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Generating random networks that consist of a single connected component
with a given degree distribution
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We present a method for the construction of ensembles of random networks that consist of a single connected
component with a given degree distribution. This approach extends the construction toolbox of random networks
beyond the configuration model framework, in which one controls the degree distribution but not the number
of components and their sizes. Unlike configuration model networks, which are completely uncorrelated,
the resulting single-component networks exhibit degree-degree correlations. Moreover, they are found to be
disassortative, namely, high-degree nodes tend to connect to low-degree nodes and vice versa. We demonstrate
the method for single-component networks with ternary, exponential, and power-law degree distributions.
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I. INTRODUCTION

Network models provide a useful description of a broad
range of phenomena in the natural sciences and engineering as
well as in the economic and social sciences. This realization
has stimulated increasing interest in the structure of complex
networks, and in the dynamical processes that take place on
them [1–9]. One of the central lines of inquiry has been con-
cerned with the existence of a giant connected component that
is extensive in the network size. In the case of Erdős-Rényi
(ER) networks, the critical parameters for the emergence of a
giant component in the thermodynamic limit were identified
and the fraction of nodes that reside in the giant component
was determined [10–13]. These studies were later extended
to the broader class of configuration model networks [14,15].
The configuration model framework enables one to construct
an ensemble of random networks whose degree sequences
are drawn from a desired degree distribution, with no degree-
degree correlations. The resulting network ensemble is a max-
imum entropy ensemble under the condition of the given de-
gree distribution. A simple example of a configuration model
network is the random regular graph, in which all the nodes
are of the same degree, k = c. For random regular graphs with
c � 3 the giant component encompasses the whole network
[16]. However, in general, configuration model networks often
exhibit a coexistence between a giant component, which is
extensive in the network size, and many finite components,
which are nonextensive trees. This can be exemplified by
the case of ER networks, which exhibit a Poisson degree
distribution of the form

P(k) = e−cck

k!
, (1)

where c = 〈K〉 is the mean degree. ER networks with 0 <

c < 1 consist of finite tree components. At c = 1 there is

a percolation transition, above which the network exhibits
a coexistence between the giant component and the finite
components. In the asymptotic limit, the size of the giant
component is N1 = gN , where N is the size of the whole
network and the parameter g = g(c), which vanishes for c �
1, increases monotonically for c > 1. At c = ln N there is a
second transition, above which the giant component encom-
passes the entire network [16]. In the range of 1 < c < ln N ,
where the giant and finite components coexist, the structure
and statistical properties of the giant component differ sig-
nificantly from those of the whole network. In particular, the
degree distribution of the giant component differs from P(k)
and it exhibits degree-degree correlations.

Recently, we developed a theoretical framework for the an-
alytical calculation of the degree distribution and the degree-
degree correlations in the giant component of configuration
model networks [17]. In particular, this framework provides
an analytical expression for the degree distribution of the giant
component, denoted by P(k|1), in terms of the degree distri-
bution P(k) of the whole network. We applied this approach
to the most commonly studied configuration model networks,
namely, with Poisson, exponential, and power-law degree
distributions. We have shown that the degree distribution of
the giant component enhances the weight of the high-degree
nodes and depletes the low-degree nodes, with respect to the
whole network. Moreover, we found that the giant component
is disassortative, namely, high-degree nodes preferentially
connect to low-degree nodes and vice versa. This appears to
be a crucial feature that helps to maintain the integrity of the
giant component.

In this paper we introduce a method for the construction of
ensembles of random networks that consist of a single con-
nected component with a given degree distribution, P(k|1).
This is done by inverting the equations that express the degree
distribution of the giant component P(k|1) in terms of the
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degree distribution P(k) of the whole network. Constructing
a configuration model network with the degree distribution
P(k) obtained from the inversion process, its giant component
is found to exhibit the desired degree distribution P(k|1). We
apply this approach to the construction of ensembles of ran-
dom networks that consist of a single connected component
with ternary, exponential, and power-law degree distributions.

The paper is organized as follows. In Sec. II we present the
configuration model network ensemble. In Sec. III we present
a method for the construction of a single-component network
with a given degree distribution. In Sec. IV we analyze the
properties of the resulting single-component networks. In
particular, we present analytical expressions for the degree-
degree correlations and the assortativity coefficient. In Sec. V
we apply this methodology for the construction of networks
that consist of a single connected component and exhibit
ternary, exponential, and power-law distributions. The results
are discussed in Sec. VI and summarized in Sec. VII.

II. THE CONFIGURATION MODEL

The configuration model network ensemble is an ensemble
of uncorrelated random networks whose degree sequences are
drawn from a given degree distribution, P(k). In theoretical
studies one often considers the asymptotic case in which the
network size is infinite. In computer simulations, the network
size N is finite and the degree distribution is bounded from
above and below such that kmin � k � kmax. For example, the
commonly used choice of kmin = 1 eliminates the possibility
of isolated nodes in the network. Choosing kmin = 2 also elim-
inates the leaf nodes. Controlling the upper bound is important
in the case of finite networks with degree distributions that
exhibit fat tails, such as power-law degree distributions.

The configuration model ensemble is a maximum entropy
ensemble under the condition that the degree distribution P(k)
is imposed [5,18]. In this paper we focus on the case of
undirected networks. To generate a network instance drawn
from an ensemble of configuration model networks of N
nodes, with a given degree distribution P(k), one draws the
degrees of the N nodes independently from P(k). This gives
rise to a degree sequence of the form k1, k2, . . . , kN (where∑

ki must be even). Configuration model networks do not
exhibit degree-degree correlations, which means that the con-
ditional degree distribution of random neighbors of a random
node of degree k satisfies P(k′|k) = k′P(k′)/〈K〉 and does not
depend on k. Also, the local structure of the network around
a random node is typically a tree structure. A central feature
of configuration model networks and other random networks
above the percolation transition is the small-world property,
namely, the fact that the mean distance scales like 〈L〉 ∼ ln N .
Moreover, it was shown that scale-free networks for which
P(k) ∝ k−γ may be ultrasmall, depending on the exponent γ .
In particular, for 2 < γ < 3 their mean distance scales like
〈L〉 ∼ ln ln N [19].

Configuration model networks in which kmin = 1 exhibit
three different phases. In the sparse network limit, below
the percolation transition, they consist of many finite tree
components. Above the percolation transition there is a co-
existence of a giant component and finite tree components.
In the dense network limit there is a second transition, above

which the giant component encompasses the whole network.
In this paper we focus on the intermediate domain in which
the giant and finite components coexist. The size of the giant
component is determined by the degree distribution P(k).

A. The construction of configuration model networks

For the computer simulations presented below, we draw
random network instances from an ensemble of configuration
model networks of N nodes, which follow a given degree
distribution, P(k). For each network instance we generate
a degree sequence of the form k1, k2, . . . , kN , as described
above. For the discussion below it is convenient to list the
degree sequence in a decreasing order of the form k1 � k2 �
· · · � kN .

