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Spectra of random networks with arbitrary degrees
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We derive a message-passing method for computing the spectra of locally treelike networks and an
approximation to it that allows us to compute closed-form expressions or fast numerical approximates for the
spectral density of random graphs with arbitrary node degrees—the so-called configuration model. We find that
the latter approximation works well for all but the sparsest of networks. We also derive bounds on the position
of the band edges of the spectrum, which are important for identifying structural phase transitions in networks.
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I. INTRODUCTION

The spectral properties of the adjacency matrix of a net-
work play a central role in the analysis of network struc-
ture, for instance in the eigenvector centrality [1], in graph
partitioning and community detection [2–4], in the theory of
dynamical systems on networks [5], and in the analysis of
structural phase transitions such as percolation [6,7], localiza-
tion [8,9], and detectability transitions [10,11].

There exist well-known computer algorithms for calculat-
ing the eigenvalue spectra of matrices that can be applied
directly to the adjacency matrix of a network, but they are
numerically demanding, taking time of order n3 to calculate
all eigenvalues of an n-node network. Furthermore, they give
only the spectrum of a single network instance, where in many
cases we would like to calculate the average spectrum of an
entire graph ensemble. In this paper, we develop an alternative
approach to calculating network spectra, based on message-
passing methods and focusing particularly on the case of the
so-called configuration model—a random graph with a given
degree sequence and one of the standard models in the theory
of complex networks. We first develop a general message-
passing method, which is exact on arbitrary networks that are
free of short loops and which is closely related to previous
approaches for calculating graph spectra. Then we further
develop an approximation to this method for the particular
case of the configuration model in the limit of large network
size that allows us to find closed-form expressions for the
spectral density in certain cases and to perform numerical
calculations in O(1) time in others.

There has been a significant amount of previous work on
the spectra of complex networks. In early work, Farkas et al.
[12] computed spectra for a range of networks using standard
numerical methods, and demonstrated clear deviations of the
spectral density from the Wigner semicircular form expected
for traditional dense random graphs. Goh et al. [13] looked
at networks with power-law degree distributions (a common
feature of many empirical networks), giving both numeri-
cal results and analytic bounds for the largest eigenvalues.
Dorogovtsev et al. [14] gave an analytic prescription for

calculating complete spectra of configuration model networks,
but they were unable to solve the resulting equations. Instead,
therefore, they developed an approximation, which is similar
in some respects to our own though different in both motiva-
tion and final form, and which appears to give good results in
some cases but is rather inaccurate in others, such as networks
with power-law degree distributions. A contrasting approach
has been pursued by Semerjian and Cugliandolo [15], who
start from the classic formulation of Edwards and Jones [16]
of the spectral density in terms of a Gaussian path integral
and use a replica-type analysis to derive several different
approximations to the spectrum of a traditional Erdös-Rényi-
style random graph. Kühn [17] applied similar methods to
the configuration model, using an analysis reminiscent of
the Viana-Bray solution for a dilute spin glass to derive an
approximation to the spectrum that is similar in its accuracy to
ours, although quite technically daunting. Rogers et al. [18],
starting again from the Edwards-Jones formulation, derive a
message-passing method essentially equivalent to the one we
use, which they employ as a numerical tool for computing
spectra. Message-passing methods have also been extended to
a range of other spectral calculations [19,20]. Chung et al. [21]
study a slightly different class of model networks, those with
given expected degrees and statistically independent edges
(sometimes called the Chung-Lu model following earlier
work by some of the same authors [22]), for which they derive
an expression for the single largest eigenvalue, which plays a
role, for instance, in percolation calculations [6]. Using tools
from free probability theory, Nadakuditi and Newman [23]
calculated complete spectra for the same class of networks.

The outline of this paper is as follows. In Sec. II we derive
message-passing equations for the spectral density that form
the basis for subsequent developments. In Sec. III we de-
rive our approximation to the message-passing equations for
the case of the configuration model, and show how it can be
used both to perform fast numerical calculations and, in some
cases, to give analytic solutions for the spectral density. We
also use it to derive bounds on the position of the edges of the
spectrum, which play a central role in the theory of structural
phase transitions in networks. In Sec. IV we give a number of
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example applications of our methods, showing the accuracy
of the approach in some cases, as well as other cases where it
breaks down. In Sec. V we give our conclusions and suggest
some directions for future work.

II. SPECTRAL DENSITY OF A LOCALLY
TREELIKE NETWORK

Our calculations begin with the derivation of a system of
message-passing equations for computing the spectral density
of a locally treelike network, meaning a network where the
local neighborhood of any node, out to any fixed distance,
takes the form of a tree with probability 1 in the limit of
large network size. This part of the calculation is similar to
developments described previously by Dorogovtsev et al. [14]
and Rogers et al. [18], although our derivation is interesting
in its own right because it employs only elementary algebraic
methods, where previous approaches have relied on heavier
mathematical machinery.

