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Temporal correlations in neuronal spike trains are known to introduce redundancy to stimulus encoding.
However, exact methods to describe how these correlations impact neural information transmission quantitatively
are lacking. Here, we provide a general measure for the information carried by correlated rate modulations
only, neglecting other spike correlations, and use it to investigate the effect of rate correlations on encoding
redundancy. We derive it analytically by calculating the mutual information between a time-correlated, rate
modulating signal and the resulting spikes of Poisson neurons. Whereas this information is determined by spike
autocorrelations only, the redundancy in information encoding due to rate correlations depends on both the
distribution and the autocorrelation of the rate histogram. We further demonstrate that at very small signal
strengths the information carried by rate correlated spikes becomes identical to that of independent spikes,
in effect measuring the signal modulation depth. In contrast, a vanishing signal correlation time maximizes
information but does not generally yield the information of independent spikes. Overall, our study sheds light on
the role of signal-induced temporal correlations for neural coding, by providing insight into how signal features
shape redundancy and by establishing mathematical links between existing methods.
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I. INTRODUCTION

A long-standing challenge in neuroscience has been to
understand the code that is used in sequences of stereotyped
action potentials (spike trains) to transmit information about
relevant signals. Earlier studies have suggested that the ef-
ficiency of the neural code can be increased when temporal
correlations in the spike trains are minimized, or equiva-
lently, that temporal correlations in spike trains introduce
redundancy to signal encoding [1–4]. This coding redundancy
among spikes can be quantified as the (negative) difference
between the mutual information in spikes about a signal that is
carried by the spike trains as a whole (Icorr) and the one carried
by their individual spikes, if they are treated as being indepen-
dent (Iind) [1,5,6]. However, exact methods to simultaneously
determine both quantities were lacking until recently and
therefore quantifying the effect of temporal spike correlations
on coding redundancy remained an open challenge.

A method to determine Iind has been known for a while and
provides a mathematically tractable information measurement
that only requires knowledge of the rate variations induced
by the signal under consideration [1,7]. It has been used
to analyze information transmission in various brain regions
such as hippocampus [8–12], visual cortex [13], and the fly
visual system [1]. However, Iind does not account for rate
correlations or any other spike correlations; and calculating
the full information Icorr between spike trains and signals
under consideration of spike correlations has been a major
obstacle. Accordingly, most of the analytic methods are based
on approximations or reduced features of the spike trains
(see, e.g., [14–20]). An exact but computationally expensive
and numerically sensitive method was introduced by Strong
et al. [21–23]. Similarly, previous studies that have directly
computed the synergy and redundancy resulting from spike
correlations either relied on series expansion approxima-

tions [1,24–27] or were formulated in terms of probability
distributions that are not generally known if temporal precise
spiking is included [28] (see [6,29] for reviews and Sec. IV
for details).

However, an exact method to calculate Icorr based on two-
point correlation functions has been put forward recently [30].
Importantly, this method fully captures the effect of all tem-
poral correlations that are present. Now, systematically com-
paring Iind and Icorr for a given scenario enables an analytical
investigation of the role of spike correlations—both intrin-
sic and signal-induced—for encoding redundancy. Analyzing
how Iind and Icorr are shaped by stimulus features yields further
insights into the mechanisms that underlie encoding redun-
dancy and hence are critical for optimization in encoding
performance. Here, we address two open questions: How can
the impact of different temporal spike correlation structures on
coding redundancy be quantified? And what are the properties
of a rate code that determine these effects?

We analyze how different signal properties and temporal
spike correlations shape the information contained in corre-
lated and independent spikes (the terms “independent spikes”
and “correlated spikes” are used in this short form for brevity;
they refer to cases where spikes are treated as being indepen-
dent or correlated, respectively). We focus on the effects of
rate correlations, in particular temporal spike correlations that
are signal induced, e.g., by sensory inputs, and do not stem
from intrinsic dynamics or spontaneous activity. We thereby
establish mathematical links between information theoretical
methods with and without incorporation of temporal spike
correlations [1,5,31].

We consider Poisson neurons whose rate follows and rep-
resents a signal. We chose this approach for several reasons:
Poisson firing can account well for the irregular firing pat-
tern and noise characteristics of cortical neurons [32–38].
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same autocorrelation, but different origin

(a) (b) (c)

FIG. 1. Spike autocorrelations can emerge from intrinsic neural dynamics or can be signal induced, or may not be present at all. Here, we
illustrate these scenarios. (a) Intrinsic correlations. A constant signal (top) causes regular spiking responses with only small variations ε in the
interspike intervals (middle). This could represent an integrate-and-fire neuron that is stimulated by a constant suprathreshold current and weak
noise. The resulting temporal autocorrelation of the spike trains shows oscillations (bottom). (b) Absence of temporal correlations. Poisson
neurons responding to a constant signal at constant rate have independent interspike intervals. (c) Signal-induced correlations. An oscillating
stimulus induces regular interspike intervals (here, neurons fire around the peaks of the stimulus). Even though the spiking correlations (bottom)
look similar to those in (a), they are induced by signal-induced rate correlations rather than internal dynamics. In this article, we examine the
effect of rate correlations on information transmission.

