(e), (g), and (h) are obtained with unbiased initial conditions with p0 = 0.5
[m(0) ≈ 0]. [(a) and (b)] The interface density in the φ field, ρ(t ). Raw data are shown in (a) in the log-log chart. The inset of (a) shows the
local exponent d[ln ρ(t )]/d (ln t ). The absence of a plateau region indicates that ρ(t ) does not decay by a power law. The horizontal dashed line
is a guide for the eyes, showing logarithmic decay of the data, ρ(t ) ∼ 1/ ln t (b). The value of the local exponent tends to zero asymptotically
(a, inset), being consistent with the logarithmic decay. (c) Channel length (Lx) dependence of the interface density ρ(t ). The size of the cross
section is fixed at Ly = Lz = 150. Although the asymptotic value of ρ(t ) ln t depends on Lx , the logarithmic decay of ρ(t ) is robust against
changes in the channel aspect ratio. (d) The spatial correlation function C(l; t ) at t = 5000(◦), 10 000(�), 30 000(∗), 50 000(�), 100 000(�)
(from lower left to upper right in the inset). t0 = 300 is used. The black dashed line shows the Ei function fitted to the data at t = 100 000. (e)
The cumulative distribution of domain size A, N (A; t ). The solid line shows N (A; t ) ∼ A−τ with τ = 0.81(3). (f) The total magnetization m(t )
for simulations from biased initial conditions with p0 = 0.65. The black bold line shows the ensemble average over 10 realizations, zoomed
in the inset, and the thinner color lines in the inset show individual time series. (g) The main panel shows the probability that sgn[φ(y, z, t )]
changes n times until time t , Pn(t ) (t = 1000, 5000, 10 000, 30 000, 50 000, 100 000, from upper left to lower right). The inset shows how the
average number of sign flips, 〈n〉 (averaged in space and over realizations), increases with t . Our observation is in agreement with the result
for the voter model, 〈n〉 ∼ t/ ln t [34]. (h) Persistence probability P0(t ), i.e., the probability that sgn[φ(y, z, t )] never changes until time t . We
find behavior consistent with the result for the voter model [34], P0(t ) ∼ exp(−const × ln2 t ), indicated by the solid line.

In contrast to usual curvature-driven coarsening, for which
ρ(t ) typically decays by a power law [33], here ρ(t ) seems
to decay more slowly [Fig. 3(a)]. Indeed, if ρ(t ) ln t is plotted
instead [Fig. 3(b)], then we find an extended plateau asymptot-
ically, which indicates ρ(t ) ∼ 1/ ln t . In fact, this logarithmic
decay is known to be characteristic of the two-dimensional
voter model [24,25], a simple model for opinion formation.
Similarity to the voter model is also apparent from the pat-
tern evolution of sgn[φ(y, z, t )] [Fig. 2(b)], which resembles
that of the voter model [24,25]. These results are robust
against changes in the system aspect ratio, as we checked for
both elongated (Lx > Ly = Lz ) and shortened (Lx < Ly = Lz )
channels [Fig. 3(c)].

The appearance of the characteristic coarsening of the voter
model is further confirmed quantitatively. For example, the
largest length scale of the pattern is known to grow as t1/2 in
the voter model [24,25,35]. A way to see this is to measure
the spatial correlation function

C(l; t ) := 〈φ(r + l, t )φ(r, t )〉 − 〈φ(r, t )〉2, (2)

with r := (y, z) and l := |l |. The tail of the measured cor-
relation function is indeed more extended for larger times
[Fig. 3(d), inset], showing growth of the relevant length
scale. For the voter model, the asymptotic expression of the

correlation function is known to be [36,37]

C(l; t ) 
 Ei1(l2/2t )

ln(t/t0)
, (3)

with the exponential integral (Ei) function Ei1(ξ ) :=∫ ∞
ξ

w−1e−wdw and a microscopic timescale t0, which is 1/16
for the voter model but is in general a model-dependent quan-
tity. This form of rescaling is tested in Fig. 3(d), main panel.
The data are found to overlap very well, being in remarkable
agreement with the Ei function predicted for the voter model
(dashed line). We also measure the cumulative distribution of
the domain area A at time t , N (A; t ) [Fig. 3(e)]. As opposed
to the correlation function, the domain area distribution is
governed by different length scales that coexist in the pattern,
and as a result it is essentially independent of time. We
find a power-law distribution N (A; t ) ∼ A−τ , which implies
fractal structure of the pattern. We obtained an exponent value
τ = 0.81(3) from the data at t = 100 000, which is consistent
with a past study on the voter model [24]. In addition, we
also measure the total magnetization of the system, m(t ) :=
〈s(x, y, z, t )〉, and find that it remains statistically constant,
even if we start from a biased initial condition [Fig. 3(f)].
Statistical conservation of m is also an important characteristic
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FIG. 4. Mutation (a) and killing (b) considered in the extended
model (see text).