Suppose we are given a single undirected unweighted
network of n nodes and are asked to calculate its spectral
density, which is the function

ρ(x) = 1

n

n∑
i=1

δ(x − λi ), (1)

where δ(x) is the Dirac delta function, and λ1, . . . , λn are the
n eigenvalues of the adjacency matrix A of the network—the
matrix with elements Auv equal to 1 whenever there is an edge
between nodes u and v and 0 otherwise. Following a standard
line of development, we express the delta function as the limit
of a Lorentzian (or Cauchy) distribution:

δ(x) = lim
ε→0+

ε/π

x2 + ε2
= − 1

π
lim

ε→0+
Im

1

x + iε
, (2)

where the notation limε→0+ means that the parameter ε, which
controls the width of the Lorentzian, tends to zero from above.
Substituting (2) into (1), we find that

ρ(x) = − 1

nπ
lim

ε→0+
Im

n∑
i=1

1

x − λi + iε
. (3)

It will be convenient for subsequent developments to gener-
alize this spectral density into the complex plane, defining
z = x + iε and

ρ(z) = − 1

nπ

n∑
i=1

1

z − λi
= − 1

nπ
Tr(zI − A)−1, (4)

where I is the identity matrix. The standard spectral density
for the network is the limiting value of the imaginary part
of this function as z tends to the real line from above. In
fact, in many practical situations it is desirable to retain a
small imaginary part for z, corresponding to ε > 0, produc-
ing a Lorentzian broadening of the δ-function peaks in the
spectral density. For finite networks, this gives us a smooth
density function ρ(x) rather than a set of spikes, effectively
making a kernel density estimate of the spectral density with
a Lorentzian kernel.

If we expand the matrix inverse in Eq. (4) as a geometric
series (zI − A)−1 = z−1 ∑∞

k=0(A/z)k and take the trace term

by term, we find that

ρ(z) = − 1

nπz

∞∑
k=0

Tr Ak

zk
. (5)

The sum is not guaranteed to converge for all z, but it will con-
verge for sufficiently large values, and specifically within the
region |1/z| < 1/|λ1|, where λ1 is the eigenvalue of greatest
magnitude. Values of ρ(z) for smaller z can be computed by
analytic continuation, which necessarily gives correct results
since Eq. (4) is trivially an analytic function of z.

The quantity Tr Ak in Eq. (5) is equal to the number of
closed walks of length k in the network—paths that start at
any node and return there (not necessarily for the first time)
exactly k steps later. If we can count such closed walks on our
network for all values of k, then we can compute the spectral
density from Eq. (5). We do this counting using a message-
passing method.

Message passing

As we have said, our focus here is on locally treelike
networks, meaning networks in which local neighborhoods
are trees, having a vanishing density of short loops. The
absence of loops means that any closed walk must necessarily
start and end by traversing the same edge—it cannot return
to the starting node by any edge other than the one it left by,
since in so doing it would complete a loop in the network,
of which there are none. Indeed every edge in a closed walk
on a locally treelike network must, for the same reason, be
traversed twice, once in each direction, or more generally the
same number of times in both directions. This in turn means
that all closed walks have an even number of steps.

Let nuv
2r , with r a positive integer, be the number of closed

walks that begin by traversing the edge from u to v and end,
after exactly 2r steps, by traversing the same edge back again
from v to u for the first time. Other edges may be traversed
any (even) number of times, but the edge between u and v is
traversed only once each way.

The smallest possible value of r in this scenario is 1, for
which nuv

2 = 1 trivially. For all higher values r > 1, we can
write a self-consistent expression for nuv

2r as

nuv
2r =

∞∑
m=1

[ ∑
w1 ∈ Nv

w1 �= u

· · ·
∑

wm ∈ Nv

wm �= u

][ ∞∑
r1=1

· · ·
∞∑

rm=1

]
m∏

i=1

nvwi
2ri

× δ

(
r − 1,

m∑
i=1

ri

)
, (6)

where Nv denotes the set of neighbor nodes of v, and δ(i, j)
is the Kronecker delta. To break it down, this expression says
that a walk starting and ending along the edge uv makes some
number m of subsequent excursions from node v, each of
which has a first step to one of the neighbors of v other than
u, that the total number of such walks is the product of the
numbers of distinct excursions, and that the individual lengths
2r1, . . . , 2rm of these excursions necessarily sum to 2r − 2.
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To solve this system of equations for the numbers nuv
2r , we

define the useful quantity

huv (z) =
∞∑

r=1

nuv
2r

z2r
. (7)

