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We study the spatiotemporal dynamics of a conductance-based neuronal cable. The processes of one-
dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage. A 2D
Morris-Lecar (ML) model is introduced to investigate the nonlinear responses of an excitable conductance-based
neuronal cable. We explore the parameter space of the uncoupled ML model and, based on the bifurcation
diagram (as a function of stimulus current), we analyze the 1D diffusion dynamics in three regimes: phasic
spiking, coexistence states (tonic spiking and phasic spiking exist together), and a quiescent state. We show
(depending on parameters) that the diffusive system may generate regular and irregular bursting or spiking
behavior. Further, we explore a 2D diffusion acting on the membrane voltage, where striped and hexagonlike
patterns can be observed. To validate our numerical results and check the stability of the existing patterns
generated by 2D diffusion, we use amplitude equations based on multiple-scale analysis. We incorporate 1D
diffusion in an extended 3D version of the ML model, in which irregular bursting emerges for a certain diffusion
strength. The generated patterns may have potential applications in nonlinear neuronal responses and signal
transmission.
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I. INTRODUCTION

Spatiotemporal pattern appears due to the occurrence of
instability in a homogeneous medium sometimes referred to
as Turing instability. The seminal work of Turing [1] led us
to understand the emergence of stationary or nonstationary
patterns in biological systems. He proposed that biological
patterns (morphogenesis) arise due to the reaction and diffu-
sion of chemicals in a homogeneous medium. This work has
been further explored in many realistic situations ranging from
evolution of patches in ecology [2–4] to pattern formation in
chemical solutions [5]. Hair follicle [6], skin pigmentation
[7,8], tissue engineering mechanisms [9,10] and tomography
of microemulsions [11] can also be related to diffusion-driven
instability. The study of brain electrical dynamics suggests
that one can understand the neurophysiological activities in
the neural system by investigating the patterns emerging from
the collective firing of a group of neurons. The mechanism of
static spatial patterns or spatiotemporal neurological patterns
can be understood in the light of the collective dynamics of
neurons where they crosstalk with each other in a reaction-
diffusion way [12]. Spiral breakup leading to turbulence can
occur in a two-dimensional (2D) reaction-diffusion FitzHugh-
Nagumo (FHN) system in which the spatial interaction is
carried out only in membrane potential variable [13]. A
two-component reaction-diffusion system of the FHN model
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was also investigated before the onset of subcritical Turing
bifurcation [14]. Recently, Gambino et al. [15] constructed
square and target wave patterns in a FHN reaction-diffusion
system. The existence and stability of the patterns are derived
with an amplitude equation analysis close to the bifurcation
threshold. In the case of the bursting Hindmarsh-Rose model,
the traveling-wave pattern was studied by Raghavachari and
Glazier [16] for a 1D cable. In addition, the dynamics and
synchronization pattern in the reaction-diffusion FHN system
have been investigated by Ambrosio and Aziz-Alaoui [17].
The key question we raise here is whether an excitable cable
in a conductance-based neuronal system can indeed generate
bursting (regular or irregular) in the presence of 1D diffusion
where the spatial interaction is carried out only in membrane
potential variables. This is counterintuitive, as a homoge-
neous medium generates (through 1D diffusion) irregularity
or instability without using the Turing-like diffusion structure.
The 1D diffusion is a common scenario in many biophysi-
cal systems [18,19] in which one of the variables interacts
with the others in a spatially distributed cable. For instance,
in excitable neuron models, the membrane voltage plays a
major role as a diffusive variable in a spatial domain and
influences the activities or firing patterns of the entire system.
Moreover, in this type of situation no finite band of unstable
wave numbers exists, therefore it violates the precondition
of the Turing-type instability. In addition, we are explor-
ing the processes in a 2D diffusion model of an excitable
neural fiber. Various patterns ranging from regular hexagons
to distorted hexagons are generated by the 2D diffusion in
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the conductance-based neuronal population. Further, we elab-
orate an analytical treatment of a diffusive excitable cable to
analyze the modulation and stability of structurally different
patterns emerging from 2D diffusion.