It turns out that not every possible degree sequence is
graphic, namely, admissible as a degree sequence of a net-
work. Therefore, before trying to construct a network with a
given degree sequence, one should first confirm the graphical-
ity of the degree sequence. To be graphic, a degree sequence
must satisfy two conditions. The first condition is that the
sum of the degrees is an even number, namely,

∑N
i=1 ki = 2L,

where L is an integer that represents the number of edges
in the network. The second condition is expressed by the
Erdős-Gallai theorem, which states that an ordered sequence
of the form k1 � k2 � · · · � kN is graphic if and only if the
condition

n∑
i=1

ki � n(n − 1) +
N∑

i=n+1

min(ki, n) (2)

holds for all values of n in the range 1 � n � N − 1 [20,21].
A convenient way to construct a configuration model net-

work is to prepare the N nodes such that each node i is
connected to ki half edges or stubs [5]. At each step of the
construction, one connects a random pair of stubs that belong
to two different nodes i and j that are not already connected,
forming an edge between them. This procedure is repeated
until all the stubs are exhausted. The process may get stuck
before completion in a case in which all the remaining stubs
belong to the same node or to pairs of nodes that are already
connected. In such case one needs to perform some random
reconnections in order to complete the construction.

B. The degree distribution of the giant component

Consider a configuration model network of N nodes with
a degree distribution, P(k). To obtain the probability g that a
random node in the network belongs to the giant component,
one needs to first calculate the probability g̃, that a random
neighbor of a random node, i, belongs to the giant component
of the reduced network that does not include the node i. The
probability g̃ is determined by [6]

1 − g̃ = G1(1 − g̃), (3)

where

G1(x) =
∞∑

k=1

xk−1P̃(k) (4)
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is the generating function of P̃(k), and

P̃(k) = k

〈K〉P(k) (5)

is the degree distribution of nodes that are sampled as random
neighbors of random nodes. Using g̃, one can then obtain the
probability g from the equation

g = 1 − G0(1 − g̃), (6)

where

G0(x) =
∞∑

k=0

xkP(k) (7)

is the generating function of P(k). Given that G0(x) and G1(x),
defined by Eqs. (7) and (4), respectively, are probability
generating functions, they satisfy G0(1) = G1(1) = 1. This
property entails that g̃ = 0 is always a solution of Eq. (3).
This (trivial) solution implies g = 0 and describes a subcritical
network, in which case the key question is, whether other
solutions with g̃ > 0, hence g > 0, exist as well.

In configuration model networks that do not include any
isolated nodes (of degree k = 0) and leaf nodes (of degree
k = 1), namely, kmin � 2, the generating functions satisfy
G0(0) = 0 and G1(0) = 0. This solution corresponds to the
case where the giant component encompasses the whole net-
work and g = g̃ = 1. This implies that in such networks both
x = 0 and x = 1 are fixed points of both G0(x) and G1(x).
Furthermore, it can be shown that in networks whose degree
distributions satisfy the condition that kmin � 2 and kmax � 3
there are no other (nontrivial) fixed points for G0(x) and G1(x)
with 0 < x < 1 [22]. This means that in such networks the
giant component encompasses the whole network. Here we
are interested in configuration model networks that exhibit
a coexistence between the giant and the finite components.
Such coexistence appears for degree distributions that support
a nontrivial solution of Eq. (3), in which 0 < g̃ < 1. A neces-
sary condition for such solution is the existence of leaf nodes
of degree k = 1, namely, P(1) > 0. Therefore, we focus here
on degree distributions in which kmin = 1.

For the analysis presented below we introduce an indicator
variable � ∈ {0, 1}, where � = 1 indicates that an event takes
place on the giant component and � = 0 indicates that it
happens on one of the finite components. In this notation, the
probability that a random node resides on the giant component
is P(� = 1) = g, and the probability that it resides on one
of the finite components is P(� = 0) = 1 − g. Similarly, the
probabilities that a random neighbor of a random node resides
on the giant component is P̃(� = 1) = g̃ and the probability
that it resides on one of the finite components is P̃(� = 0) =
1 − g̃.

A node i of degree k resides on the giant component if at
least one of its k neighbors resides on the giant component of
the reduced network from which i is removed. Therefore, the
probability gk that a random node of degree k resides on the
giant component is given by

gk = P(� = 1|k) = 1 − (1 − g̃)k, (8)

while the probability that such node resides on one of the finite
components is

P(� = 0|k) = 1 − gk = (1 − g̃)k. (9)

Using Bayes’ theorem, one can show that the degree distri-
bution, conditioned on the giant component, is given by [17]

P(k|� = 1) = 1 − (1 − g̃)k

g
P(k), (10)

while the degree distribution, conditioned on the finite com-
ponents, is given by

P(k|� = 0) = (1 − g̃)k

1 − g
P(k). (11)

The mean degree of the giant component is

E[K|� = 1] = 1 − (1 − g̃)2

g
〈K〉, (12)

while the mean degree on the finite components is

E[K|� = 0] = (1 − g̃)2

1 − g
〈K〉, (13)

where

〈K〉 =
∞∑

k=0

kP(k) (14)

is the mean degree of the whole network. In the rest of the
paper, for the sake of brevity, we will drop the indicator � and
use P(k|0) and P(k|1) to denote the degree distribution on the
finite components and on the giant component, respectively.
Similarly, we will use E[K|0] (E[K|1]) to denote the expected
degree on the finite (giant) component. It is interesting to
mention that just above the percolation transition, when the
giant component just emerges, E[K|1] → 2 [17,23]. This
will be important in the rest of the paper, because it means
that if one wants to generate a network that forms a sin-
gle component with a given degree distribution P(k|1), the
mean of this distribution must satisfy E[K|1] � 2. From a
different angle, a single tree component of N nodes satisfies
E[K|1] = 2 − 2/N [24], thus E[K|1] → 2 in the asymptotic
limit. Above the percolation transition cycles start to emerge
in the giant component, and E[K|1] gradually increases. As
the network becomes more dense, the fraction of nodes, g,
that reside on the giant component increases. When g → 1 the
giant component encompasses the whole network. The value
of E[K|1] at which g → 1 depends on the degree distribution.

C. The size of the giant component

The expectation value of the size of the giant component of
a configuration model of N nodes with a degree distribution
P(k) is given by

〈N1〉 = Ng, (15)

where g is given by Eq. (6). However, in any single network
instance the size N1 of the giant component may deviate from
〈N1〉. Below we consider the distribution P(N1) of the sizes of
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the giant components obtained in an ensemble of configura-
tion model networks of N nodes with degree distribution P(k).
To get a rough idea about the form of P(N1), one may assume,
for simplicity, that each node independently resides on the
giant component with probability g, with no correlations
between different nodes. In such case, P(N1) would follow a
binomial distribution that converges to a Gaussian distribution
whose mean is given by Eq. (15). The variance of such a
distribution is given by

Var(N1) = N
N−1∑
k=1

gk (1 − gk )P(k), (16)

where gk is given by Eq. (8). In dense networks that exhibit
a narrow degree distribution, such that gk is only weakly
dependent on k, Eq. (16) can be approximated by

Var(N1) = Ng(1 − g). (17)

In the case of ER networks [25,26], in which P(k) is a
Poisson distribution, as in Eq. (1), it was shown that P(N1)
is a Gaussian distribution whose mean is given by Eq. (15)
and its variance is given by

Var(N1) = Ng(1 − g)

1 − 〈K〉(1 − g)
. (18)

For configuration model networks with other degree distri-
butions there are rigorous results for the size distribution of
the giant component only in the weakly supercritical range
[26,27], which is just above the percolation phase transition.
More precisely, in configuration model networks the perco-
lation transition follows the Molloy-Reed criterion [14,15],
namely, it takes place at 〈K (K − 1)〉/〈K〉 = 1. Just above the
transition, in the limit ε = 〈K (K − 1)〉/〈K〉 − 1 → 0+, the
distribution P(N1) is a Gaussian distribution whose mean is

〈N1〉 = 2〈K〉2

〈K (K − 1)(K − 2)〉εN (19)

and its variance is given by

Var(N1) = 2〈K〉
ε

N. (20)

This means that at the percolation transition the variance of
N1 diverges, and starts decreasing above the transition. There
are no rigorous results in the full supercritical range, but
following the ER case, it is plausible that the normality of
P(N1) still holds, at least for a degree distribution P(k) with
a finite variance, while the variance Var(N1) decreases. The
main conclusion of this discussion is that sufficiently far above
the percolation transition, where the giant component is not
too small, the size fluctuations of the giant component become
negligible as N is increased.