Substituting for nuv
2r from Eq. (6) into Eq. (7) and performing

the sum over r, we get

huv (z) = 1

z2

∞∑
m=1

[ ∑
w1 ∈ Nv

w1 �= u

· · ·
∑

wm ∈ Nv

wm �= u

] m∏
i=1

∞∑
ri=1

nvwi
2ri

z2ri

= 1

z2

∞∑
m=1

m∏
i=1

∑
wi ∈ Nv

wi �= u

hvwi (z)

= 1

z2

∞∑
m=1

[ ∑
w ∈ Nv

w �= u

hvw(z)

]m

. (8)

The remaining sum over m is a simple geometric series, which
can be completed to give

huv (z) = 1/z2

1 − ∑
w ∈ Nv

w �= u

hvw(z)
. (9)

This is our fundamental message-passing equation. We can
think of huv (z) as a message passed from node v to its
neighbor u, whose value can be computed from the values of
the messages received by v from its other neighbors w.

If one can compute the values of the messages huv (z) for
any given value of z, one can compute the spectral density
itself as follows. By analogy with Eq. (6), the number nu

2r of
closed walks of length 2r that start and end at node u can be
written as

nu
2r =

∞∑
m=1

[ ∑
v1∈Nu

· · ·
∑

vm∈Nu

][ ∞∑
r1=1

· · ·
∞∑

rm=1

]
m∏

i=1

nuvi
2ri

× δ

(
r,

m∑
i=1

ri

)
. (10)

Then we define

gu(z) =
∞∑

r=1

nu
2r

z2r
=

∞∑
m=1

[ ∑
v1∈Nu

· · ·
∑

vm∈Nu

]
m∏

i=1

∞∑
ri=1

nuvi
2ri

z2ri

=
∞∑

m=1

m∏
i=1

∑
vi∈Nu

huvi (z) =
∞∑

m=1

[∑
v∈Nu

huv (z)

]m

, (11)

and hence

gu(z) = 1

1 − ∑
v∈Nu

huv (z)
. (12)

The spectral density, Eq. (5), can now be written in terms of
this quantity as

ρ(z) = − 1

nπz

n∑
u=1

gu(z) = − 1

nπz

n∑
u=1

1

1 − ∑
v∈Nu

huv (z)
.

(13)

Between them, Eqs. (9) and (13) give us our prescription
for calculating the spectral density. Note that the variable z
enters Eq. (9) only as z2, which means that the spectral density
will always be symmetric about the origin.

The message-passing equations can be used as a numerical
tool for computing network spectra, as Rogers et al. [18]
do with the equivalent equations they derive. One simply
chooses initial values of the messages (for instance at random)
and iterates Eq. (9) repeatedly until convergence is achieved.
Direct solution of the message-passing equations, however, is
not our primary goal here.

III. DEGREE-BASED APPROXIMATION

The developments presented so far provide an elemen-
tary derivation of a message-passing method for calculating
network spectra. Though interesting, however, the method
derived performs essentially the same calculation as the pre-
viously proposed method of Rogers et al. [18], and in this
sense it does not add much to our toolkit. In this section,
however, we go further, focusing specifically on the configura-
tion model and introducing an approximation to the message-
passing algorithm that reduces its accuracy very little while
making it enormously faster and, in some cases, allowing us
to compute analytic solutions for the spectral density.

The configuration model [24,25], a random graph model
with arbitrary node degrees, is one of the most fundamen-
tal of network models. To generate a configuration model
network, one fixes the degree of each node separately, then
connects nodes at random while respecting the degrees. The
configuration model is widely used both for understanding
network structure in general and as a starting point for further
calculations of network properties and processes.

The configuration model generates networks that are lo-
cally treelike, hence the message-passing approach can be
applied to them. We do this in Fig. 1 for an example network
in which nodes have just two distinct degrees, 5 and 10,
with equal probability. The figure shows a scatter plot in the
complex plane of the resulting values of the messages huv (z)
at the point z = 3 + iε. As the figure shows, the values in
this case form two distinct, compact, nonoverlapping clouds,
which correspond to the degrees of the nodes v “sending” the
messages: the rightmost cloud corresponds to nodes of degree
5 while the leftmost one corresponds to nodes of degree 10.
This simple observation suggests a possible approximation to
the message-passing equations, in which we approximate each
message with the mean or centroid value of the cloud to which
it belongs (shown by the plus symbols in the figure), in effect
assuming that the messages are a function of degree only. This
approximation, as we will see, turns out to give remarkably
accurate estimates of the spectral density in many cases.