of the voter model [25]. Finally, agreement with the voter
model is also seen in statistical properties of the change of
sgn[φ(y, z, t )], such as the persistence probability P0(t ) and
the average number of sign flips 〈n(t )〉 [Figs. 3(g) and 3(h)],
studied numerically for the voter model in [34].

III. MODEL WITH MUTATION AND KILLING

To investigate the robustness of our results under more
general situations, we extend our model by including muta-
tion and killing of bacteria (Fig. 4). For simplicity, here the
mutation is implemented by an event in which a parent cell
generates a daughter with the genotype s, or allele, opposite to
that of the parent [Fig. 4(a)]. We assume that mutation occurs
with probability pm at each replication. We can also interpret
this mutation as switching between bistable states of gene reg-
ulatory networks [38]. For the killing, we implement it by the
following stochastic event, having in mind the bacterial type
VI secretion system (T6SS) [10,39,40]. When a cell decides
to kill, it chooses a target randomly among the neighbors. If
and only if the chosen cell has the genotype different from the
killer’s, it is killed and a void is generated. This void, encoded
as s = 0, can be taken by a cell generated at a later time. A
killing event occurs randomly and independently from repli-
cations. The waiting time, τkill, is generated from the expo-
nential distribution with mean E [τkill]. We define a parameter
Ck := E [τrep]/E [τkill]. The previous model without mutation
and killing corresponds to taking pm = 0 and Ck = 0.

Carrying out simulations for various values of pm and Ck ,
we find that lane formation and subsequent coarsening occur
as well, for relatively small pm or large Ck . Figures 6(a) (inset)
and 6(b) show the density of interfaces in sgn[φ(y, z, t )], ρ(t ),
and the total magnetization m(t ), respectively, for pm = 0.05
and Ck varied from 0 to 0.45. For large Ck , we observe lane
formation and coarsening (Figs. 5(a) and 5(b) and Supple-
mental Movie S3 [32]), accompanied by decrease of ρ(t )
[Fig. 6(a), inset]. However, unlike the voter-type coarsening
in the previous model, the interfaces are smoother [Figs. 5(a)
and 5(b)], ρ(t ) decreases faster than 1/ ln t [Fig. 6(a), main
panel, lower curves], and m(t ) is not conserved but takes a
nonzero asymptotic value determined by the choice of the
parameter values [Fig. 6(b), upper curves]. This means that
the system is eventually dominated by one of the two strains.
In contrast, if Ck is small, lanes are not formed [Figs. 5(c)
and 5(d) and Supplemental Movie S4], ρ(t ) stops decreasing
[Fig. 6(a), inset top curve], and m(t ) vanishes [Fig. 6(b), lower
curves]. In other words, the two strains remain mixed and
equally populated. Figure 6(c) shows a phase diagram in the

(a)

(b)

(c)

(d)

FIG. 5. Evolution of the model with mutation and killing. The
system size is Lx = Ly = Lz = 100. [(a) and (b)] The monopolistic
phase where killing processes are dominant (pm = 0.3, Ck = 2.0).
(a) Three-dimensional view of the system. There exist only few voids
generated by killing (light blue). The left and right figures show
the configuration at different times, t = 0 (initial condition) and t =
5000, respectively. See also Supplemental Movie S3 [32]. (b) Time
evolution of the two-dimensional magnetization field φ(y, z, t ), at
t = 0, 500, 1500, 5000 from left to right, for the realization shown
in (a). [(c) and (d)] The data in the mixed phase where mutation is
dominant (pm = 0.3, Ck = 0.05) is shown in the same way. See also
Supplemental Movie S4 [32].

(pm,Ck ) plane, where the monopolistic (ordered) and mixed
(disordered) phases are bordered by a transition line. Near
the transition, our data seem to indicate ρ(t ) ∼ 1/ ln t and
constant m(t ) [Figs. 6(a) and 6(b), green curves indicated by
the arrows]. The simpler case without mutation and killing,
(pm,Ck ) = (0, 0), corresponds to the endpoint of the transi-
tion line [Fig. 6(c)].