III. THE CONSTRUCTION OF A SINGLE-COMPONENT
NETWORK WITH A GIVEN DEGREE DISTRIBUTION

Here we present a method for the construction of a network
that consists of a single component whose degree sequence is
effectively drawn from a given degree distribution, denoted
by P(k|1). The approach is based on the construction of a

configuration model network whose degree sequence is drawn
from a suitable degree distribution P(k), such that its giant
component exhibits the desired degree distribution, P(k|1).

Inverting Eq. (10) we find that in order to obtain a giant
component whose degree distribution is P(k|1), the degree
distribution of the whole network should be

P(k) = g

1 − (1 − g̃)k
P(k|1), (21)

where g̃ is given by Eq. (3) and g is given by Eq. (6). The mean
degree of the whole network will thus be

〈K〉 =
∞∑

k=1

gk

1 − (1 − g̃)k
P(k|1). (22)

In order to obtain an ensemble of single-component net-
works whose mean size is 〈N1〉, the size of the configuration
model networks from which these giant components are ob-
tained should be

N = 〈N1〉
g

. (23)

For the analysis below it is useful to introduce the gener-
ating functions for the degree distribution conditioned on the
giant component, namely,

G1
0(x) =

∞∑
k=1

xkP(k|1) (24)

and

G1
1(x) =

∞∑
k=1

kxk−1

E[K|1]
P(k|1). (25)

These generating functions are related to each other by the
equation

G1
1(x) =

d
dx G1

0(x)
d
dx G1

0(x)|x=1
. (26)

In order to calculate the probability g̃, we utilize Eq. (3),
where we express P(k) and 〈K〉 in terms of P(k|1), and obtain

1 − g̃ =
∑∞

k=1
k(1−g̃)k−1

1−(1−g̃)k P(k|1)∑∞
k=1

k
1−(1−g̃)k P(k|1)

. (27)

Using the Taylor expansion of (1 − x)−1, which takes the
form

1

1 − x
=

∞∑
n=0

xn, (28)

where 0 < x < 1, to express the term 1/[1 − (1 − g̃)k] as a
power series in (1 − g̃)k , we obtain

1 − g̃ =
∑∞

k=1 k(1 − g̃)k−1 ∑∞
n=0(1 − g̃)knP(k|1)∑∞

k=1 k
∑∞

n=0(1 − g̃)knP(k|1)
. (29)

Multiplying both sides by 1 − g̃ and exchanging the order
of summations in the numerator and denominator, we obtain

(1 − g̃)2 =
∑∞

n=1(1 − g̃)n
∑∞

k=1 k(1 − g̃)n(k−1)P(k|1)∑∞
n=0(1 − g̃)n

∑∞
k=1 k(1 − g̃)n(k−1)P(k|1)

. (30)
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Adding and subtracting the n = 0 term in the numerator,
this equation can be expressed in the form

(1 − g̃)2 = 1 − E[K|1]∑∞
n=0(1 − g̃)n

∑∞
k=1 k(1 − g̃)n(k−1)P(k|1)

.

(31)

Using the generating function G1
1(x), Eq. (31) can be

written in the form

(1 − g̃)2 = 1 − 1∑∞
n=0(1 − g̃)nG1

1[(1 − g̃)n]
, (32)

or in the form

g̃(2 − g̃)
∞∑

n=0

(1 − g̃)nG1
1[(1 − g̃)n] = 1. (33)

This is an implicit equation that should be solved in order
to obtain the parameter g̃. For some degree distributions one
can obtain a closed form analytical expression for g̃, while
for other distributions it should be calculated numerically. A
useful approximation scheme would be to replace the sum
in Eq. (33) by an integral. To improve the accuracy of this
approximation, it is useful to first separate the n = 0 and the
n = 1 terms from the rest of the sum and obtain

g̃(2 − g̃)

[
1 + (1 − g̃)G1

1(1 − g̃) +
∞∑

n=2

(1 − g̃)nG1
1[(1 − g̃)n]

]
= 1. (34)

Using Eq. (26) we find that

xnG1
1(xn) =

∂
∂n

[
G1

0(xn)
]

E[K|1] ln x
. (35)

Replacing the sum
∑∞

n=2 in Eq. (34) by an integral of the
form

∫ ∞
3/2 dn and carrying out the integration using Eq. (35),

we obtain

g̃(2 − g̃)

[
1 + (1 − g̃)G1

1(1 − g̃) − G1
0[(1 − g̃)3/2]

E[K|1] ln(1 − g̃)

]
= 1.

(36)

This equation is easier to handle than Eq. (33), although
usually it can be solved only numerically. Other, more precise
schemes, could be devised by treating more individual terms
of the sum in Eq. (33) separately, say up to n = 2 or n = 3,
and approximating the tail of the sum by an integral. Our
experience tells us that for the cases considered in this paper,
using the n = 1 scheme provides values of g̃ that differ by at
most a few percent from the exact value.

Once the parameter g̃ is known, the parameter g can be
obtained from

1 − g =
∞∑

k=0

g(1 − g̃)k

1 − (1 − g̃)k
P(k|1). (37)

Extracting g we obtain

g = 1

1 + ∑∞
k=0

(1−g̃)k

1−(1−g̃)k P(k|1)
. (38)

Expanding the denominator according to Eq. (28) and
exchanging the order of the summations, we obtain

g = 1

1 + ∑∞
n=1 G1

0[(1 − g̃)n]
. (39)

To conclude, in order to obtain an ensemble of single-
component networks whose mean size is 〈N1〉, with degree
sequences that are effectively drawn from P(k|1), one con-
structs an ensemble of configuration model networks whose
size N is given by Eq. (23) and its degree distribution P(k)
is given by Eq. (21). The giant components of these networks
are the desired single-component networks. The mean degree
〈K〉 of the configuration model networks is

〈K〉 = g

1 − (1 − g̃)2
E[K|1]. (40)

Note that it is also possible to control the exact size of
the single-component network. Consider the case in which
the desired size of a given instance of the single-component
network is 
〈N1〉�, namely, the integer part of 〈N1〉. In a case
in which the size of the giant component n1 came out smaller
than 
〈N1〉�, one should add nodes to the configuration model
network until the giant component will reach the desired size.
The degrees of the added nodes are drawn from P(k). To add a
node of an even degree k to the network, one picks randomly
k/2 edges that connect k distinct nodes. One then cuts each
edge in the middle to generate k stubs. The k stubs of the
new node are then connected to these k stubs. In the case of
nodes of odd degrees, k and k′, one picks randomly (k + k′)/2
edges and cuts them in the middle to generate k + k′ stubs.
The stubs of the two new nodes are then connected randomly
to these k + k′ stubs. In a case in which n1 came out larger
than 
〈N1〉� one should delete random nodes (one at a time for
even-degree nodes and in pairs for odd-degree nodes), until
the giant component is reduced to the desired size. The open
stubs that remain from the edges of each deleted node are then
randomly connected to each other in pairs.