Beyond numerical results such as those in Fig. 1, there is
some precedent for a degree-based approximation of this kind
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FIG. 1. The values of the messages huv (z) at z = 3 + iε with ε =
0.01, plotted in the complex plane, for a configuration model network
with nodes of two different degrees: half the nodes have degree 5 and
half have degree 10. The two clouds of points correspond to nodes
v of the two different degrees as indicated. The plus signs mark
the mean or centroid of each cloud. Our approximation consists of
replacing the value of each message with the centroid for the cloud
to which it belongs.

in the literature on complex networks. In studies of epidemic
models, for instance, which can be written in the form of a
message-passing process [26], Pastor-Satorras and Vespignani
[27,28] found a similar degree-based approximation to work
well. The approximation also bears some conceptual similar-
ity to the “effective medium approximation” introduced by
Semerjian and Cugliandolo [15] for the Erdös-Rényi random
graph (building on previous work by Biroli and Monasson
[29]) and by Dorogovtsev et al. [14] for the configuration
model, although the details of the functional forms are dif-
ferent in both cases.

So consider a configuration model with given node degrees
such that the fraction of nodes with degree k is pk . Our
approximation consists of replacing each message huv (z) by
the mean value hk (z) of messages sent from nodes with the
same degree k as node v. Rearranging our message-passing
equation, Eq. (9), as

z2huv (z) = 1 + z2huv (z)
∑

w ∈ Nv

w �= u

hvw(z), (14)

making the replacement huv (z) → hk (z), and averaging over
all edges (u, v) where v has degree k, of which there are nkpk ,
we get

z2hk (z) = 1 + z2hk (z)
1

nkpk

∑
v:kv=k

∑
u∈Nv

∑
w ∈ Nv

w �= u

hvw(z)

= 1 + z2hk (z)
k − 1

nkpk

∑
v:kv=k

∑
w∈Nv

hvw(z). (15)

In a configuration model network, however, the degrees of
adjacent nodes v,w are uncorrelated, so the average of hvw(z)
over many different w is independent of k and, in the limit of

large network size, simply equal to the average message in the
network as a whole, which we will denote h(z):

1

nkpk

∑
v:kv=k

∑
w∈Nv

hvw(z) → h(z). (16)

Thus we have z2hk (z) = 1 + z2(k − 1)hk (z)h(z) or

hk (z) = 1/z2

1 − (k − 1)h(z)
. (17)

Furthermore, the average message h(z) is itself equal to
the average of hk (z) over all degrees k, but here we must be
careful. The node v appearing in the message huv (z) is by
definition reached by following an edge from node u, and
the degrees of nodes reached by following an edge are drawn
not from the overall degree distribution pk of the network
as a whole, but from the modified distribution kpk/c, where
c = ∑

k kpk is the average degree [25]. Commonly this is
expressed in terms of the so-called excess degree distribution:

qk = (k + 1)pk+1

c
, (18)

which is the probability distribution of the number of edges
attached to the node other than the one we followed to reach
it. In terms of this quantity, the average message is given by

h(z) =
∞∑

k=1

kpk

c
hk (z)

= 1

cz2

∞∑
k=1

kpk

1 − (k − 1)h(z)

= 1

z2

∞∑
k=0

qk

1 − kh(z)
, (19)

where we have made the change of variables k → k + 1 in the
final equality.

We can use this result to calculate the spectral density
itself by making a similar degree-based approximation to the
quantities gu(z) appearing in Eq. (12). We assume that gu(z)
is well approximated by the mean gk (z) of gu(z) over all
nodes u with degree k. Rearranging Eq. (12), making this
approximation, and averaging again over nodes of degree k,
we find that gk (z) = 1 + kgk (z)h(z), or

gk (z) = 1

1 − kh(z)
. (20)

Summing over all nodes, we then get

n∑
u=1

gu(z) =
∞∑

k=0

npkgk (z) = n
∞∑

k=0

pk

1 − kh(z)
, (21)

and substituting this result into Eq. (13) we find that, within
this approximation, the spectral density is given by

ρ(z) = − 1

πz

∞∑
k=0

pk

1 − kh(z)
. (22)

Between them, Eqs. (19) and (22) now give us a com-
plete formula for calculating the spectral density. Notice
that, by contrast with the original message-passing method,
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FIG. 2. The spectral density of a configuration model network in
which nodes are randomly assigned one of two different degrees,
5 and 10, with equal probability. The histogram shows the result
of a direct numerical diagonalization of the adjacency matrix of a
single such network with 10 000 nodes, while the solid curve (green)
shows the spectral density for the same single network computed
using the message-passing approach of Eq. (13) with z = x + iε and
ε = 0.01. The dashed curve (blue) shows results from the degree-
based approximation proposed in this paper. The two curves are
quite difficult to distinguish because they coincide very closely. The
dashed vertical lines on the right-hand side of the figure denote the
upper and lower bounds on the position of the band edge derived in
Sec. III B.

these equations do not depend on the precise form of the
network, or even on its size—they are a function of the degree
distribution only. Furthermore, the average over messages
becomes more and more accurate as the network size grows,
so that in effect Eqs. (19) and (22) give us (an approximation
to) the spectrum of the configuration model in the limit of
large size.