These results can be interpreted as follows. First, while
mutation obviously makes the configuration more disordered,
killing actually plays a role analogous to the Ising ferromag-
netic interaction. This is because, first, killing occurs only
between cells of different genotypes and, second, the void
left by the killed cell is eventually taken by a daughter from
one of the neighbors. As a result of those competing effects
of mutation and killing, the ordered and disordered phases
appear, similarly to the ferromagnetic Ising model. Moreover,
the presence of the Ising-like ferromagnetic interaction also
implies that the interfaces are now endowed with effective
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FIG. 6. Results for the model with mutation and killing, with
system size Lx = 100 and Ly = Lz = 200. [(a) and (b)] The interface
density ρ(t ) (a) and the total magnetization m(t ) (b) for different
Ck with pm fixed at 0.05. Ck is varied from 0 to 0.45 [from top to
bottom for (a), from bottom to top for (b)]. The initial conditions are
m(0) ≈ 0 in (a) and m(0) ≈ 0.3 in (b), respectively. Each data set
was taken from a single realization. The green curve indicated by the
arrow (Ck = 0.2) is considered to be closest to the transition point.
(c) Phase diagram in the (pm,Ck ) plane. (d) Profile of the free-energy
density F (φ) [Eq. (A23)] in the obtained continuum equations.

surface tension [33], which can explain why those in the
ordered phase are smoother than the voter-type coarsening
observed at the transition.

Concerning the transition, in the literature it is known that
the characteristic coarsening of the voter model represents a
broad class of phase transitions into absorbing states [27] in
the presence of the Ising-like up or down symmetry, called
the generalized voter universality class [25,26]. Systems in the
generalized voter class usually have two symmetric absorbing
states, labeled by “spin” variable +1 and −1. The defining
feature of those absorbing states is that bulk nucleation of
the opposite spin is forbidden; in other words, once the spin
variables become globally +1 or −1, this uniform configu-
ration is kept forever. Such systems can show two different
phase transitions, one for spontaneous symmetry breaking of
magnetization and the other for whether the system eventually
falls into one of the two absorbing states. According to the
established scenario [26], if these transitions occur separately,
then the former is in the Ising class and the latter is in the
directed percolation class. However, the two transitions can
also occur simultaneously in generic models, and in this case
the voter universality class arises. Now, let us recall that
our model has the Z2 symmetry (symmetry with respect to
s ↔ −s) and that the characteristics of the two-dimensional
voter model were clearly identified at (pm,Ck ) = (0, 0), i.e.,
the endpoint of the transition line. Therefore, it is reasonable
to expect that the transition in the general case is described
by either the generalized voter class or the Ising class in two
dimensions (see also Al Hammal et al.’s theory for transitions
in the presence of two symmetric absorbing states [26]). These
possibilities are tested in the following.

First, we test the possibility of the two-dimensional gener-
alized voter class. In the presence of mutation, although strict
absorbing states do not exist, our data near the transition seem
to indicate a set of characteristic properties of the voter model,
specifically, ρ(t ) ∼ 1/ ln t and constant m(t ) [Figs. 6(a) and
6(b), green curves indicated by the arrows], suggesting the
relevance of the generalized voter class. With fixed pm(=0.05)
and varying Ck , we further determine the critical point by
detecting the logarithmic decay of the interface density ρ(t ).
Simulations for different values of Ck , with Lx = 100, Ly =
Lz = 200, and nonbiased random initial conditions (p0 =
0.5), indicated that Ck = 0.215 was closest to the critical point
[Fig. 7(a)]. With this set of the parameter values, we evaluate
the spatial correlation function C(l; t ), as well as the persistent
probability P0(t ) that sgn[φ(y, z, t )] never changes until time
t [Figs. 7(b) and 7(c)]. We find that both data seem to agree
with the predicted behavior of the voter model: The spatial
correlation function is described by Eq. (3) and the persistent
probability is consistent with the predicted behavior for the
voter model [34], P0(t ) ∼ exp(−const × ln2 t ). It is possible
that, after the lane formation, the presence of the majority
strain in each line along the channel may play the role of
a (nearly) absorbing state, since it takes long time for the
majority to change if the channel length is long enough.