IV. PROPERTIES OF SINGLE-COMPONENT RANDOM
NETWORKS

Unlike configuration model networks that are completely
uncorrelated, their giant components exhibit degree-degree
correlations. In particular, following the observation made in
Ref. [17] that the giant components are disassortative, below
we prove this property. Interestingly, this observation has been
recently demonstrated in percolating clusters [28].

The joint degree distribution of a pair of adjacent nodes in
a configuration model network with degree distribution P(k)
is given by [17]

P̂(k, k′|1) = 1 − (1 − g̃)k+k′−2

1 − (1 − g̃)2

k

〈K〉P(k)
k′

〈K〉P(k′). (41)

Expressing P(k) and P(k′) in terms of P(k|1) and P(k′|1),
respectively, using Eq. (21), we obtain

P̂(k, k′|1) = W (k, k′)
k

E[k|1]
P(k|1)

k′

E[k|1]
P(k′|1), (42)
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where

W (k, k′) = g̃(2 − g̃)
1 − (1 − g̃)k+k′−2

[1 − (1 − g̃)k][1 − (1 − g̃)k′]
(43)

accounts for the degree-degree correlations between adjacent
nodes. For example, W (1, 1) = 0, reflecting the fact that pairs
of nodes of degree k = 1 on the giant component cannot share
an edge, because in such case they will form an isolated
dimer. Also, one can verify that W (k, 2) = 1 for all values of
k � 1. This means that nodes of degree k = 2 are distributed
randomly in the giant component and are not correlated to
the degrees of their neighboring nodes. The degree-degree
correlation between nodes of degree k � 3 and leaf nodes of
degree k′ = 1 is given by

W (k, 1) = 1 + 1 − g̃ − (1 − g̃)k−1

1 − (1 − g̃)k
> 1. (44)

Thus, there is a positive correlation between leaf nodes and
nodes of degree k � 3. Moreover, the correlation becomes
stronger as k increases.

Below we show that W (k, k′) � 1 for k, k′ � 3, hence the
degree-degree correlations between pairs of nodes of degrees
k, k′ � 3 are negative. To this end we denote h̃ = 1 − g̃, which
satisfies 0 < h̃ < 1. Expressing W (k, k′) in terms of h̃, we
obtain

W (k, k′; h̃) = (1 − h̃2)
1 − h̃k+k′−2

(1 − h̃k )(1 − h̃k′ )
. (45)

The diagonal terms, obtained for k = k′, are given by

f (k; h̃) = W (k, k; h̃) = (1 − h̃2)
1 − h̃2k−2

(1 − h̃k )2
. (46)

For k = 3 we obtain

f (k = 3; h̃) = (1 + h̃)2(1 + h̃2)

(1 + h̃ + h̃2)2
. (47)

Differentiating f (k = 3; h̃) with respect to h̃, we obtain

∂

∂ h̃
f (k = 3; h̃) = − 2h̃(1 − h̃2)

(1 + h̃ + h̃2)3
< 0 (48)

for 0 < h̃ < 1. Therefore, the function f (k = 3; h̃) is a mono-
tonically decreasing function of h̃. This implies that

f (k = 3; h̃) � f (k = 3; h̃ = 0) = 1, (49)

with equality taking place only at h̃ = 0. Considering the
degree, k, as a continuous variable and taking the derivative
of f (k; h̃) with respect to k, we obtain

∂

∂k
f (k; h̃) = −2h̃k (1 − h̃2)(1 − h̃k−2) ln

(
1
h̃

)
(1 − h̃k )3

< 0 (50)

for k > 2 and 0 < h̃ < 1. This means that f (k; h̃) is a mono-
tonically decreasing function in both k and h̃. We thus con-
clude that W (k, k) < 1 for all values of k � 3 and 0 < h̃ < 1.
In order to show that W (k, k′) < 1 for all k, k′ � 3, it is
sufficient to show that under these conditions W (k, k′) is
a monotonically decreasing function of k′ for all values of
0 < h̃ < 1. This is shown by differentiating W (k, k′; h̃) with
respect to k′, which leads to

∂

∂k′W (k, k′; h̃) = − h̃k′
(1 − h̃2)(1 − h̃k−2) ln

(
1
h̃

)
(1 − h̃k )(1 − h̃k′ )2

< 0, (51)

where k > 2 and 0 < h̃ < 1. This means that for any com-
bination of k, k′ � 3, where k′ > k, the correlation function
W (k, k′) satisfies W (k, k′) < W (k, k) < 1. We thus conclude
that pairs of adjacent nodes of degrees k, k′ � 3 exhibit nega-
tive degree-degree correlations.

The probability that a node connected to a random edge in
the giant component is of degree k is given by [17]

P̂(k|1) = k

E[K|1]
P(k|1). (52)

The assortativity coefficient [29] of the giant component is
given by [17]

r =
∑

k,k′�2(k − 1)(k′ − 1)P̂(k, k′|1) − [∑
k�2(k − 1)P̂(k|1)

]2∑
k�2(k − 1)2P̂(k|1) − [∑

k�2(k − 1)P̂(k|1)
]2 . (53)

Since the degree-degree correlations between pairs of adja-
cent nodes of degrees k, k′ � 3 are negative, the assortativity
coefficient of the giant component must satisfy r < 0. This is
an essential property of the giant components of configuration
model networks, which is required in order to maintain the
integrity of the giant component.

V. APPLICATIONS TO SPECIFIC NETWORK MODELS

In this section we apply the methodology developed above
for the construction of networks that consist of a single
connected component, with a prescribed degree distribution,
P(k|1), for some popular ensembles of random networks.

A. Construction of a single-component network with a ternary
degree distribution

The properties of the giant component of a random network
are sensitive to the abundance of nodes of low degrees,
particularly nodes of degree k = 1 (leaf nodes) and k = 2.
Nodes of degree k = 0 (isolated nodes) are excluded from the
giant component and their weight in the degree distribution
of the whole network has no effect on the properties of
the giant component. Therefore, it is useful to consider a
simple configuration model in which all nodes are restricted
to a small number of low degrees. Here we consider a con-
figuration model network with a ternary degree distribution
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of the form [5]

P(k) = p1δk,1 + p2δk,2 + p3δk,3, (54)

where δk,n is the Kronecker delta, and p1 + p2 + p3 = 1. The
mean degree of such network is given by

〈K〉 = p1 + 2p2 + 3p3. (55)

The generating functions of the degree distribution are

G0(x) = p1x + p2x2 + p3x3 (56)

and

G1(x) = p1 + 2p2x + 3p3x2

p1 + 2p2 + 3p3
. (57)

Solving Eq. (3) for g̃, with G1(x) given by Eq. (57), we find
that

g̃ =
{

0, p3 � p1

3

1 − p1

3p3
, p3 >

p1

3 .
(58)

Using Eq. (6) to evaluate the parameter g, where G0(x) is
given by Eq. (56), we find that

g =
{

0, p3 � p1

3

1 − ( p1

3p3

)
p1 − ( p1

3p3

)2
p2 − ( p1

3p3

)3
p3, p3 >

p1

3 .