For any given z, Eq. (19) can be solved for h(z) by simple
iteration, starting from a suitable initial value, such as h(z) =
0. Then we substitute the result into Eq. (22) to get ρ(z).
Note that for each value z at which we want to calculate
the spectral density, we need now iterate only one equation,
Eq. (19), in contrast with the full message-passing method of
Eq. (9), which involves iterating equations equal in number
to twice the number of edges in the network, which can be
thousands or millions in real-world situations. Equation (19)
still contains a sum over degrees k, but this sum has only as
many terms as there are distinct degrees in the network, which
in most cases is far smaller than the number of edges. Indeed,
as we have said, the equations given here apply in the limit of
infinite size, for which the direct iteration of Eq. (9) would of
course be impossible.

As an example application of our approach, consider Fig. 2,
which shows the spectrum of a network drawn from the
same model as Fig. 1, in which nodes have just two distinct
degrees, 5 and 10, with equal probability. The histogram in
the figure shows the results of a direct numerical diagonal-
ization of the adjacency matrix of a single such network
with 10 000 nodes, while the solid curve shows the spectral

density calculated from the full message-passing method,
Eq. (13). The dashed curve shows the spectrum calculated
using our degree-based approximation, Eqs. (19) and (22).
As we can see, the agreement between all three calculations
is excellent, and in particular there is barely any percepti-
ble difference between the full and approximate versions of
the message-passing calculation. To the extent that the two
differ, it is mostly in the center of the figure in the region
close to x = 0, a pattern that we will see repeated in other
examples.

Note moreover that, while the full message-passing cal-
culation took several minutes of computer time to complete,
the approximate calculation took only a few seconds, essen-
tially all of which was spent on iterating Eq. (19). A faster
calculation still might be possible by using a more efficient
method of solution than simple iteration, such as Newton’s
method.

As an aside, we note that essentially the same method
of calculation can be applied to the Chung-Lu model, the
model in which the edges are independent random variables
and only the expected degrees of the nodes are fixed, not
the actual degrees [22]. This model also produces locally
treelike networks, meaning that the message-passing method
is applicable, and furthermore one can usefully approximate
the message-passing equations by assuming that messages
originating at all nodes with the same expected degree take
the same value. Following a similar argument to that for the
configuration model above, we then arrive at the following
equations for the spectral density:

h(z) = 1

z2

∫ ∞

0

qk dk

1 − kh(z)
, ρ(z) = − 1

πz

∫ ∞

0

pk dk

1 − kh(z)
,

(23)

where k now represents not the actual degree of a node but its
expected degree, which can take any non-negative real value.

Interestingly, after some translation of notation these are
exactly the same equations that were derived previously for
the Chung-Lu model using methods from free probability
theory [23]. Superficially, they look identical to Eqs. (19)
and (22) for the configuration model apart from the re-
placement of the sums by integrals, but the similarity is
deceptive. The definition of the excess degree distribution
qk for the Chung-Lu model is different from that for the
configuration model. [For the Chung-Lu model, the correct
definition is qk = kpk/c, compared with qk = (k + 1)pk+1/c
for the configuration model.] This can make a substantial
difference to the shape of the spectrum, and if one simply
applies the solution for the Chung-Lu model to the configu-
ration model, the results are quite poor, particularly for sparse
networks. Nonetheless, the degree-based approximation does
give a more straightforward derivation of the equations for the
Chung-Lu model, requiring less advanced techniques than the
free probability approach. (The reverse procedure does not
seem to work, however: there is no obvious way to use free
probability theory to derive the equations for the configuration
model. The sticking point is that the adjacency matrix and the
degree sequence are not “free” with respect to one another in
the free probability sense.)
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A. Analytic solutions

In some cases, depending on the form of the degree distri-
bution, Eq. (19) allows a closed-form solution for h(z). As a
simple example, consider a regular network, meaning one in
which all nodes have the same degree c, for which Eq. (19)
takes the form

h(z) = 1/z2

1 − (c − 1)h(z)
. (24)

This can be rearranged into the form of a quadratic equation
(c − 1)h2 − h + 1/z2 = 0, with solutions

h(z) = 1 ±
√

1 − 4(c − 1)/z2

2(c − 1)
. (25)

Then

ρ(z) = 1

πz[ch(z) − 1]
, (26)

and, after taking the imaginary part and going to the real line,
we find the spectral density to be

ρ(x) = (c/2π )

√
4(c − 1) − x2

c2 − x2
, (27)

which recovers the standard Kesten-McKay distribution for
a random regular graph [30]. Thus in this case our approx-
imation is not an approximation at all: the Kesten-McKay
distribution gives the exact spectral density of the random
regular graph in the limit of large size. Our calculation is exact
because in a regular graph the neighborhood of every node has
the same network structure, so all messages are in fact exactly
equal.