We consider a 2D and a 3D version of a conductance-based
Morris-Lecar (ML) oscillator [20] to describe the electrical
activities of neurons. The ML models are taken into account
because of their diverse complex behavior ranging from spik-
ing to bursting nature mimicking the neuronal activities of
neurons. A 2D ML oscillator is an excitable and reduced
version of the Hodgkin-Huxley model. The model consists of
voltage-gated calcium and delayed potassium conductances
for excitatory and recovery processes. Then diffusively cou-
pled ML neurons describe a network of neurons, i.e., the elec-
trophysiology of excitable cables. We consider three regimes
in the parameter space of the ML model: a phasic spiking
(the neuron fires a single spike at the onset of the applied
current stimulus and later it remains in a quiescent state)
regime, a bistable regime where tonic spiking (oscillatory
dynamics) and phasic spiking coexist together, and a regime
where the single neuron reaches a steady state [21,22]. We
have shown that a systematic 1D diffusion acting on one
variable (1D cable) may create spatial instability in the chain
of oscillators. We examined the various impulses of the 1D
cables. It has already been established that the analysis for
spatial mechanisms and its activity for neuronal cells is impor-
tant to understand the biophysical and pathological activities
[23–25]. Mainly, we try to find a region in the parameter
space in which a bursting regime can emerge from a single
cell when the cells are connected by 1D diffusive coupling to
an extended continuous reaction-diffusion medium. Note that,
while bursting of a single neuron is physiological, bursting
of a fundamental cell consisting of a network of neurons is
potentially pathological [12]. Our investigation shows that
the system reveals a burstinglike nature at the lower dif-
fusion, although the uncoupled system stays in the phasic
spiking regime or in coexisting states (phasic spiking and
tonic spiking). If we increase the diffusion coefficient, the
network returns to the homogeneous steady states. Next, we
have incorporated a 2D diffusion (2D cable) and observed that
the system may show a complex pattern ranging from stable
(unstable) hexagons to unstable stripes. We have analytically
derived the emergence and stability of these patterns and
successfully verified with numerical results. Interestingly, the
possible patterns for 2D diffusion show complex behavior
and this emergent dynamics may have relevance in the syn-
chronized activities of a population of neurons particularly
for neurological diseases [12]. The propagation of neuronal
impulses in the coupled network is very relevant for brain
functioning [26–28]. However, a clear and concise analytical
treatment describing different collective nonlinear responses
of the diffusively coupled ML neurons in three different
regimes is lacking. We have used multiple-scale analysis
[3,29–31] for 2D pattern selection based on the amplitude
equations introduced by Newell and Whitehead [32] and
Segel [33].

Further, the model of a single neuron is extended to its
3D counterpart, in which the applied current stimulus is not
constant but rather changes in time. The uncoupled slow-fast
model produces regular bursting for a fixed set of parameters
whereas the coupled 1D chain generates irregular bursting,
which is an interesting feature in biophysical systems.

The paper is organized as follows. In Sec. II the uncou-
pled 2D ML model is described. In Sec. III the impact of
1D diffusion is examined for different diffusion strengths.
The proper parameter space of bursting is identified. Other
firing activities and instabilities are demonstrated. Further, the
complex patterns emerging for 2D diffusion are discussed in
Sec. IV with amplitude equations. We study the 1D cable in
an extended 3D version of ML model in Sec. V. Section VI
provides a summary and conclusions.

II. FORMULATION AND DYNAMICS OF 2D ML NEURONS

Morris and Lecar [20,34] suggested a simple mathematical
model to describe the oscillations in barnacle giant muscle
fiber. It consists of a membrane potential equation with in-
stantaneous activation of calcium current and an additional
equation describing slower activation of potassium current.
The ML neuron model is described by

Cu̇ = I − gL(u − VL ) − gCam∞(u − VCa)− gKv(u − VK),

v̇ = λ(u)[v∞(u) − v], (1)

where m∞, v∞, and λ(u) are assumed as the functions m∞ =
0.5{1 + tanh[(u−V1)/V2]}, v∞ = 0.5{1 + tanh[(u − V3)/V4]},
and λ(u) = φ cosh[(u − V3)/2V4], respectively.

The system consists of voltage-gated Ca2+ current, delayed
rectifier K+ current, and the leak current, respectively. Here u
represents the membrane potential of the neuron and v is the
activation variable of K+ ion channels. The parameters gCa,
gK, and gL indicate the maximum conductance functions to
Ca2+, K+, and leak currents, respectively, and VCa, VK, and
VL are the reversal potentials to the different ionic current
functions. Further, C measures the membrane capacitance and
it is considered as unity; φ represents the temperature scaling
factor for the K+ channel opening. The parameters V1 and
V3 measure the potential at which m∞ = 0.5 and v∞ = 0.5,
respectively, and V2 and V4 represent the reciprocal slope
of the voltage dependence of m∞ and v∞, respectively. In
addition, I presents the applied stimulus current [20,21]. We
would like to consider the effects of various injected current
stimuli for the deterministic 2D ML model, which shows
phasic spiking, tonic spiking, and fast spiking.