(59)

Thus, the percolation threshold is located at p3 = p1/3. This
can be understood intuitively by recalling that the finite
components exhibit a tree structure. In a tree that includes a
single node of degree k = 3 there must be three leaf nodes of
degree k = 1. In the giant component, which includes cycles,
there must be more than one node of degree 3 for every three
nodes of degree 1. This is not likely to occur in a case in
which p3 < p1/3. Using the normalization condition, we find
that for any given value of p2, a giant component exists for
p3 > (1 − p2)/4.

Using Eq. (10), we obtain the degree distribution of the
giant component, which is given by

P(k|1) =
⎡⎣ 1 − ( p1

3p3

)k

1 − ( p1

3p3

)
p1 − ( p1

3p3

)2
p2 − ( p1

3p3

)3
p3

⎤⎦P(k),

(60)

where k = 1, 2, 3 and P(k) is given by Eq. (54).
These results enable us to construct a giant connected

component with a desired ternary degree distribution, given
by P(k|1), k = 1, 2, 3, where

∑3
k=1 P(k|1) = 1. To this aim,

we need to express the degree distribution P(k) of the whole
network, given by Eq. (54), in terms of the given degree
distribution P(k|1) of the giant component. We should first
evaluate the parameter g̃, which is given by

g̃ = 1 − p1

3p3
. (61)

Using Eq. (60) to calculate the ratio P(1|1)/P(3|1), we
obtain

P(1|1)

3P(3|1)
= 1

1 + ( p1

3p3

) + ( p1

3p3

)2

p1

3p3
. (62)

Solving for p1/(3p3) we obtain

p1

3p3
= 1

2

[
3P(3|1)

P(1|1)

− 1 −
√(

3P(3|1)

P(1|1)
+ 1

)(
3P(3|1)

P(1|1)
− 3

)]
. (63)

Therefore

g̃ = 1

2

[
3 − 3P(3|1)

P(1|1)
+

√(
3P(3|1)

P(1|1)
+ 1

)(
3P(3|1)

P(1|1)
− 3

)]
.

(64)

The next step is to evaluate the parameter g, which is given
by

g = 1

1 + ∑3
k=1

(1−g̃)k

1−(1−g̃)k P(k|1)
. (65)

Simplifying the expression we obtain

g = g̃

P(1|1) + 1
2−g̃P(2|1) + 1

3−3g̃+g̃2 P(3|1)
. (66)

Using the normalization condition of the probabilities
P(k|1) to express P(2|1) in terms of P(1|1) and P(3|1) we
obtain

g = g̃(2 − g̃)

1 + (1 − g̃)P(1|1) − (1−g̃)2

3−3g̃+g̃2 P(3|1)
. (67)

The degree distribution of the whole network is given by
Eq. (54), where

p1 = g

g̃
P(1|1),

p2 = g

g̃(2 − g̃)
P(2|1), (68)

p3 = g

g̃(3 − 3g̃ + g̃2)
P(3|1).

Thus, in order to obtain an ensemble of single-component
networks of mean size 〈N1〉, whose degree sequences are
drawn from a given ternary degree distribution P(k|1), one
generates an ensemble of configuration model networks with
a degree distribution P(k), given by Eq. (54), where p1, p2,
and p3 are given by Eq. (68). The size of the configuration
model networks should be N = 〈N1〉/g, where g is given by
Eq. (66).

In Fig. 1 we present analytical results for the probability
g, obtained from Eq. (67), that a randomly selected node
resides on the giant component (solid line), in a configuration
model network whose giant component exhibits a ternary
degree distribution with P(K = 2|1) = 0, as a function of the
mean degree c = E[K|1] of the giant component. We also
show the probability g̃, obtained from Eq. (64), that a random
neighbor of a random node resides on the giant component
(dashed line). As discussed above, both g and g̃ vanish for
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FIG. 1. Analytical results for the fraction of nodes g (solid line),
and the fraction of random neighbors of random nodes, g̃ (dashed
line), that reside on the giant component, in a configuration model
network whose giant component exhibits a ternary degree distri-
bution P(k|1), expressed by Eq. (60), with P(K = 2|1) = 0, as a
function of the mean degree c = E[K|1] of the giant component. The
simulation results (circles), obtained for N = 104, are in very good
agreement with the analytical results.

c < 2, since there are no giant components with mean degrees
smaller than 2. For c > 2 both g and g̃ exhibit a steep rise
as c is increased, reaching g = g̃ = 1 at c = 3, where the
giant component encompasses the whole network. The results
obtained from computer simulations (circles) with N = 104

are found to be in very good agreement with the analytical
results.

B. Construction of a single-component network with an
exponential degree distribution

Consider a configuration model network whose giant com-
ponent exhibits an exponential degree distribution of the form

P(k|1) = Ae−αk, (69)

where k � kmin. Here we focus on the case of kmin = 1,
for which the normalization factor is A = eα − 1. The mean
degree is given by

c = E[K|1] = 1

1 − e−α
. (70)

For the analysis below, it is convenient to parametrize the
degree distribution in terms of the mean degree c. Plugging in
α = ln c − ln(c − 1) we obtain

P(k|1) = 1

c

(
c − 1

c

)k−1

, (71)

where k � 1. The mean degree of nodes that reside on the
giant component is E[K|1] = c. As noted above, a giant
component exists only for c � 2. This implies that α must
satisfy the condition α � ln 2. Inserting P(k|1) from Eq. (71)
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0.6
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FIG. 2. The fraction of nodes, g (solid line), and the fraction
of random neighbors of random nodes g̃ (dashed line), that reside
on the giant component, in a configuration model network whose
giant component exhibits an exponential degree distribution, P(k|1),
expressed by Eq. (71), as a function of the mean degree c = E[K|1]
of the giant component. As discussed in the text, the minimal value
of the mean degree of the giant component is c = 2. Thus, for c < 2
both g = 0 and g̃ = 0, while for c > 2 the parameters g and g̃ quickly
increase. The simulation results (circles), obtained for N = 104, are
in very good agreement with the analytical results.

into Eqs. (24) and (25) and carrying out the summations, we
find that the generating functions for a giant component with
an exponential degree distribution take the form

G1
0(x) = x

c − x(c − 1)
(72)

and

G1
1(x) = 1

[c + (1 − c)x]2 . (73)

Plugging in x = (1 − g̃)n in Eq. (73) and inserting the
result into Eq. (33), we obtain that g̃ is given by

g̃(2 − g̃)
∞∑

n=0

(1 − g̃)n

[c + (1 − c)(1 − g̃)n]2
= 1. (74)

This is an implicit equation for g̃ in terms of the mean degree
c, which is essentially equivalent to Eq. (33) for the case of the
exponential distribution. It should be solved numerically in
order to obtain g̃ = g̃(c). Following the general approximation
scheme presented in Sec. VI, we solve instead Eq. (36), which
for the exponential distribution case can be written explicitly
in the following simpler form:

g̃(2 − g̃)

{
1 + 1 − g̃

(1 − g̃ + cg̃)2
+ (1 − g̃)3/2

c[c + (1 − c)(1 − g̃)3/2]

}
= 1. (75)

To calculate the parameter g, we use Eq. (39). Plugging
in the generating function G1