For a slightly more complex example, consider again a
network of the kind studied in Fig. 2, with nodes of two
different degrees, which we will denote a and b. For such a
network, Eq. (19) becomes

h(z) = 1/z2

apa + bpb

[
apa

1 − (a − 1)h(z)
+ bpb

1 − (b − 1)h(z)

]
,

(28)

which gives a cubic equation for h(z), which is solvable in
closed form, although the solution is complicated and we will
not reproduce it here. Applied, for instance, to the example
network in Fig. 2, it gives essentially the same result as our
numerical solution for the same system.

More broadly, we can define a moment generating function
μp(x) for a distribution pk to be the power series in x whose
coefficients are the moments 〈kr〉p of pk as

μp(x) =
∞∑

r=0

〈kr〉pxr =
〈

1

1 − kx

〉
p

=
∞∑

k=0

pk

1 − kx
. (29)

In terms of such generating functions, the fundamental equa-
tion (19) can be written

h(z) = 1

z2
μq(h(z)), (30)

and Eq. (22) becomes

ρ(z) = − 1

πz
μp(h(z)). (31)

FIG. 3. Graphical representation of the solution of Eq. (32).
The curves (in blue) represent the right side of the equation, while
the three diagonal lines (green) represent three possible values
of the left side. Where the curve and line cross, marked by the dots,
are the real solutions of the equation. If the diagonal line intersects
the leftmost curve segment, then all solutions are real. If it does not,
there will be two complex solutions, which give rise to a nonzero
spectral density.

If one knows the moment generating functions for a particular
degree distribution, one can use these equations to derive the
spectral density.

B. Position of the band edges

One issue of particular interest is the position of the edges
of the band of nonzero spectral density in the spectrum of a
network. The upper band edge plays a role, for instance, in
locating localization transitions in networks [9] and the po-
sition of the so-called detectability threshold for community
detection [10,11].

To understand why there is a finite band at all, and where its
edges fall, consider Fig. 3, which sketches a graphical solution
to the fundamental equation (19) for h(z). We rearrange the
equation in the form

z2h =
∞∑

k=0

qk

1 − kh
, (32)

and then separately plot the left and right sides of the equation
as a function of h for a given z. The points where the two cross
are our solutions for h(z).

The right-hand side of the equation, represented by the
rising curves in Fig. 3, has simple poles at h = 1/k for
all nonzero values k of the excess degree that occur in the
network. In the figure we assume that values k = 0, . . . , 4
occur, so that there are poles at h = 1, 1

2 , 1
3 , and 1

4 . Meanwhile,
the left-hand side z2h takes the form of a simple straight line
through the origin with slope z2. Lines are sketched in the
figure for three different values of z2. The solutions of (32)
are marked with dots.

Generically, Eq. (32) gives us a polynomial equation of
degree m + 1, where m is the number of distinct nonzero
values of the excess degree, or equivalently the number
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of poles on the right-hand side of the equation. This in
turn means the equation has m + 1 solutions for h(z). As
we can see from the geometry of Fig. 3, there are always
at least m − 1 real solutions, one in each of the intervals
between the m poles. Real solutions, however, cannot give
us a nonzero spectral density—we need complex h(z) to
get a nonzero density when we take the imaginary part of
Eq. (22). Thus we focus on the remaining two solutions,
which can be either real or complex, with the band edge
corresponding to the point at which complex solutions first
emerge.

There are three different possible forms of the solution,
corresponding to the three different values of z2 depicted
in Fig. 3. If z2 is sufficiently large (the steepest line in the
figure), the line z2h intersects the first segment of the curve
representing the right-hand side of Eq. (32), giving us two real
solutions for h(z). If this happens, then all m + 1 solutions
for h are real, there are no complex solutions at all, and
the spectral density is zero. In this regime, we are outside
the spectral band. Conversely, if z2 is sufficiently small,
then the line z2h does not intersect the first segment, there
are only m − 1 real solutions, and the remaining two must
necessarily be complex, placing us inside the band. Be-
tween these two regimes lies the borderline case—the band
edge—represented by the dashed diagonal line in the fig-
ure, which is precisely tangent to the first segment of
the curve.