Poisson neurons do not exhibit intrinsic spike correlations
and therefore are eligible to analyze signal-induced corre-
lations (see Fig. 1). Furthermore, the Poisson distribution
is mathematically tractable and allows for analytic calcula-
tions [7,36,39]. Importantly, in our methodical framework
the information measure derived for Poisson neurons is also
expedient for non-Poisson spiking neurons where it can be
used to dissect the effects of intrinsic and signal-induced rate
correlations.

Using analytic calculations, we derive an expression that
yields the complete information Icorr contained in rate modu-
lations and neglects the effects of intrinsic correlations, as is
naturally given for Poisson neurons. This information can be
determined using the spike train autocorrelation irrespective
of the rate distribution. This is in contrast to the information
in independent spikes (Iind) which is determined by the distri-
bution of firing rates across time only. Moreover, using three
example signal processes we confirm that the information in
independent spikes is an upper bound for the information in
correlated spikes, reflecting a previously stated redundancy
among spikes [1]. We further find that Iind and Icorr become
identical in the limit of vanishing rate modulations. In this
case the variance of the firing rate across time completely
determines information transmission. We also demonstrate
that signals with a vanishing correlation time (a flat spectrum)
maximize the information in correlated spikes but surprisingly
do not generally lead to independent spikes even in Poisson
neurons, indicating that the approximation of independent
spikes and vanishing signal correlations are not equivalent in
terms of information transmission.

Our study provides interesting results regarding the dif-
ferences in information carried by spikes when they are as-
sumed independent and the information in correlated spikes.

Moreover, we provide a general framework for computing the
redundancy in the neural code dissecting the effects of rate
correlations and other temporal correlations.

II. RESULTS

To quantitatively analyze the impact of temporal spike
correlations on information transmission we consider Poisson
neurons whose firing rate r(t ) follows a time-dependent signal
s(t ), which implies a rate encoding of the signal. In the
notation of this work s(t ) = r(t ) is assumed, which introduces
an equivalence of the signal and rate trajectories. Temporal
correlations in the firing rate are then given by the temporal
correlations in the signal. Generally, our results are also valid
for other homeomorphic rate functions r(s(t )), where the
rate trajectory can be considered to be the signal itself. Rate
correlations in this case may not be exclusively signal in-
duced. The choice of Poisson neurons allows us to specifically
investigate the effect of these signal-induced correlations only
since intrinsic spike correlations are not present (see Fig. 1). In
Sec. II A we review the expressions for the mutual information
between signal and spikes with and without consideration
of temporal correlations. By means of three example rate
processes—a telegraph process, a process with uniform rate
distribution, and an Ornstein-Uhlenbeck process—we demon-
strate how overall rate distribution and correlation structure of
these processes influence the two information measures, and
by contrasting both measures we investigate the role of tempo-
ral correlations for coding redundancy (Sec. II B). Moreover,
we link the information transmission of independent and
correlated spikes and show that both information measures are
equivalent in the regime of small rate modulations (Sec. II C)
where only the average modulation depth determines
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information content in both cases. Finally, in Sec. II D we
present that vanishing signal or rate correlation times do not
correspond to entirely independent spikes but maximize the
information in correlated spikes.

A. Information carried by independent and
correlated spikes in Poisson neurons

The information carried by (assumedly) independent
spikes that are generated via point processes with time-
dependent firing rate r(t ) has been found to be [1,7]

Iind = 1

T

∫ T

0
dt

r(t )

ν
log2

r(t )

ν
, (1)

where T denotes the length of the sequence r(t ) and ν

is the average firing rate. In stationary conditions and for
sufficiently long T , Eq. (1) is equivalent to an averaging over
the rate-determining signal ensemble, which removes the time
dependence of the rate [1,7],

Iind =
〈

r(t )

ν
log2

r(t )

ν

〉
s

, (2)

with 〈〉s being the signal average.
The information per spike contained in entire spike trains

of correlated spikes—here also referred to as “correlation
method”—in its general form is given by [30]

I ′
corr = − 1

2ν

∫ ∞

−∞
df log2

(
1 − Ccross( f )

Cauto( f )

)
. (3)

Here, Ccross( f ) and Cauto( f ) denote the Fourier transformed
spike cross- and autocorrelation, respectively. Cross correla-
tions are calculated between the spike trains that result from
different presentations of the same stimulus, and autocorre-
lations are calculated for each spike train and averaged over
different stimulus presentations (see Methods, Sec. III B).
Notably, I ′

corr is exact under the assumption of stationary
signals and neurons with finite memory but does not require
Gaussianity in the signal [30]. In Poisson neurons, spike cor-
relations only emerge from signal-induced correlations in the
rate trajectory (Fig. 1) and are equivalent to rate correlations.
In this case, the Fourier transformed correlation functions can
be expressed in terms of the mean firing rate ν and the rate
power spectrum Srr ( f ) only (see Appendix B for details):

Ccross( f ) = Srr ( f ), (4)

Cauto( f ) = Ccross( f ) + ν. (5)

This is consistent with the fact that the cross correlation
is equivalent to the autocorrelation of the peristimulus time
histogram (PSTH) [30] which in turn is given by r(t ). It
follows that under the assumption of only signal-related spike
correlations Eq. (3) can be written as

Icorr = − 1

2ν

∫ ∞

−∞
df log2

(
1 − Srr ( f )

ν + Srr ( f )

)
. (6)

We note that Eq. (6) can be computed knowing only r(t )
and therefore does not require more knowledge than Eq. (1);
both expressions can be determined in terms of the PSTH

only (see Sec. III B), which corresponds to r(t ) and is ex-
perimentally accessible. Importantly, for non-Poisson neurons
Eq. (6) can be considered an approximation of the mutual
information when only rate correlations are taken into account
and all other correlations (e.g., intrinsic or noise correlations)
are neglected. Moreover, we would like to highlight that in
the given framework the correlation method is equivalent to
previously used lower and upper bound information estimates
(see Appendix A).