Next we consider the possibility of the two-dimensional
Ising class. To determine the critical point, we consider that
the magnetization may not be the optimal quantity to use,
because it decays algebraically both in the ordered phase and
at the critical point. Therefore, we use instead the spatial
correlation function, which is known to satisfy the following
scaling form at the critical point:

C(l; t ) = l−η fc(l; t1/z ), (4)

with critical exponents η and z [41,42]. We then obtain a
set of parameter values (pm,Ck ) = (0.05, 0.21) that gave the
best collapse for the scaling form Eq. (4) [Fig. 7(d)], using
simulations with nonbiased random initial conditions [p0 =
0.5, m(0) ≈ 0]. At this putative critical point, we measure
decay of the magnetization in the cross-sectional plane, m̃(t ),
defined by the mean value of the sign of φ(y, z, t ):

m̃(t ) = 1

LyLz

∑
y,z

sgn[φ(y, z, t )]. (5)

Starting simulations from a single genotype, i.e., p0 = 1
and m(0) = 1, we find a power-law decay m̃(t ) ∼ 1/tα with
α = 0.170(20) [Fig. 7(e)]. In the case of the two-dimensional
Ising class, the magnetization indeed decays by a power law,

m̃(t ) ∼ 1/t
β

νz , (6)

with critical exponents β, ν, z [43], but the value of the decay
exponent is β/νz 
 0.057 and far from the one obtained from
the simulations, α = 0.170(20).

As an alternative approach, we may also use Eq. (6) to de-
termine the critical point. This gave Ck = 0.22 for pm = 0.05,
for which the exponent α was estimated at α = 0.056(9),
close enough to the Ising value β/νz 
 0.057. At this set
of the parameter values, we tested the scaling form Eq. (4)
for the correlation function [Fig. 7(f)]. Although the results
apparently showed systematic deviation from the collapse at
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FIG. 7. Statistical properties near the critical point for the model with mutation and killing. The system size is Lx = 100 and Ly = Lz = 200.
Nonbiased random initial conditions are used [p0 = 0.5, m(0) ≈ 0]. [(a)–(c)] Test of the generalized voter class with mutation and killing near
the transition (pm = 0.05, Ck = 0.215). (a) The interface density ρ(t ) showing logarithmic decay ρ(t ) ∼ 1/ ln t at late times. (b) The spatial
correlation function C(l; t ) at t = 5000(◦), 10 000(�), 30 000(∗), 50 000(�), 100 000(�). The black dashed line shows the Ei function fitted
to the data at t = 100 000 [see Eq. (3)]. The inset shows law data without rescaling. (c) Persistence probability P0(t ). The solid line indicates
the result for the voter model [34], P0(t ) ∼ exp(−const × ln2 t ). [(d)–(f)] Test of the Ising critical behavior. (d) The spatial correlation function
C(l; t ) for pm = 0.05 and Ck = 0.21, at which the Ising scaling law (4) seems to be satisfied most accurately for pm fixed at 0.05 and varied
Ck . Here the known values of the critical exponents for the two-dimensional Ising class, η = 1/4 and z = 2.183 [41], were used. The inset
shows the raw data. (e) Decay of the cross-sectional magnetization m̃(t ), for different Ck with pm fixed at 0.05. The completely dominated initial
condition is used: p0 = 1 [m(0) = 1]. The purple curve indicated by the arrow corresponds to the putative critical point (pm,Ck ) = (0.05, 0.21)
obtained in panel (d), showing a power-law decay m̃(t ) ∼ t−α with α = 0.170(20). It is significantly different from the critical magnetization
decay for the two-dimensional Ising class, α = β/νz 
 0.057 (dashed line). On the other hand, the data for Ck = 0.22 give α = 0.056(9),
which coincides with the Ising value within the range of error. (f) The spatial correlation function for pm = 0.05 and Ck = 0.22. The other
conditions are the same as in (d).

small l , we consider that careful finite-size analysis with larger
system sizes is needed to draw a firm conclusion. Therefore,
with the present data sets, while our results are consistent
with the generalized voter class in a number of statistical
properties, the possibility of the Ising class cannot be ruled
out either. Conclusive determination of the universality class
is an important problem left for future studies.

IV. THEORY

The numerical results presented so far can be understood
by means of continuum equations, which we obtain in the
following by a mean-field-like approximation. The variable
to use is the local magnetization field φ(r, t ) with r = (y, z)
in the cross-sectional plane. Suppose, at position ri, φi :=
φ(ri, t ) changes by 
φi during a small time step 
t . 
φi can
be expressed as follows:


φi = 
φi→i +
∑

j∈{n.n. of i}

φ j→i, (7)

where n.n. refers to the nearest neighbors in the yz plane
and 
φ j→i denotes the contribution from the line r j to ri.