While it is difficult, or sometimes impossible, to solve
exactly for the roots of polynomial equations, we can derive
useful bounds on the position of the band edge by inspecting
the geometry of Fig. 3. Note that the curve representing the
right-hand side of Eq. (32) intercepts the vertical axis at
y = ∑

k qk = 1, since qk is a properly normalized probability
distribution. Thus the tangent point must fall at y > 1. At the
same time the horizontal coordinate of the tangent point must
satisfy h < 1/K , where K is the largest value of the excess
degree k in the network (which is 1 less than the largest value
of the ordinary degree). Thus the critical slope of the tangent
line at the band edge satisfies

z2 = y

h
>

1

1/K
= K, (33)

meaning that the upper band edge falls at a point z �
√

K and
the lower one falls at z � −√

K . For the network in Fig. 2,
for example, which has nodes of degree 5 and 10 only, the
largest excess degree is K = 9, and hence the upper band edge
satisfies z � 3. From an inspection of Fig. 2 this appears to
be correct—the band edge appears to fall at around z = 5.5.
Our bound is not a very good one in this case, but it is
interesting nonetheless, since it implies that in a network in
which node degrees are unbounded, there will be no upper
edge to the eigenvalue spectrum: the position of the band
edge diverges as K diverges. In a network with an exponential
or power-law degree distribution, for instance, there will
be no upper limit to the spectral band as the network size
becomes large.

We can derive a better bound on the position of the band
edge by first computing a lower bound on the right-hand side

of (32) in the region h < 1/K as
∞∑

k=0

qk

1 − kh
= qK

1 − Kh
+

∑
k( �=K )

qk

1 − kh

� qK

1 − Kh
+

∑
k( �=K )

qk

= qK

1 − Kh
+ 1 − qK ,

and the value of z2 at the band edge is always greater than the
slope of the tangent line to this curve. The tangent falls at the
point where there is a double root of

z2h = qK

1 − Kh
+ 1 − qK , (34)

which is equivalent to the quadratic equation

Kz2h2 − [(1 − qK )K + z2]h + 1 = 0. (35)

This has a double root when its discriminant vanishes,
which gives us a quadratic equation z4 − 2(1 + qK )Kz2 +
(1 − qK )2K2 = 0 for z2, whose solution now gives us an
improved lower bound on the position of the band edge:

z �
√

K (1 + √
qK ). (36)

Taking the example of our network with equal fractions of
nodes of degree 5 and 10 again, so that K = 9 and qK = 2

3 ,
we find that z � 3(1 + √

2/3) 	 5.449.
We can also derive an upper bound on the position of the

band edge by rearranging Eq. (32) into the form

z2 = 1

h

∞∑
k=0

qk

1 − kh
. (37)

Setting h to any real value less than 1/K , this equation gives
us an upper bound on the value of z2 at the band edge, with
values of h closer to the true double root giving better bounds.
We use the value of h at the double root of the approximation,
Eq. (34), which is h = 1/[K (1 + √

qK )]. For our network with
nodes of degree 5 and 10, this yields an upper bound of
5.609 on the position of the band edge, meaning that the band
edge falls in the relatively narrow interval 5.449 � z � 5.609.
This interval is shown in Fig. 2 by the dashed vertical lines,
and it appears to agree well with both the exact position
of the band edge from the full message-passing calculation
and the approximate position derived from the degree-based
approximation.

IV. EXAMPLES

In this section, we look at some applications of our meth-
ods to example networks, illustrating the advantages and
limitations of the approach. Figure 4 shows spectra for four
networks generated from configuration models with different
degree distributions. Panel (a) shows the spectrum of a net-
work with a Poisson degree distribution with mean degree c =
5—effectively a standard Erdös-Rényi style random graph in
which each possible edge is present with the same probability
c/n. Since the elements of the adjacency matrix in such a
network are independent identically distributed random vari-
ables, one might expect the spectrum to follow the standard
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FIG. 4. Each panel shows the spectrum of a configuration model with one particular choice of degree distribution. In each case, the
histogram shows the spectrum of a single realization of the model with 10 000 nodes, the solid (green) curve shows the spectrum of
the same single realization computed using the message-passing method of Sec. II A with ε = 0.01, while the dashed (blue) curve shows
the degree-based approximation of Sec. III, also with ε = 0.01. The four degree distributions are (a) a Poisson degree distribution with mean
5; (b) a power-law degree distribution generated using the model of Barabási and Albert [31] with parameter m = 3; (c) nodes of degree 2, 3,
and 4, with equal probability; and (d) nodes of degree 1, 2, and 3 with equal probability. For (a) and (b) we use the degree distribution of the
actual network in our degree-based approximation, not the formal distribution from which the degrees were drawn.