0(x) of the exponential degree
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FIG. 3. Analytical results (dashed lines) for the degree distribu-
tions P(k) and simulation results for the corresponding degree se-
quences with N = 104 (×), of configuration model networks whose
giant components exhibit exponential degree distributions (solid
lines) of the form P(k|1), given by Eq. (71), with mean degree c =
E[K|1], where c = 2.1 (a), c = 2.5 (b), and c = 3.0 (c). The degree
sequences of the resulting single-component networks (circles) fit
perfectly with the desired exponential degree distributions (solid
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FIG. 4. Analytical results (dashed line) and simulation results,
obtained for N = 104 (circles), for the mean degree 〈K〉 of a
configuration model network whose giant component exhibits an
exponential degree distribution with mean degree c = E[K|1], as a
function of E[K|1]. For comparison we also present the analytical
results (solid line) and simulation results (circles) for the mean
degree E[K|1] of the giant component. It is found that in the dilute
network limit 〈K〉 is significantly smaller than c = E[K|1] and the
two curves converge as the network becomes denser.

distribution, given by Eq. (72), we obtain

g =
[

1 +
∞∑

n=1

(1 − g̃)n

c − (c − 1)(1 − g̃)n

]−1

, (76)

where g̃ is given by Eq. (75). In the case of the exponential
distribution, we have a useful approximation scheme which is
similar to the one used in the self-consistent equation for g̃.
This amounts to separating the first term from the rest of the
sum in Eq. (76), and replacing the sum by an integral. This
yields

g =
[

1 + 1 − g̃

c − (c − 1)(1 − g̃)

+
∫ ∞

3/2

(1 − g̃)n

c − (c − 1)(1 − g̃)n
dn

]−1

. (77)

Carrying out the integration, we obtain

g=
[

1 + 1 − g̃

c − (c − 1)(1 − g̃)
+ ln

[
1 − (

c−1
c

)
(1 − g̃)3/2

]
(c − 1) ln(1 − g̃)

]−1

.

(78)

It turns out that this expression is precise within <1% com-
pared to the full expression (76), even next to the percolation
transition.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
lines). It is found that on the giant component the abundance of nodes
of degree k = 1 is depleted, while the abundance of nodes of higher
degrees is slightly enhanced. This feature is most pronounced in the
dilute network limit, in which the fraction of nodes that reside on the
giant components is small.
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In order to obtain a single-component network of N1

nodes with a given exponential degree distribution, P(k|1),
one generates a configuration model network with the degree
distribution P(k), given by Eq. (21), where g̃ is given by
Eq. (75), g is given by Eq. (78), and P(k|1) is given by
Eq. (71).

In Fig. 2 we present analytical results for the probability g,
obtained from Eq. (78), that a randomly selected node resides
on the giant component (solid line), in a configuration model
network whose giant component exhibits an exponential de-
gree distribution, as a function of the mean degree c = E[K|1]
of the giant component. We also show analytical results for the
probability, g̃, obtained from Eq. (75), that a random neighbor
of a random node resides on the giant component (dashed
line). As in the case of the ternary degree distribution, both g
and g̃ vanish for c < 2, while for c > 2 they exhibit a steep rise
as c is increased. The results of computer simulations (circles)
with N = 104 are in very good agreement with the analytical
results.

In Fig. 3 we present analytical results (dashed lines) for the
degree distributions P(k) and simulation results for the cor-
responding degree sequences (×) of the configuration model
networks whose giant components exhibit exponential degree
distributions with mean degrees c = E[K|1], where c = 2.1
(a), c = 2.5 (b), and c = 3.0 (c). The degree sequences of
the resulting single-component networks (circles) fit perfectly
with the desired exponential degree distributions (solid lines),
given by Eq. (71). It is found that on the giant component the
abundance of nodes of degree k = 1 is depleted with respect
to their abundance in the whole network, while the abundance
of nodes of higher degrees is enhanced.

In Fig. 4 we present the mean degree 〈K〉 (dashed line),
obtained from Eq. (40), of a configuration model network
whose giant component exhibits an exponential degree distri-
bution with mean degree c = E[K|1], as a function of c. The
mean degree, c, of the giant component (solid line) is also
shown for comparison. It is found that for dilute networks 〈K〉
is significantly smaller than c and the gap between the two
curves shrinks as the network becomes denser. The simulation
results (circles), obtained for N = 104, are found to be in very
good agreement with the analytical results.

C. Construction of a single-component network with a
power-law degree distribution

Consider a configuration model network whose giant
component exhibits a power-law degree distribution of the

form

P(k|1) = A

kγ
, (79)

for kmin � k � kmax. Here we focus on the case of kmin = 1.
In this case, the normalization coefficient is

A = 1

ζ (γ ) − ζ (γ , kmax + 1)
, (80)

where ζ (s, a) is the Hurwitz zeta function and ζ (s) = ζ (s, 1)
is the Riemann zeta function [30]. In order to avoid cor-
relations, the network size must satisfy the condition N >

(kmax)2/〈K〉 [31–33]. The mean degree is given by

c = E[K|1] = ζ (γ − 1) − ζ (γ − 1, kmax + 1)

ζ (γ ) − ζ (γ , kmax + 1)
. (81)

As noted above, a single connected component with
a degree distribution P(k|1) exists only if the condition
E[K|1] � 2 is satisfied. This implies that for a given value
of kmax there exists a critical value of γ , denoted by γc(kmax),
such that a giant component exists only for γ < γc(kmax). The
value of γc(kmax) is obtained by solving Eq. (81) for γ under
the condition that c = 2. In the special case of kmax → ∞ one
obtains γc(kmax) → γc(∞) = 3.4787..., which is a solution of
the equation ζ (γ − 1) = 2ζ (γ ).

The second moment of the degree distribution is

E[K2|1] = ζ (γ − 2) − ζ (γ − 2, kmax + 1)

ζ (γ ) − ζ (γ , kmax + 1)
. (82)

For γ � 2, in the asymptotic limit of N → ∞, the mean de-
gree E[K|1] diverges in the limit kmax → ∞. For 2 < γ � 3,
in the asymptotic limit, the mean degree is bounded while the
second moment E[K2|1] diverges. For γ > 3 both moments
are bounded. The generating functions of P(k|1) for a giant
component with a power-law degree distribution are

G1
0(x) = Liγ (x) − xkmax+1	(x, γ , kmax + 1)

ζ (γ ) − ζ (γ , kmax + 1)
(83)

and

G1
1(x) = Liγ−1(x) − xkmax+1	(x, γ − 1, kmax + 1)

x[ζ (γ − 1) − ζ (γ − 1, kmax + 1)]
, (84)

where Liγ (x) is the polylogarithmic function. Inserting the
expressions for the two generating functions into Eq. (36), we
obtain

g̃(2 − g̃)

[
1 + (1 − g̃)

Liγ−1(1 − g̃) − (1 − g̃)kmax+1	(1 − g̃, γ − 1, kmax + 1)

(1 − g̃)[ζ (γ − 1) − ζ (γ − 1, kmax + 1)]

− Liγ [(1 − g̃)3/2 − (1 − g̃)3(kmax+1)/2	[(1 − g̃)3/2, γ , kmax + 1]

ln(1 − g̃)[ζ (γ − 1) − ζ (γ − 1, kmax + 1)]

]
= 1. (85)

This is an implicit equation for g̃ in terms of the exponent γ and the upper cutoff kmax, that should be solved numerically. The
parameter g is then obtained from Eq. (39). Inserting G1

0(x) from Eq. (83) into Eq. (39), we obtain

g =
[

1 +
∞∑

n=1

Liγ [(1 − g̃)n] − (1 − g̃)n(kmax+1)	[(1 − g̃)n, γ , kmax + 1]

ζ (γ ) − ζ (γ , kmax + 1)

]−1

. (86)
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FIG. 5. The mean degree, c = E[K|1], of the giant component of
a configuration model network (solid line) with a power-law degree
distribution [Eq. (79)], as a function of the exponent γ , for γ � 2
with kmax = 100, given by Eq. (81). The mean degree decreases as
γ is increased. For γ > 2.4 the solid line is replaced by a dashed
line, which is still the curve given by Eq. (81). However, it does
not describe the mean degree of a giant component, because in
this regime c < 2 while the mean degree of a giant component
must satisfy c � 2. The results for the mean degrees of the single-
component networks constructed using this method (circles) are in
perfect agreement with the analytical results.