The change 
φ j→i results from replications, mutations, and
killing events that occur locally and independently at all pairs
of sites between the two lines (or along the single line if
i = j). Therefore, by the central limit theorem, it can be
approximated by


φ j→i = E [
φ j→i] + √
Var[
φ j→i]ε j→i(t ), (8)

where ε j→i(t ) is white Gaussian noise with 〈ε j→i〉 = 0 and
〈ε j→i(t )ε j′→i′ (t ′)〉 = δii′δ j j′δtt ′ .

The mean E [
φ j→i] and the variance Var[
φ j→i] can be
evaluated by considering, for each type of events, the Poisson
distribution for the number of the events and the probability
that such an event changes the magnetization φi, within the
mean-field approximation (see Appendix for details). For
simplicity, here we consider that replications and killing at-
tempts occur at constant rates σ and σ ′, respectively (roughly
σ ≈ 1/E [τrep] and σ ′ ≈ 1/E [τkill]), and the void generated by
killing is filled immediately by replication from a neighboring
site. Then, taking the limit 
t → 0 and coarse-graining in
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space, we obtain

∂φ(r, t )

∂t
= − δF (φ)

δφ
+ A1∇2φ

+
√

A2(1 − φ2) + A3φ2 η(r, t ) (9)

with a Landau-like free-energy density

F (φ) = A4φ
2 + A5φ

4 (10)

and coefficients

A1 = a2

[
σ

8
(1 − pm) + σ ′

16

]
,

A2 = a2

Lx
(σ + 2σ ′), A3 = 2a2

Lx
σ pm,

A4 = −
(

1 − 2pm

4
σ ′ − pmσ

)
, A5 = 1 − 2pm

8
σ ′. (11)

Here η(r, t ) is white Gaussian noise with 〈η(r, t )〉 = 0 and
〈η(r, t )η(r′, t ′)〉 = δ(r′ − r)δ(t − t ′), and a is the lattice con-
stant.

Several remarks are now in order. First, in the case without
mutation and killing (pm = σ ′ = 0), we have A1, A2 > 0 and
A3 = A4 = A5 = 0. Then Eq. (A22) becomes the Lengevin
description of the voter model [44,45], which underpins our
observation of the voter-type coarsening in this case (Fig. 3).
Second, though both coefficients of F (φ) can change the sign
in general [Fig. 6(d)], for pm < 1/2, A5 remains positive,
while A4 changes the sign at pm = σ ′

4σ+2σ ′ ≈ Ck
4+2Ck

. This un-
derlies the transition observed in Fig. 6(c).

Finally, since − δF (φ)
δφ

= [ 1−2pm

2 σ ′(1 − φ2) − 2pmσ ]φ, in
the absence of mutation (pm = 0), the completely monopo-
listic situations φ(r, t ) = ±1 correspond to the two absorbing
states of Eq. (A22). Further, Eq. (A22) in this case takes
the form of the continuum equation proposed by Al Hammal
et al. for the generalized voter universality class [26]. If pm �=
0, then φ(r, t ) = ±1 are not absorbing any more, but our
numerical data near the transition seem to remain consistent
with the generalized voter class, though the Ising class is
not ruled out either as we already discussed. In contrast,
in the monopolistic (ordered) phase, the ordering process
seems to be driven by curvature or effective surface tension
between the two domains [Figs. 5(a) and 5(b)]. However,
while theoretically ρ(t ) ∼ t−1/2 is expected in this case, in our
simulations ρ(t ) decays significantly more slowly [Figs. 8(a)
and 8(b)]. This apparent discrepancy, which may be due to an
approximation made to derive the continuum equation, needs
to be elucidated.

V. SUMMARY

In this work, we constructed a model of competition
between two strains of nonmotile bacteria in a channel. In
the simplest situation driven only by self-replications, we
numerically found that the two strains segregate and form lane
structures along the channel. The lanes then gradually thicken.
This process was characterized in the cross-sectional plane
and turned out to be governed by the coarsening process of
the two-dimensional voter model. In the presence of killing
and mutation, we revealed a transition between the mixed

FIG. 8. Decay of the interface density ρ(t ) in the presence of
killing but without mutation (specifically, pm = 0,Ck = 1, deep in
the monopolistic phase). Ten independent realizations were used.
Nonbiased initial conditions are used. The system size is Lx =
20, Ly = Lz = 200 for (a) and Lx = 100, Ly = Lz = 200 for (b). The
insets show the local exponent d[ln ρ(t )]/d (ln t ). Although the data
suggest power-law decay instead of the logarithmic one, the exponent
takes values significantly smaller (in the absolute value) than that of
the Ising model with Glauber dynamics, −0.5. The exponent value
becomes even smaller for the longer channel.