Wigner semicircle distribution. However, as shown previously
by many authors [12,15–17], this is not the case when, as here,
the graph is very sparse, meaning c is small. The deviation
from the Wigner law is clear in Fig. 4(a), with the spectrum
having a distinctly nonsemicircular shape with a peak at
x = 0. The histogram in the figure shows the distribution of
eigenvalues calculated by direct diagonalization of a single
instance of the model with n = 10 000 nodes, while the solid
curve shows the spectrum calculated using the full message-
passing method of Sec. II A. The dashed curve shows the
results of the degree-based approximation introduced here,
and, as we can see, it works well in this case, being barely
distinguishable from the full calculation.

The Poisson distribution, however, is not a good approx-
imation to the degree distributions of most real-world net-
works, which are typically strongly right-skewed [31,32].
Many networks are observed to have degree distributions
that approximately follow a power law or Pareto distribution.
Figure 4(b) shows the spectrum for such a network, which
displays characteristic long tails with no clear band edge, as
noted previously, for instance, in Ref. [13], where it is shown
that the leading eigenvalue of a power-law network scales as
n1/4 with system size, and is as a result unbounded in the limit
of large n. Again the degree-based approach does a good job
of approximating the spectrum of the network, although there
are now clear deviations visible for small absolute values of x
(i.e., close to the origin). In particular, notice that, by contrast
with panel (a), the peak at x = 0 is not well reproduced by our
approximation (but is captured by the full message-passing
calculation).

In general, while we find that the degree-based approxima-
tion does well in many cases, it is weakest when the network
is particularly sparse. In panel (c) of the figure, for example,
we show results for a network with nodes of degree 2, 3, and 4
only, in equal numbers. This network is now very sparse—the
average degree is only 3—and differences between the true
spectrum (solid line) and approximation (dashed line) are
becoming visible.

Panel (d) shows a particularly extreme case, of a network
with nodes of degree 1, 2, and 3 only, for which the spectrum
becomes quite ill-behaved with noticeable spikes and other ir-
regularities. While these are once again reproduced faithfully
by the full message-passing calculation, our approximation
fails to capture them, and moreover does a relatively poor
job of the overall shape of the spectrum. The spikes in the
spectrum are due to the presence of numerous small compo-
nents in the network. The peaks at ±1 are due to components
of size 2, for example. Our approximation fails to pick these
out because it does not distinguish between messages in small
components and those in the giant component. The method
does, however, still capture the basic shape of the spectrum
further from the origin, and it gets the positions of the band
edges approximately correctly.

V. CONCLUSIONS

In this paper, we have derived a set of message-passing
equations that allow one to calculate the spectrum of the
adjacency matrix of an arbitrary, treelike network. For the
particular case of the configuration model, we approximate
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these equations by assuming that the messages are a function
of node degree only, which gives a much simplified form
for the spectral density that applies in the limit of large
network size. Test applications of these methods on a range of
networks show that the approximation works well for all but
the sparsest of networks, and where it does show deviations
from the true spectral density it is typically in the region close
to the origin and away from the band edges. We have also
used our approximate equations as a starting point for deriving
bounds on the positions of the edges of the spectrum, and
in particular the upper edge of the continuous spectral band,
which plays a role in determining the locations of structural
phase transitions in networks.

It is interesting to ask if there are better approximations
we could make to the message-passing equations than the
one introduced here, and there are a number of possibilities.
One could imagine an approximation where the clouds of
points appearing in Fig. 1 are represented by more than one
different value: a large cloud could be divided into two parts,
each of which is approximated by its own individual centroid.
Another possibility is that we could attempt to represent the
messages for the lowest-degree nodes more accurately in
some way. Most of the error in our approximation is in the
low-degree nodes, since these are the ones for which the
sum of incoming messages will show the largest statistical
fluctuation. It is for this reason that the approximation works

poorly for very sparse networks, such as the one in Fig. 4(d).
One could imagine, for instance, explicitly summing over
the possible degrees of the neighbors of a low-degree node,
producing a kind of two-step approximation for these nodes
that would presumably be more accurate than the one-step
approach we currently employ.

Finally, it is interesting to consider whether methods like
those in this paper could be generalized to other network
spectra, such as the spectrum of the graph Laplacian matrix,
which plays a central role in graph partitioning and the study
of dynamical systems on networks. The fundamental equation
(5) for the spectral density generalizes straightforwardly to the
Laplacian, but the trace inside the sum is no longer simply
related to counts of closed walks or other network features,
except in the trivial case of regular networks. In the general
case, it is an open question whether a message-passing method
can be developed for Laplacian spectra.
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