The difference Iind − Icorr is the redundancy among spikes
that arises from signal correlations in Poisson neurons, or
generally from rate correlations as obtained from the PSTH.
More generally, the difference Iind − I ′

corr is the redundancy
introduced by all present spike correlations and therefore
offers a way to compute the difference in information if all
but rate correlations are ignored.

B. Rate distribution only determines mutual information
if correlations are neglected

Although the information for independent and correlated
spikes can both be expressed as a function of the rate trajec-
tory, it is different features of that trajectory that determine
the information in either case. Considering independent spikes
means neglecting all temporal spike correlations, both intrin-
sic and signal induced. Accordingly, Iind does not contain any
temporal correlations and is well determined by the distribu-
tion of r(t ) [cf. Eq. (2); we note that Iind is invariant under any
linear rescaling of r(t ) that leaves the ratio σr/ν unchanged].
On the other hand, Icorr—considering Poisson neurons with
rate correlations—depends on the power spectrum of r(t ) [see
Eq. (6)]. In the following, we elaborate on the differences
between Iind and Icorr by means of three example processes for
the signal that are characterized in terms of their rate distribu-
tion and dynamics. All processes are assumed to be stationary
and their dynamical properties are specified subsequently.

1. Uniform rate distribution

First, we consider a rate process with uniform distribution.
Uniform rate distributions across stimuli have been argued
to optimize encoding under certain circumstances [40,41].
At a given mean rate ν and standard deviation σr it follows
from Eq. (2) that the information contained in single spikes
generated by a uniform rate distribution is given by (cf.
Methods, Sec. III C)

Iuni
ind = 1

2σr

√
3

∫ ν+√
3σr

ν−√
3σr

dr
r

ν
log2

r

ν

= −(ν2 + 3σ 2
r − 2

√
3νσr )ln

(
1 −

√
3σr
ν

)
4
√

3νσr ln(2)

+ (ν2 + 3σ 2
r + 2

√
3νσr )ln

(√
3σr
ν

+ 1
) − 2

√
3νσr

4
√

3νσr ln(2)
.

(7)

2. Telegraph process

The second rate process we consider is the telegraph
process. It is a binary process with states ν ± σr and mean
ν. Assuming equal probabilities for both states (see methods
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Sec. III D) we find for the independent spike information

I tele
ind = 1

2

∑
k={1,−1}

ν + kσr

ν
log2

ν + kσr

ν
. (8)

3. Ornstein-Uhlenbeck process

Next, we consider rate trajectories that represent Ornstein-
Uhlenbeck processes (OUPs) with mean ν and variance
σ 2

r . The process has a Gaussian distribution (see Methods,
Sec. III E) and it follows for the information contained in
independent spikes:

IOU
ind ≈ 1√

2πσ 2
r ν2

∫ ∞

0
dr exp

(−(r − ν)2

2σ 2
r

)
r log2

r

ν
. (9)

Here, the integration must be truncated to avoid negative firing
rates. As a consequence, IOU

ind is an approximation which be-
comes more accurate for smaller σr/ν. Note that the generality
of our results is not affected since all results are confirmed by
and consistent with the analytic and exact results for the other
processes.

According to Eq. (6), calculating the information in rate-
correlated spikes requires knowledge of the rate power spec-
trum. The telegraph and Ornstein-Uhlenbeck process pos-
sess an exponentially decaying autocorrelation function (see
method Sec. III F). Here we assign the same autocorrelation
function to the process with uniform rate distribution for the
purpose of demonstration. The power spectrum of a process
with exponentially decaying autocorrelation reads

Sexp
rr ( f ) = σ 2

r τ

π (1 + f 2τ 2)
, (10)

where τ is the correlation time. From Eq. (6) follows that
the information in correlated spikes at the given rate power
spectrum is the same for all three processes,

Iexp
corr = Iuni

corr = I tele
corr = IOU

corr, (11)

and reads

Iexp
corr = − 1

2ν

∫ ∞

−∞
df log2

(
1 − Sexp

rr ( f )

ν + Sexp
rr ( f )

)

= π3/2ν − π
√

ν(πν + σ 2
r τ ) + √

πσ 2
r τ

τ ln(2)
√

ν3(πν + σ 2
r τ )

. (12)

With the results Eq. (7), (8), and (12) at hand, we make
some interesting observations. First, even though all processes
have the same spectral decomposition and variance, the in-
formation in spikes that are assumed to be independent is
different because the distributions of r(t ) are different (see
Fig. 2). Accordingly, if the overall distribution of r(t ) is fixed
but the correlation time is varied, Iind remains unchanged for
all processes. On the other hand, the information contained in
correlated spikes at a given signal power spectrum does not
depend on the distribution of r(t ).

As a general finding, in rate modulated Poisson neurons
the inclusion of signal-induced spike correlations always di-
minishes the information contained in spike trains compared
to when spikes are treated as independent (see Figs. 2 and 3).
This redundancy among spikes has been proposed before [1].