phase and the monopolistic phase. In the mixed phase, lane
formation does not occur and the two strains are well mixed,
with equal proportion on average. In contrast, in the mo-
nopolistic case, one of the two strains dominates, though a
coarsening process qualitatively similar to that of the Ising
ferromagnet. Near the transition, our data seem to be consis-
tent with the generalized voter class, which includes the self-
replication-only case at the end of the transition line, though
the possible realization of the Ising class in the presence of
mutation is not ruled out either.

We should note that, at the price of access to large-scale
statistical properties, our model assumes an idealized situa-
tion, which in many aspects oversimplifies actual bacterial
competition and ecosystems. However, statistical properties
of the voter model identified in this work are known to be
universal in the absence of long-range interactions in a space
of interest (cross-sectional plane in our context). Indeed, if
cells are aligned as we consider in the model, previous studies
suggested that such long-range interactions were absent or
very weak [17,18,30].

One can therefore expect the same behavior to arise even in
the presence of complex biochemical and mechanical interac-
tions. Of course it is of crucial importance to test this predic-
tion in real experiments and/or more realistic models. Finally,
while we considered two neutral strains in this work, compe-
tition between two non-neutral strains is also of considerable
interest. According to our theory, this problem is expected to
be described by an asymmetric free-energy density, and in the
monopolistic phase, one of the two local minima becomes a
metastable state. It is then interesting to test, e.g., the relevance
of transient dynamics around a metastable state [46,47] in the
context of population and evolutionary dynamics.
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APPENDIX: DERIVATION OF THE
CONTINUUM EQUATION

Here we derive the continuum equation (A22), which
describes the time evolution of the local magnetization φ(r, t )
with corss-sectional coordinates r = (y, z) at coarse-grained
scales. We start from Eqs. (7) and (8) for the lattice model:


φi = 
φi→i +
∑

j∈{n.n. of i}

φ j→i, (A1)


φ j→i = E [
φ j→i] + √
Var[
φ j→i]ε j→i(t ), (A2)

where E [·] and Var[·] denote the mean and the vari-
ance, respectively, and ε j→i(t ) is white Gaussian noise with
〈ε j→i(t )〉 = 0 and 〈ε j→i(t )ε j′→i′ (t ′)〉 = δii′δ j j′δtt ′ . 
φ j→i is

the variation of φi := φ(ri, t ) due to stochastic events that
occur in a neighboring line r j , during a small time step 
t .
Such a variation occurs, for example, when a cell in the line
r j replicates and produces its daughter in the line ri, and
this repels a cell of the other strain (opposite spin) at either
channel end. Similarly, φi varies when a cell in the line r j

kills a cell (of the different genotype) in the line ri, and this
void is filled by replication of a neighboring cell, which is
assumed here to occur immediately for the sake of simplicity.
Such series of events can occur only when the pair (or the
triplet) of sites have appropriate combinations of genotype
s. The probability of having such combinations, P±,rep

j→i and

P±,kill
j→i , for replication and killing processes, respectively, with

the double sign indicating whether φi increases or decreases,
can be expressed as functions of φi and φ j by employing a
mean-field approximation. With those probabilities, as well
as the number of replication events λrep(x, y, z) and that of
killing events λkill (x, y, z) at a site (x, y, z) [with ri = (y, z)]
during the time step 
t , 
φ j→i can be expressed as


φ j→i =
(

+ 2

Lx

)⎧⎨
⎩

LxP+,rep
j→i∑
x

λrep(x, y, z) +
LxP+,kill

j→i∑
x

λkill(x, y, z)

⎫⎬
⎭ +

(
− 2

Lx

)⎧⎨
⎩

LxP−,rep
j→i∑
x

λrep(x, y, z) +
LxP−,kill

j→i∑
x

λkill(x, y, z)

⎫⎬
⎭. (A3)

Here Lx is the channel length or the total number of the cells in each lane.
Now, for simplicity, we assume that replication and killing events occur independently at constant rates σ (≈1/E [τrep])

and σ ′ (≈1/E [τkill]), respectively. Then the number of such events obey the Poisson distribution, so that E [λrep(x, y, z)] =
Var[λrep(x, y, z)] = σ
t and E [λkill (x, y, z)] = Var[λkill(x, y, z)] = σ ′
t . We thereby obtain