In order to generate an ensemble of single-component
networks whose mean size is 〈N1〉, which exhibit a given
power-law degree distribution P(k|1), one generates config-
uration model networks of size N = 〈N1〉/g with the degree
distribution P(k), given by Eq. (21), where g̃ is given by
Eq. (85), g is given by Eq. (86), and P(k|1) is given by
Eq. (79). Note that for γ � 2, in the limit of kmax → ∞ one
obtains that g → g∞ < 1. This means that in configuration
model networks which exhibit a power-law degree distribution
with γ � 2 the giant component does not encompass the
whole network regardless of the value of kmax. This means
that the approach presented here is applicable and useful
for the construction of single-component random networks
with power-law degree distributions for the whole range of
2 � γ � γc(∞).

In Fig. 5 we present analytical results (solid line), obtained
from Eq. (81), for the mean degree, c = E[K|1], of the giant
component of a configuration model network, for which the
giant component exhibits a power-law degree distribution,
P(k|1), given by Eq. (79), as a function of the exponent γ

for 2 < γ < 2.4. The upper cutoff of the degree distribution
is kmax = 100. The dashed line, presented for γ > 2.4, is still
the curve given by Eq. (81). However, it does not describe
the mean degree of a giant component, because in this regime
c < 2 while the degree distribution of a giant component must
satisfy c > 2. The results for the mean degrees of the network
instances constructed using this method (circles) are in perfect
agreement with the analytical results. It is found that the mean
degree decreases as γ is increased.

In Fig. 6 we show analytical results for the values of the
parameters g (solid line) and g̃ (dashed line) of a configuration
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FIG. 6. The parameters g (solid line) and g̃ (dashed line) of
a configuration model network whose giant component exhibits a
power-law degree distribution of the form P(k|1), given by Eq. (79),
as a function of the mean degree c = E[K|1] of the giant component.
As discussed in the text the minimal value of the mean degree of a
giant component with a power-law degree distribution is c = 2. Thus,
for c < 2 both g = 0 and g̃ = 0. For c > 2 the parameters g and g̃
gradually increase. This is in contrast to the case of the exponential
degree distribution, shown in Fig. 2, in which g and g̃ increase more
steeply.

model network whose giant component exhibits a power-law
degree distribution, as a function of the mean degree c =
E[K|1] of the giant component. As discussed above, both g
and g̃ vanish for c < 2, since there are no giant components
with mean degrees lower than 2. For c > 2 the parameters g
and g̃ gradually increase. This is in contrast to the case of the
exponential degree distribution, shown in Fig. 2, in which g
and g̃ increase more steeply. The simulation results (circles)
for g, obtained from network instances constructed using this
method with kmax = 100 and N = 4 × 104 are found to be in
good agreement with the analytical results, while the results
for g̃ are a bit noisy.

In Fig. 7 we present analytical results (dashed lines) for
the degree distributions P(k) [given by Eq. (21), where g̃
is the solution of Eq. (85) and g is given by Eq. (86)] and
simulation results for the corresponding degree sequences (×)
of the configuration model networks whose giant components
exhibit power-law degree distributions, with γ = 2.01 (a),
γ = 2.2 (b), and γ = 2.35 (c). The degree sequences of the
resulting single-component networks (circles) fit perfectly
with the desired power-law distributions (solid lines), given
by Eq. (79).

In Fig. 8 we present analytical results (dashed line) for the
mean degree 〈K〉 of a configuration model network whose
giant component exhibits a power-law degree distribution,
given by Eq. (79) with kmax = 100, as a function of the
mean degree c = E[K|1] of the giant component. The mean
degree c of the giant component (solid line), is also shown for
comparison. It is found that in the dilute network limit 〈K〉
is much smaller than c = E[K|1]. The gap between the two
curves slightly decreases as the network becomes more dense,
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FIG. 7. Analytical results (dashed lines) for the degree distri-
butions P(k) and simulation results with N = 4 × 104 for the cor-
responding degree sequences (×) of configuration model networks
whose giant components exhibit power-law degree distributions
(solid lines), of the form P(k|1), given by Eq. (79), with γ = 2.01
(a), γ = 2.2 (b), and γ = 2.35 (c), and with kmax = 100. The degree
sequences of the resulting single-component networks (circles) fit
perfectly with the desired power-law degree distributions (solid

2 2.2 2.4 2.6 2.8 3 3.2
1
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FIG. 8. The mean degree 〈K〉 of a configuration model network
whose giant component exhibits a power-law degree distribution
with mean degree c = E[K|1], as a function of E[K|1] (dashed line).
The mean degree E[K|1] of the giant component (solid line), is also
shown for comparison. It is found that in the dilute network limit
〈K〉 is much smaller than E[K|1]. The gap between the two curves
slightly decreases as the network becomes more dense, but the two
curves do not converge. The simulation results (circles), obtained for
N = 4 × 104, are in very good agreement with the analytical results.

but the two curves do not converge. This is due to the fact
that even for the largest value of E[K|1] that can be obtained
with kmax = 100 the giant component does not encompass
the whole network. The gap between 〈K〉 can be decreased
further by increasing the value of kmax. However, in order to
maintain the whole network uncorrelated its size N should
satisfy N > (kmax)2/〈K〉 [31–33]. The results obtained from
computer simulations (circles) with N = 4 × 104 are found to
be in very good agreement with the analytical results.

VI. DISCUSSION

While configuration model networks are random and un-
correlated, their giant components exhibit correlations be-
tween the degrees of adjacent nodes. These degree-degree
correlations and the assortativity coefficients of the giant
components were studied in Ref. [17]. The giant components
were found to be disassortative, namely, high-degree nodes
tend to connect preferentially to low-degree nodes and vice
versa. Moreover, it was found that as the network approaches
the percolation transition from above and the giant component
decreases in size, its structure becomes more distinct from
the structure of the overall network. In particular, the degree
distribution of the giant component deviates more strongly
from the degree distribution of the whole network, the

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
lines). It is found that on the giant component the abundance of nodes
of degree k = 1 is depleted, while the abundance of nodes of higher
degrees is enhanced. This feature is most pronounced in the dilute
network limit, in which the fraction of nodes that reside on the giant
components is small.
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degree-degree correlations become stronger, and the assorta-
tivity coefficient becomes more negative.