FIG. 2. Signal power spectrum determines the information con-
tained in correlated spikes whereas the information in independent
spikes is given through the signal distribution. The red (lower) line
and symbols show the information of correlated spikes for a uniform,
a telegraph, and an Ornstein-Uhlenbeck process, respectively. It is
the same in all cases and varies with τ . On the other hand, the
information contained in independent spikes [blue (upper) line and
symbols] does not vary with τ but is different for all processes
despite their identical spectra. Here, the differences in the probability
distributions of r(t ) in the three processes lead to different encoding
redundancies. The dashed line is the analytic limit limτ→0 Icorr =
I0 = σ 2

r
2ln(2)ν2 [Eq. (19)]. For all curves it is ν = 1 and σr = 0.5ν.

C. At small rate modulations spikes are effectively independent
irrespective of temporal correlation structure

As discussed above, correlated rate modulations diminish
the transmitted information. We can expect the contribution of
correlations to vanish in the limit σr → 0. In the following we
show how this limit leads to an equivalence of Iind and Icorr.

Because [r(t ) − ν] → 0 when σr → 0, we can expand the
integrand of Eq. (1) in r(t ) around ν. Expanding up to second
order we get

Iind ≈ 1

T

∫ T

0
dt

r(t ) − ν

νln(2)
+ [r(t ) − ν]2

2ν2ln(2)
= σ 2

r

2ln(2)ν2
. (13)

The first term of the integrand vanishes because the time
average of r(t ) is ν, and the time average of the numerator of
the second term is the rate variance. This result is consistent
with first order expansions of Eqs. (7) and (8) in σ 2

r .
For the correlation method of Eq. (6) the limit σr → 0

implies that we can expand Icorr in Srr ( f ) at each frequency.
Expanding to first order in Srr ( f ) we obtain

Icorr ≈ 1

2ln(2)ν2

∫ ∞

−∞
df Srr ( f ) = σ 2

r

2ln(2)ν2
. (14)

Thus, in the limit of vanishing rate modulations both informa-
tion estimates are equivalent as they possess the same leading
order expansion in σr which is given by

I0 ≡ σ 2
r

2ln(2)ν2
. (15)
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FIG. 3. Temporal correlations introduce redundancy. The infor-
mation in independent spikes (upper curve) is always larger than that
in correlated spikes (lower curves in shades of red). Shown here is
the information per spike for telegraph processes with σr/ν as given
on the x axis. In the limit of very small rate modulations (σr → 0)
both cases converge to I0 [Eq. (15), shown as dashed line]. For all
curves it is ν = 2.

This result emphasizes that the information in both indepen-
dent and correlated spikes are in leading order determined by
the rate processes’ variance that corresponds to the modula-
tion depth or dynamic range around the baseline firing rate,
irrespective of other statistical properties of r(t ).

D. Information in correlated spikes is maximized in the limit
of vanishing correlation time

Intuitively, one way to reduce the impact of signal-induced
rate correlations is to decrease the signal correlation time τ ,
because this reduces the width of the autocorrelation function.
Here, we investigate the influence of vanishingly small corre-
lation times on the information carried by correlated spikes.

A vanishing correlation time is equivalent to a flat signal
power spectrum [cf. the power spectrum Eq. (10) as an
example]. Therefore, we now consider a rate power spectrum
Srr ( f ) that is constant for all frequencies | f | � fc and zero
otherwise (e.g., band-limited white noise). Later we take the
limit fc → ∞. For a given rate variance σ 2

r it follows that∫ fc

− fc

df Srr ( f ) = σ 2
r ⇒ Srr ( f ) = σ 2

r /(2 fc). (16)

Inserting in Eq. (6) and expansion in 1/(2 fc) yields

Icorr = − 1

2ν

∫ fc

− fc

df log2

(
1 − σ 2

r /(2 fc)

ν + σ 2
r /(2 fc)

)
(17)

= fc

ν

{
σ 2

r /(2 fc)

νln(2)
+ O

[(
σ 2

r

2 fc

)2
]}

. (18)

Now, the limit τ → 0 of vanishing correlation time corre-
sponds to taking the limit fc → ∞ in the last equation. This

limit exactly yields I0 and hence it is

lim
τ→0

Icorr = I0 � Iind. (19)

This result is consistent with the limit τ → 0 of Eq. (12),
representing the special case of an exponentially decaying
autocorrelation function. In Figs. 2 and 3 the finding is il-
lustrated by the fact that the curves of Icorr approach that of
I0 for decreasing correlation time. At a given rate variance I0

serves as an upper bound for Icorr. However, we also know
that I0 is equivalent to the information in independent spikes
only in the limit of vanishing rate modulations. Therefore,
vanishing rate correlation times maximize the information
in correlated spikes for an otherwise fixed rate process but
do not generally coincide with the case where spikes carry
information independently (cf. Fig. 2). From one perspective,
this can be explained by the cumulative redundant effect of
the spike correlations across frequencies, here captured by
σ 2

r , which does not have to be small even if Srr ( f ) is small
everywhere. Moreover, the result of Eq. (19) expresses an
essential difference between the notions of independent spikes
in Iind and the zero correlation time limit of Icorr. The deriva-
tion of Iind not only relies on the assumption of statistically
independent firing rates at different times, but additionally
assumes that the signal entropy is that of a homogeneous
Poisson process [1,25,42] with rate ν an no rate modulations.
The zero correlation time limit of Icorr on the other hand
takes into account that rate modulations (with variance σ 2

r )
are present, albeit independent across time.