E [
φ j→i] = (+2)
(
σ
tP+,rep

j→i + σ ′
tP+,kill
j→i

) + (−2)
(
σ
tP−,rep

j→i + σ ′
tP−,kill
j→i

)
, (A4)

Var[
φ j→i] =
(

+ 2

Lx

)2(
σ
tLxP+,rep

j→i + σ ′
tLxP+,kill
j→i

)
+

(
− 2

Lx

)2(
σ
tLxP−,rep

j→i + σ ′
tLxP−,kill
j→i

)
. (A5)

The probabilities P±,rep
j→i and P±,kill

j→i are evaluated by applying a mean-field approximation along each line of the channel. For
the replication, with the effect of mutation taken into account, we obtain

P±,rep
j→i = 1

8
(1 − pm)

1 ± φ j

2

1 ∓ φi

2
+ 1

8
pm

1 ∓ φ j

2

1 ∓ φi

2
( j �= i), (A6)

P±,rep
i→i = 1

2
(1 − pm)

1 ± φ j

2

1 ∓ φi

2
+ 1

2
pm

1 ∓ φ j

2

1 ∓ φi

2
, (A7)

where pm is the probability that mutation occurs at each replication. Here the factor 1±φ j

2 corresponds to the probability that the
cell to replicate in the line r j is the strain s = ±1, and 1±φi

2 to the probability that the cell to be repelled from the channel in the
line ri is the strain ±1. The coefficient 1/8 in Eq. (A6) is the probability that the specific line r j ( �= ri ) is chosen as the position
of the daughter cell. It is simply replaced with 1/2 for in-line replications. Similarly, for killing processes, we obtain

P±,kill
j→i = 1 ± φ j

2

1

8

1 ∓ φi

2
G±

i ( j �= i), P±,kill
i→i = 1 ± φi

2

1

2

1 ∓ φi

2
G±

i , (A8)

where G±
i is the probability that a cell of strain ±1 self-replicates to fill the void generated by killing. It is given by

G±
i = (1 − pm)

⎛
⎝1

2

1 ± φi

2
+

∑
j′∈{n.n. of i}

1

8

1 ± φ j′

2

⎞
⎠ + pm

⎛
⎝1

2

1 ∓ φi

2
+

∑
j′∈{n.n. of i}

1

8

1 ∓ φ j′

2

⎞
⎠, (A9)

where n.n. refers to the nearest neighbors in the yz plane.
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1. The case without mutation and killing (self-replication only)

Let us first consider the simplest case without mutation and killing (pm = 0 and σ ′ = 0), in which we found characteristic
coarsening of the two-dimensional voter model. From Eq. (A4)–(A7), we obtain

E [
φ j→i] = 1

8
(φ j − φi )σ
t, Var[
φ j→i] = 1

4
(1 − φ jφi )

(
σ
t

Lx

)
( j �= i), (A10)

and

E [
φi→i] = 0, Var[
φi→i] = (
1 − φ2

i

)(σ
t

Lx

)
. (A11)

Therefore, by Eq. (A1) and (A2), we have


φi = 1

8
σ
t

∑
j∈{n.n. of i}

(φ j − φi ) +
∑

j∈{n.n. of i}

√
σ
t

4Lx
(1 − φ jφi )ε j→i(t ) +

√
σ
t

Lx

(
1 − φ2

i

)
εi→i(t ). (A12)

This can be rewritten as


φi


t
= σ

8

∑
j∈{n.n. of i}

(φ j − φi ) +

√√√√√ σ

4Lx
t

⎧⎨
⎩

∑
j∈{n.n. of i}

(1 − φ jφi ) + 4
(
1 − φ2

i

)⎫⎬⎭εi(t ), (A13)

where εi(t ) is white Gaussian noise with 〈εi(t )〉 = 0 and 〈εi(t )εi′ (t ′)〉 = δii′δtt ′ . Note that the first term of the right-hand side of
Eq. (A13) is a discrete Laplacian.