The disassortativity of the giant component helps to main-
tain its integrity. For example, the probability of a pair of
nodes of degrees k, k′ = 1, which reside on the giant compo-
nent, to connect to each other must vanish, otherwise they will
form an isolated dimer. This means that nodes of degree k = 1
preferentially connect to nodes of higher degrees. As a result,
high-degree nodes preferentially connect to nodes of degree
k = 1. In fact, the giant component exhibits degree-degree
correlations of all orders. These correlations are required in
order to exclude the possibility that a randomly selected node
belongs to an isolated component of any finite size [17].
Interestingly, disassortativity was found to be prevalent in a
broader class of scale-free networks which exhibit correla-
tions and can be explained by entropic considerations [34,35].

The methodology introduced in this paper enables the
construction of random networks that consist of a single
connected component of N1 nodes with a given degree dis-
tribution P(k|1). The desired network consists of the giant
component of a suitable configuration model network of N
nodes and degree distribution P(k). For a given value of
N the size N1 of the giant component exhibits fluctuations
which satisfy Var(N1) ∝ N , which are thus under control in
the asymptotic limit. We also present an adjustment procedure
for the case in which a specific value of N1 is required.

The construction of random networks that consist of a
single connected component with a given degree distribution
is expected to be useful for the analysis of empirical networks.
A common practice in the study of empirical networks is
to generate an ensemble of randomized networks with the
same degree sequence as the empirical network. One then
compares structural and statistical properties of the empirical
network to the corresponding properties of the randomized
networks. The differences between the empirical network
and its randomized counterparts may imply some significant
functional or evolutionary properties of the empirical net-
work. Stated more technically, randomized networks serve
as null models for empirical networks [31,32,36–40]. This
approach was utilized in the study of network motifs, which
are over-represented in empirical networks compared to the
corresponding randomized networks [41,42]. It was also used
in the analysis of degree-degree correlations, the assortativity
coefficient and the clustering coefficient [43–45], and in the
study of the distribution of shortest path lengths [46].

A randomized network with the same degree sequence as
a given empirical network can be constructed in two different
ways. One way is to generate a configuration model network
with the given degree sequence obtained from the empirical
network. Another way is to start from the empirical network
and apply a series of rewiring steps. In each rewiring step one
picks two random edges, i − j and i′ − j′, and then exchanges
them such that i becomes connected to j′ and i′ becomes
connected to j. In a case in which either the i − j′ edge or
the i′ − j edge already exists, the step is rejected. After a
large number of such rewiring steps one obtains a randomized
network which maintains the degree sequence of the empirical
network.

In some cases one may be interested in finding the degree
distribution from which the given degree sequence of the

empirical network is most likely to arise. Consider an empir-
ical network of N nodes, whose degree sequence is given by
{nE

k }, k = 1, 2, . . . , kmax, where nE
k is the number of nodes of

degree k and
∑

k nE
k = N . The degree distribution from which

this degree sequence is most likely to emerge is given by

P(k) = nE
k

N
, (87)

where k = 1, 2, . . . , kmax. Sampling the degrees of N nodes
from this distribution, the probability to obtain a degree
sequence of the form {nk}, k = 1, 2, . . . , kmax is

P({nk}) = N!∏kmax
k=1 nk!

kmax∏
k=1

P(k)nk . (88)

Configuration model networks with degree sequences that
are drawn from the degree distribution P(k), given by Eq. (87),
provide a broader class of randomized networks for the given
empirical networks. While their degree sequences are not
identical to the degree sequence of the empirical network,
their statistical properties are closely related. This is a grand-
canonical approach to the sampling problem.

While some empirical networks consist of a single con-
nected component such as transportation networks and brain
networks [47], other networks consist of many isolated com-
ponents of various sizes such as adoption of innovations or
products networks [48] and mobile phone calling networks
[49]. The distribution of sizes of these components has been
studied in the context of subcritical networks and provides a
useful characterization of the network structure [24]. In a case
in which one of the isolated components is particularly large
(and asymptotically encompasses a macroscopic fraction of
the network size), it is referred to as the giant component.
In such case the network exhibits a coexistence between the
giant component and many finite components. Here we focus
on the properties of the giant component, namely, the degree
distribution, degree-degree correlations, clustering coefficient,
and size. The size of the giant component, N1, depends on
the size of the whole network, N , and on the fraction of
nodes, 0 < g < 1, that reside on the giant component. In
computer simulations the value of g varies between different
network instances in a given network ensemble, following a
distribution P(g) that is characteristic of the given ensemble.
In empirical networks it is difficult to find many network
instances that are drawn from the same statistical ensemble.
Therefore, it is difficult to find a direct analog of P(g) in
empirical networks.

In a case in which the empirical network under study
consists of a single connected component, it is desirable that
the corresponding randomized networks will also consist of a
single connected component. The procedures described above
may produce randomized networks that consist of multiple
components (such as a giant component and many finite
components), even in a case in which the empirical network
consists of a single connected component. The size of the
giant component of the randomized network depends on its
degree sequence and can be determined using methods of
percolation theory.

The methodology presented in this paper provides a way
to obtain a randomized network that consists of a single

042308-13



TISHBY, BIHAM, KATZAV, AND KÜHN PHYSICAL REVIEW E 99, 042308 (2019)

connected component. Consider an empirical network of N1

nodes that consists of a single connected component with
degree sequence {nk}. Using Eq. (87) one obtains the most
probable degree distribution P(k|1) for the given degree se-
quence. Using the procedure presented in this paper, one
obtains the size N and the degree distribution P(k) of a
configuration model network whose giant component is the
desired randomized network.

VII. SUMMARY

We presented a method for the construction of ensem-
bles of random networks that consist of a single connected
component of any desired size N1 with a predefined degree

distribution P(k|1). The construction is done by generating a
configuration model network with a suitable degree distribu-
tion P(k) and size N , whose giant component is of size N1

and its degree distribution is P(k|1). This approach is based
on the inversion of the relation between P(k) and P(k|1),
which was presented in Ref. [17]. It extends the construction
toolbox of random networks beyond the configuration model
framework, in which one controls the network size and the
degree distribution but has no control over the number of
network components and their sizes. The capability of gen-
erating single-component random networks with a desired
degree distribution is expected to be instrumental in the effort
to elucidate the statistical properties of such networks at the
local and global scales.

[1] R. Albert and A.-L. Barabási, Statistical mechanics of complex
networks, Rev. Mod. Phys. 74, 47 (2002).

[2] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks:
From Biological Networks to the Internet and WWW (Oxford
University Press, Oxford, 2003).

[3] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical
phenomena in complex networks, Rev. Mod. Phys. 80, 1275
(2008).

[4] R. van der Hofstad, Random graphs and complex net-
works (Eindhoven, 2013), available at https://www.win.tue.
nl/∼rhofstad/NotesRGCN2013.pdf.

[5] M. E. J. Newman, Networks: An Introduction (Oxford Univer-
sity Press, Oxford, 2010).

[6] S. Havlin and R. Cohen, Complex Networks: Structure, Robust-
ness and Function (Cambridge University Press, New York,
2010).

[7] E. Estrada, The Structure of Complex Networks: Theory and
Applications (Oxford University Press, Oxford, 2011).

[8] A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical Pro-
cesses on Complex Networks (Cambridge University Press,
Cambridge, 2012).

[9] V. Latora, V. Nicosia, and G. Russo, Complex Networks: Prin-
ciples, Methods and Applications (Cambridge University Press,
Cambridge, 2012).
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[20] P. Erdős and T. Gallai, Graphs with given degrees of vertices,
Matematikai Lapok 11, 264 (1960).

[21] S. A. Choudum, A simple proof of the Erdős-Gallai theo-
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