III. METHODS

A. Poisson neurons

We consider spike trains which result from Poisson point
processes with a dynamic rate r(t ). The spiking mechanisms
can be described as follows: time is discretized in bins of size
� → 0 that contain at most one spike [7,43]. In a given bin n
at time tn = n� a spike occurs with probability p = �r(tn) no
spike is emitted with probability 1 − p. Spiking in a single bin
hence occurs according to a Bernoulli process with probability
p. Poisson spiking implies that all time bins are conditionally
independent given the firing rate. In particular, the probability
of spiking in one time bin is not conditioned on the probability
of spiking in any other time bin [43]. Poisson neurons with a
constant rate exhibit a coefficient of variation and Fano factor
of 1 in their firing statistics [44]. They have been found to
be an appropriate description for the noise characteristics and
firing irregularity in biological neurons [33–35].

B. Spike correlation functions

We define the Fourier transform of a time series g(t ) with
length T as

F (g(t )) = g̃( f ) =
∫ T

0
g(t )e−i2π f t dt . (20)

In this article we assume T → ∞. The rate power spectrum is
defined as the Fourier transformed autocorrelation of the rate
trajectory r(t ),

Srr ( f ) = |r̃( f )|2, (21)

where signal averaging is implicitly made because T → ∞.
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We represent spike trains y(t ) as sequences of δ peaks
at spike times t f , such that y(t ) = ∑

t f
δ(t − t f ). Then, the

autocorrelation function in frequency space is given by

Cauto( f ) = 〈ỹn( f )ỹ∗
n ( f )〉trn , (22)

where ỹn( f ) is the Fourier transform of the spike train in trial
n. For each trial 1, . . . , N a new signal (here, rate trajectory)
from the according stochastic ensemble is presented and
averaging 〈〉trn occurs over all trials. One noteworthy property
of Cauto is that its large frequency limit is equal to the average
firing rate, lim f →∞ Cauto( f ) = ν. The spike cross-correlation
function is defined analogously as

Ccross( f ) = 〈ỹm( f )ỹ∗
k ( f )〉trm �=k . (23)

Here, the averaging occurs over pairs of neurons or trials m
and k whose spike trains originate from presentation of the
same signal or rate.

C. Process with uniform distribution

If the rate process is assumed to follow a uniform distri-
bution with a given mean ν and variance σ 2

r , the stationary
probability for a rate r is given by

p(r) =
{

1
2σr

√
3

if −σr

√
3 � r − ν � σr

√
3,

0 otherwise.
(24)

This imposes a constraint on the maximum variance at a given
mean rate in order to prevent overmodulation and mathemati-
cal inconsistencies; we require σr � ν/

√
3.

D. Telegraph process

Another stochastic process we consider is the telegraph
process, also called random telegraph noise. This process is a
binary process that can assume the values ν + σr and ν − σr .
Jumping between these two processes occurs randomly with
a specified rate that determines the correlation time of the
process [45]. The telegraph process resembles the switching
between up and down states of cortical activity [46–48]. Here,
we assume that both values occur with equal probability.
Hence,

p(r = ν + σr ) = p(r = ν − σr ) = 1/2. (25)

To avoid negative rates, σr � ν is required.

E. Ornstein-Uhlenbeck process

Ornstein-Uhlenbeck processes (OUPs), also known as col-
ored noise, are bandpass filtered versions of Gaussian white
noise and have been found to be a good description of neu-
ronal activity [49–51]. For rates following an OUP with mean
ν and variance σ 2

r the stationary probability distribution is
given by a normal distribution,

p(r) = N
(
r
∣∣ν, σ 2

r

)
. (26)

Importantly, this normal distribution does not bound r and
technically involves negative rates. In Results, Sec. II, the in-
tegration over p(r) is restricted to non-negative rates, resulting
in approximations to the mutual information (cf. Sec. II B 3).

At the same mean and variance, the uniform, telegraph, and
Ornstein-Uhlenbeck processes realize fundamentally different
rate distributions.

F. Exponentially decaying autocorrelation

Generally, the probability distribution of a stochastic pro-
cess is—apart from mean and variance—independent of its
autocorrelation function. In fact, stochastic processes with
arbitrary probability distribution and autocorrelation can be
generated [52,53]. An important class of stochastic processes
are those with exponentially decaying autocorrelations. For
example, Ornstein-Uhlenbeck processes, also known as col-
ored noise, are characterized by this type of autocorrelation
and have been found to be a good description of neuronal
activity [49–51]. For a (signal-dependent) rate process r(t )
such a correlation reads

1

T

∫ T

0
dt r(t )r(t − h) − ν2 = σ 2

r e−|h|/τ , (27)

where σ 2
r and τ are the variance and correlation time, re-

spectively. The corresponding power spectrum is given by
Eq. (10). Telegraph and Ornstein-Uhlenbeck processes natu-
rally have exponentially decaying autocorrelations [45]. This
assumption is also made for the process with uniform distri-
bution in order to completely specify its dynamical properties.

IV. RELATION TO PREVIOUS WORK

A number of studies has addressed the issue of re-
dundancy in spikes both within and across cells (see,
e.g., [24,27,28,54,55] or [6,29] for reviews). Here, we review
these studies and relate them to our present work. We thereby
focus on spike correlations in one neuron across time rather
than across neurons.