Now we coarse-grain the description by replacing the discrete coordinates ri with continuous ones r and differences with
derivatives and take the limit 
t → 0. With the lattice constant a, we obtain

∂tφ(r, t ) = a2σ

8
∇2φ +

√
2a2σ

Lx
(1 − φ2)η(r, t ), (A14)

with η(r, t ) white Gaussian noise in continuous space and time, which satisfies 〈η(r, t )〉 = 0 and 〈η(r, t )η(r′, t ′)〉 = δ(r′ −
r)δ(t − t ′). Here we used the relationship η(r, t ) 
 εi(t )/

√
a2
t that ensures∫

dr
∫

dt〈η(r, t )η(r′, t ′)〉 = 1. (A15)

Importantly, the obtained equation (A14) is exactly the Langevin description of the voter model, proposed by earlier studies
[44,45]. This underpins our numerical observation of the voter-type coarsening presented in Fig. 3.

2. The general case with mutation and killing

For the general case with arbitrary pm and σ ′, we obtain

E [
φ j→i] = σ
t

8
(1 − pm)(φ j − φi ) + σ ′
t

16
(φ j − φi ) + σ ′
t

32
(1 − 2pm)(1 − φ jφi )

⎛
⎝φi +

∑
j′∈{n.n. of i}

φ j′

4

⎞
⎠

− σ
t

8
pm(φ j + φi ) ( j �= i), (A16)

Var[
φ j→i] = 1

4

σ
t

Lx
(1 − pm)(1 − φ jφi ) + 1

8

σ ′
t

Lx
(1 − φ jφi) + 1

4

σ
t

Lx
pm(1 + φ jφi )

+ 1

16

σ ′
t

Lx
(1 − 2pm)(φ j − φi )

⎛
⎝φi +

∑
j′∈{n.n. of i}

φ j′

4

⎞
⎠ ( j �= i), (A17)

and

E [
φi→i] = σ ′
t

8
(1 − 2pm)

(
1 − φ2

i

)⎛⎝φi +
∑

j′∈{n.n. of i}

φ j′

4

⎞
⎠ − σ
t pmφi, (A18)

Var[
φi→i] = σ
t

Lx
(1 − pm)

(
1 − φ2

i

) + 1

2

σ ′
t

Lx

(
1 − φ2

i

) + σ
t

Lx
pm

(
1 + φ2

i

)
. (A19)

(A20)
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Combining Eq. (A1) and (A2), we obtain


φi


t
= σ ′
t

8
(1 − 2pm)

⎛
⎝1 − φ2

i +
∑

j∈{n.n. of i}

1 − φ jφi

4

⎞
⎠

⎛
⎝φi +

∑
j∈{n.n. of i}

φ j

4

⎞
⎠ − σ pm

⎛
⎝φi +

∑
j∈{n.n. of i}

φ j + φi

8

⎞
⎠

+
{

σ

8
(1 − pm) + σ ′

16

} ∑
j∈{n.n. of i}

(φ j − φi ) +
√

Var[
φi→i] +
∑

j∈{n.n. of i}
Var[
φ j→i]εi(t ). (A21)

Then, carrying out the same coarse-graining and the continuous-time limit as in the previous section, we finally arrive at
Eq. (A22):

∂tφ(r, t ) = −δF (φ)

δφ
+ a2

[
σ

8
(1 − pm) + σ ′

16

]
∇2φ +

√
a2

Lx
[(2σ + σ ′)(1 − φ2) + 2σ pmφ2]η(r, t ) (A22)

with

F (φ) = −
(

1 − 2pm

4
σ ′ − pmσ

)
φ2 + 1 − 2pm

8
σ ′φ4. (A23)

SUPPLEMENTAL MOVIE DESCRIPTIONS

Movie S1:
Time evolution of the model with self-replication only. The left surface is the channel outlet, while the top and right surfaces

are the boundaries. The two strains are indicated by yellow and purple. The system size is Lx = Ly = Lz = 100. See also Fig. 2.
Movie S2:
Time evolution of the two-dimensional magnetization field φ(y, z, t ) (�:φ > 0, �:φ � 0) for the model with self-replication

only. The system size is Lx = Ly = Lz = 200.
Movie S3:
Time evolution of the model with mutation and killing, in the monopolistic phase (pm = 0.3, Ck = 2.0). The left surface is

the channel outlet, while the top and right surfaces are the boundaries. The two strains are indicated by yellow and purple. The
system size is Lx = Ly = Lz = 100. See also Figs. 5(a) and 5(b).

Movie S4:
Time evolution of the model with mutation and killing in the mixed phase (pm = 0.3, Ck = 0.05). The left surface is the

channel outlet, while the top and right surfaces are the boundaries. The two strains are indicated by yellow and purple. The
system size is Lx = Ly = Lz = 100. See also Figs. 5(c) and 5(d).
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