Many previous studies have devised approximate expan-
sions of the mutual information around Iind [Eq. (2)], incor-
porating the effect of signal and noise correlations in higher
order corrections to this expression. Such expansions of the
mutual information were for example done in terms of the
recording length for both spike count and rate codes [24]
and temporal codes [27,54]. The result is a systematic de-
composition of the mutual information in parts containing
different types of signal and noise cross and autocorrela-
tions. Investigating these components, the method allows us
to identify whether the different correlations add synergy
or redundancy to the neural code. Interestingly, if Poisson
spiking is assumed, the only remaining correction to the
information is given in terms of signal correlations and always
reduces the overall information rendering Eq. (2) an upper
bound, in accordance with our results (see, e.g., Sec. II D).
The second order decomposition of the information has been
proven a good approximation for short windows of stimulus
presentation and low firing rates [27] (effectively, correlations
between more than two spikes are assumed to be negligible for
information transmission [6]). Our study, on the other hand,
assumes recording windows that are much longer than the
signal correlation time and that contain many spikes; in this
setting our results are exact.

An expansion similar to [54] has been put forward by
DeWeese [25,42] for single cells only and comprises a cluster
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expansion in the signal correlation time around Eq. (2). This
yields similar results as [54] and [27] but omits terms that
contain spike correlations at equal times [27,42]. Taking the
limit of zero correlation time in this expansion only leaves the
leading order term Iind. This, however, is only an upper bound
for the same limit of the correlation method Eq. (6). Again, we
argue that this discrepancy reflects the different assumptions
about the signal averaged spiking statistics in the two methods
[Eq. (1) vs Eq. (6)]. In one case the zeroth order expansion of
the signal entropy is that of a homogeneous Poisson process
(with the signal-averaged firing rate) and hence oblivious of
rate modulations. The correlation method takes these modu-
lations into account and depends on the variance of the rate
process [cf. Eq. (19)]. Rate modulations thus contribute to
the information even if they are independent across time.
Therefore, both methods provide different reference values
for the information in independent spikes depending on the
moments of the stationary rate distribution that are considered
relevant. Often the effect of correlations is measured by means
of a reference that is computed on shuffled spiking data [6,29].
Shuffling a modulated rate process in time leaves both mean
and variance unchanged. We therefore think the limit I0 serves
as a good alternative reference for the information in indepen-
dent spikes and could be used as such in future studies.

An exact decomposition of the mutual information has
been put forward by Pola et al. [28] and enables the inves-
tigation of synergy and redundancy among spikes, including
all effects of correlations within and across cells. Similar
to [27,54], the information is decomposed in a linear term,
a signal-similarity term, a stimulus-independent correlational
component, and a stimulus-dependent correlational compo-
nent [28] (a similar decomposition of the population infor-
mation is presented in [6]). This method thereby generally
allows for an exact and rigorous investigation of the effects
of different kinds of correlations on information transmission.
In particular, the role of cross-neural correlations that are not
investigated here can be addressed with this method. However,
the decomposition method does not explicitly provide a means
to determine the effect of temporal spike correlations on infor-
mation transmission. In fact, considering single neurons the
only remaining term in the method of [28] is Ilin and merely
describes the information in single neurons in most general
terms as mutual information of signal and spiking response.

Because the method of [28] is based on computing proba-
bility distributions over all possible spike trains it is in practice
limited by the analytical tractability of these probabilities and
encounters problems with sampling biases for experimental
data of limited size [6,28,55]. Other studies addressed this
problem and introduced shuffling methods to reduce the bias
in lower and upper bounds to the information [55,56]. Their
approach comprises an estimation of the role of correlations
for information transmission in terms of general response
distributions that had previously been proposed [57,58] (and
whose validity has been debated [6,29]). However, due to
the “curse of dimensionality” these methods cannot overcome
the sampling problem when, e.g., large sequences with high
temporal resolution are considered.

The correlation method of the present study only requires
pairwise spike correlations and hence requires only knowl-
edge of the second order statistics of the spiking responses.

These properties are well accessible both analytically and
experimentally. This renders Eqs. (2), (3), and (6) conve-
nient tools for the investigation of the role of spike cor-
relations in cases where long, stationary stimuli with finite
correlation time can be assumed. In situations where short
recording lengths, low spike counts, or very slow signals
are present, or when cross-neural correlations are considered,
other methods discussed in this section are more appropriate
(see, e.g., [14,57,59] for applications on real data).

V. SUMMARY AND GENERAL DISCUSSION

In this study we analyzed the information content and en-
coding redundancy that stems from temporal (signal-induced)
rate correlations. Deriving the information contained in an in-
homogeneous Poisson point process which encodes a continu-
ous valued signal by modulation of the firing rate, we showed
that the information in neurons with only rate correlations can
be expressed using second-order statistics of the PSTH only
[Eq. (6)]. Contrasting this to the information carried by neu-
rons that are considered independent, we could analytically
determine the amount of redundantly encoded information
due to temporal correlations. With this approach we confirmed
that growing rate correlation amplitudes increase the encoding
redundancy among spikes (see Fig. 3) [1]. We illustrated
that the information in independent and rate-correlated spikes
is completely determined by first-order (overall distribution)
and second-order (autocorrelation) statistics of the rate tra-
jectory, respectively. As a rather surprising consequence the
information in rate modulated Poisson neurons only depends
on the spikes’ autocorrelation structure, regardless of other
properties of the rate trajectory (see Fig. 2).

Moreover, we mathematically proved the intuition that the
information in correlated and independent spikes becomes
identical in the limit of vanishing rate modulations. We further
demonstrated that signals with a vanishing correlation time (a
flat spectrum) maximize the information in correlated spikes,
but do not generally lead to independent spikes even in
Poisson neurons. Importantly, our results are not restricted
to Gaussian rate processes and we showed that a given sig-
nal power spectrum can be realized through different (non-
Gaussian) processes [60] which yield different redundancy.

From our results follows that it may be beneficial for
a neural system to temporally decorrelate either its input
statistics, or intrinsically decorrelate the response to a corre-
lated input. This could be done by low signal-dependent rate
modulation depths. However, this at the same time reduces
the overall information transmission. As follows from Figs. 2
and 3, a better strategy would be to minimize the correlation
time in order to maximize information transmission. This is
known as temporal whitening and can be implemented, e.g.,
through fast synapses or adaptation mechanisms [5,61–65].
One of our findings is that even complete whitening does
not lift the information to the level of genuinely independent
spikes as characterized by Iind (cf. Sec. IV). Whereas previous
theoretical and experimental studies have shown that neurons
can transmit information independently [43,57,66], it seems
to be unclear whether whitening of the neural responses also
implies independent spikes as is often assumed [5,43]. How-
ever, these remaining levels of redundancy after whitening
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may be beneficial and increase the robustness to noise by pro-
viding longer windows for reliable signal integration. This is
particularly true if external (input) noise sources are relevant.
In our model framework all noise effects are summarized in
the Poisson spiking variability (Fano factor of 1) and noise
sources cannot be separated.

In Sec. II C we showed that there is a mathematical limit
at which the information for independent spikes and the
correlation method converge to an expression I0 that only
depends on the dynamic range of the rate trajectory. Whereas
this appears to be an intuitive result it has not been formally
obvious because Icorr and Iind have been formulated in the
time and frequency domain, respectively. The finding links
previous work on the Poisson limit [1], lower and upper bound
calculations [31], and the more recent analysis of the complete
mutual information [30]. At the same time it provides a very
intuitive notion for the information transmission in a rate code
at lowest order: information is proportional to the squared
coefficient of variation of the rate process. This in turn is
in accordance with the view that the quality of a rate code
grows with its dynamic range—as long as approximately
linear signal-rate relations hold.

In order to derive Icorr [Eq. (6)] we make the assumption
of Poisson firing which has been proven to be reasonable in
many cases for cortical neurons but cannot be considered to
be always valid [32,67]. The present work focuses on the
impact of external signals whose correlations are reflected
in rate correlations. Nonetheless, Icorr can be computed for
any spiking data irrespective of their correlation structure,
e.g., obtained from simulations, recorded data or analytical
calculations, as long as stationarity criteria are fulfilled [1,30].
It then corresponds to the information carried by the rate mod-
ulation only, ignoring other correlations and temporal codes
with high temporal precision. It can be used to distinguish
the effects of rate correlations and other correlations, such as
intrinsic noise correlations, by comparing I ′

corr to Iind.
In a linear rate encoding [r(t ) ∼ s(t )], signal correlations

and rate correlations are equivalent (cf Fig. 1). However, in
neural circuits stimulus changes are not generally translated
into proportional rate changes, and signal and rate correlations
are not necessarily equivalent [43]. Often, linear approxima-
tions of the input-output relations are appropriate [68] and can
be obtained analytically for neuron models [69–71], and then
Iind − Icorr measures the effect of signal-induced correlations
only. If the assumptions of rate encoding and linearity are not
given Iind − I ′

corr can be used to determine the role of other
correlations, such as higher-order rate correlations [20] and
intrinsic correlations [44]. We have restricted our analysis
to signal-induced rate correlations in order to introduce a
general, analytic framework. However, this could certainly
be an important focus for future experimental and theoretical
studies. Applying our approach to in vivo data by calculating
the respective first and second order spiking statistics could
help shed light on the controversial role of spiking correlations
for neural coding.

Neurons are embedded in networks in which interneural
correlations can arise [72], even though these correlations are
considered to vanish in balanced networks [73]. In particular,
noise correlations can generally have additional synergetic
or redundant effects on population encoding (see [74,75] for

reviews). In this work signal correlations are incorporated
through the signal-carrying rate trajectories; noise correla-
tions are not present in the Poisson framework but have
been found to be small [76]. Moreover, because our work
represents the limit of disconnected neurons it can promote
network level studies by providing a reference for redundancy
effects that are not mediated by interneural coupling but by
temporal interactions only. Future extensions of the present
work to population encoding could be guided by previous
studies that include cross-neural noise and signal correla-
tions [6,27,28,54,58] (see Sec. IV).

In summary, our work provides analytically and experi-
mentally accessible methods to compute the influence of rate
correlations on redundancy in neural information encoding.
These influences are reducible to simple first and second
order statistics of the rate process. Comparing our results to
existing results reconciles different methodologies that have
been present in the field.
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APPENDIX A: COMPARISON TO BOUNDED
INFORMATION ESTIMATIONS

Here, we show that the complete mutual information I ′
corr

from Eq. (3) is indeed equivalent to the previously used lower
and upper bounds for the information for rate modulated
Poisson neurons.

1. Lower bound estimation

A commonly used method to determine the information
(per spike) in spike trains is given by the information content
that can be decoded linearly. In its general form it is given
by [31,77]

Ild = − 1

2ν

∫ ∞

−∞
df log2

(
1 − |Ssy( f )|2

Sss( f )Cauto( f )

)
, (A1)

where Ssy( f ) is the cross spectrum of signal s(t ) and spiking
responses y(t ), defined by

Ssy( f ) = lim
T →∞

〈s̃( f )ỹ∗( f )〉T , (A2)

and Sss( f ) is the signal autocorrelation. This information esti-
mate has been used in numerous studies [65,78–83] and rep-
resents a lower bound for the total information content [31].
It is obtained as the mutual information of the signal and a
response based linear signal reconstruction. Nonlinear signal-
response correlations cannot be captured by Eq. (A1) and
are equivalent to noise from the information transmission
perspective.

As described in Methods, Sec. III B, if the signal is equiv-
alent to r(t ) it is Ssy( f ) = Srr ( f ) = Ccross( f ) [see Eq. (B9)
below]. Inserting these relations in Eq. (A1) reveals that
the linearly decodable information is equivalent to the full
information Eq. (3). This is an intuitive finding since by design
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the signal is linearly encoded in the firing rate such that all
information is linearly encoded in rate modulations.

2. Upper bound estimation

An upper bound for the mutual information as introduced
previously [31,84,85] is given by

Iub = −1

2

∫ ∞

−∞
df log2

[
1 − γy1y2 ( f )

]
df , (A3)

where

γ 2
y1y2

= lim
T →∞

|〈ỹ1( f )ỹ∗
2( f )〉|2

|〈ỹ1( f )〉|2|〈ỹ2( f )〉|2 , (A4)

with spiking responses y1, y2 to the same signal at different
trials. We identify |〈ỹ1( f )ỹ∗

2( f )〉| = Ccross( f ) and |〈ỹ1( f )〉|2 =
|〈ỹ2( f )〉|2 = Cauto( f ) using standard stationarity assumptions
and the relations from Methods, Sec. III B. Given these iden-
tities, we recognize that the upper bound Eq. (A3) and exact
information Eq. (3) are equivalent. Importantly, this is the case
irrespective of the Poisson spiking assumption.

APPENDIX B: SPIKE CORRELATION FUNCTIONS FOR
POISSON NEURONS

In this section we illustrate in some more detail how the
correlation functions Eqs. (4) and (5) can be derived from the
properties of Poisson spike generation.

In the time domain the cross-correlation function of two
spike trains from trials m and k at time lag h, generated
through a Poisson process (see Sec. III A) with rate r(t ), is
given by

F−1{Ccross( f )}(h) = 1

T

∫ T

0
dt 〈ym(t )yk (t − h)〉trm �=k , (B1)

with trial average 〈〉tr . As the probabilities of spiking are
conditionally independent between trials it follows that

F−1{Ccross( f )}(h) = 1

T

∫ T

0
dt 〈ym(t )〉trm〈yk (t − h)〉trk (B2)

= 1

T

∫ T

0
dt r(t )r(t − h). (B3)

Here, r(t ) = 〈y(t )〉 is the definition of the rate in the sense of
a PSTH. Fourier transforming Eq. (B3) yields Eq. (5) and is
equivalent to the (Fourier transformed) autocorrelation of the
PSTH (cf. [30]).

Similarly, the autocorrelation function in the time domain
is given by

F−1{Cauto( f )}(h) = 1

T

∫ T

0
dt〈ym(t )ym(t − h)〉trm . (B4)

Poisson spiking implies that the probability of spiking at
time t only depends on r(t ) (by independence) and there-
fore at any lag |h| > 0 different and equal trials are not
distinguishable. Consequently, for finite lag the trial average
in the previous equation again factorizes. Hence, for |h| >

0 it is F−1{Cauto( f )}(h) = F−1{Ccross( f )}(h). For h = 0 the
autocorrelation reads

F−1{Cauto( f )}(0) = 1

T

∫ T

0
dt

〈
y2

m(t )
〉
trm

. (B5)

Here, the integrand represents for each t the spike autocorrela-
tion at zero time lag for a homogeneous Poisson process with
rate r(t ). This holds even though time averaging is not carried
out, because an averaging over a large (infinite) number of
trials is equivalent. The autocorrelation of a homogeneous
Poisson process is known [43]. Inserting and integrating over
all times yields

F−1{Cauto( f )}(0) = 1

T

∫ T

0
dt r(t )δ(0) + r2(t ) (B6)

= νδ(0) + σ 2
r + ν2. (B7)

Here, the last two terms are negligible as they are much
smaller than νδ(0) and only present at h = 0, and therefore
do not contribute to the Fourier transform yielding Cauto( f )
as T → ∞. Taken together, the autocorrelation in the time
domain hence reads

F−1{Cauto( f )}(h) = νδ(h) + 1

T

∫ T

0
dt r(t )r(t − h), (B8)

and Eq. (4) can be obtained as its Fourier transform.
Using similar arguments as above we also find that

1

T

∫ T

0
dt 〈ym(t )rm(t − h)〉trm = 1

T

∫ T

0
dt r(t )r(t − h),

(B9)

because the rate is fixed across trials (with the same sig-
nal) and we assumed r(t ) ∼ s(t ). Therefore, here the signal-
response cross correlation is equivalent to the spike autocor-
relation. We made use of this relation in Appendix A 1.
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