To study the characteristic description of the ML model
for different sets of current stimuli, we linearly perturb the
system around the fixed point (u∗, v∗). The Jacobian matrix
corresponding to the equilibrium is

J =
(

a11 a12

a21 a22

)
, (2)
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FIG. 1. (a) Bifurcation diagram of the 2D ML oscillator with respect to the stimulus current I . The thick solid blue line indicates the stable
equilibrium branch whereas the dotted blue line indicates the unstable equilibrium branch of the system. The stable and unstable limit cycles
are denoted by solid cyan and dotted red lines, respectively. Points SH and SN represent the subcritical Hopf bifurcation and saddle-node
bifurcation, respectively. (b) Nullclines are plotted for the deterministic uncoupled 2D ML model. The intersections of the u nullcline and v

nullcline are the fixed points: the stable steady states (SS1 and SS2), unstable steady state (US), and saddle-node bifurcation (SN). The time
series of the deterministic uncoupled 2D ML model for different regimes [marked by the vertical lines in (a)] of I are (c) I = 0.052 [vertical
green line in the inset of (a)], (d) I = 0.054 [vertical magenta line in the inset of (a)], and (e) I = 0.2 (vertical black line), respectively.

where

a11 = −0.5gCa

[
1 + tanh

(
u∗ − V1

V2

)
+

(
u∗ − 1

V2

)
sech2

(
u∗ − V1

V2

)]/
C − gKv∗

C
− gL

C
, a12 = 1

C
[−gK(u∗ − VK)],

a21 =
(

φ

2V4

){
0.5

[
1 + tanh

(
u∗ − V3

V4

)]
− v∗

}
sinh

(
u∗ − V3

2V4

)
+

(
φ

V4

)
cosh

(
u∗ − V3

2V4

)
0.5 sech2

(
u∗ − V3

V4

)
,

a22 =
(

−1

3

)
cosh

(
u∗ − V3

2V4

)
.

The condition for the equilibrium solution of the system to be
stable for the deterministic model is given by a11 + a22 < 0
and a11a22 − a12a21 > 0. The stability analysis of the above
ML model is discussed for the following parameter values
[21]: C = 1, gL = 0.5, VL = −0.5, gCa = 1.2, VCa = 1, gK =
2, VK = −0.7, V1 = −0.01, V2 = 0.15, V3 = 0.1, V4 = 0.05,
and φ = 1/3.

The bifurcation analysis for the 2D ML system is derived
using MATCONT software by varying the injected current
stimulus I . At higher injected current stimulus (I > 0.1),
the model reveals a monostable quiescent state (stable fo-
cus). The unstable state becomes stable as a result of the
subcritical Hopf bifurcation (SH) at lower positive value of
stimulus current (I ∼ 0.001 830). In Fig. 1(a), the upper thick
blue line describes the changes of this quiescent state for
different sets of stimulus current. The lower thick blue line
describes a stable node which collides with a saddle point at

I ∼ 0.069 147 [SN point in Fig. 1(a)] and vanishes together.
We use phase-space analysis to understand the behavior of
the existing fixed points. The deterministic system has three
equilibrium points that are the intersections of the nullclines
of the system variables u and v, respectively. The left fixed
point (SS1) is asymptotically stable (stable node) and right
fixed point (US) is unstable [see Fig. 1(b)]. When the current
stimulus I is increased, the u nullcline moves upward and
the two fixed points move closer to each other, collide, and
mutually annihilate, resulting in a saddle node bifurcation
(SN). After that there exists only one fixed point (SS2) with
a further increase of I . There is another interesting behavior
appearing between I ∼ 0.053 and I ∼ 0.99. A stable limit
cycle (thick cyan line) coexists with an unstable limit cycle
shown by the dashed red line (also see the inset). Therefore,
the system becomes tristable, i.e., one stable node, one limit
cycle, and one stable focus coexist together. The thick green
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lines and dotted red lines show stable and unstable limit
cycles, respectively. This type of feature arises due to the
impact of hyperbolic functions in the ML system. For our
analysis, we consider three parameter spaces. The system
produces phasic spiking at I = 0.052; the value is marked in
the figure with vertical green line in extreme left [Fig. 1(a),
also in the inset]. The corresponding time series for phasic
spiking is shown in Fig. 1(c). A limit cycle (tonic spiking)
is produced at I = 0.054; the value is marked with middle
vertical magenta line in Fig. 1(a) and the corresponding time
series is shown in Fig. 1(d). The quiescent state at I = 0.2 is
marked by the rightmost vertical solid black line in Fig. 1(a)
and corresponding time series is shown in Fig. 1(e).

III. ONE-DIMENSIONAL SYSTEM OF 2D ML NEURONS
WITH DIFFUSION COUPLING

We investigate a 1D cable consisting of a chain of excitable
neurons. A nearest-neighbor diffusion through the membrane
potential (variable u) is considered in our study. The 2D
excitable ML model with 1D diffusion is described by the
reaction-diffusion equations

C
∂u

∂t
= I − gL(u − VL ) − gCam∞(u − VCa)

− gKv(u − VK) + D
∂2u

∂x2
,

∂v

∂t
= λ(u)[v∞(u) − v]. (3)

The initial conditions of these partial differential equations
(PDEs) are considered as u(t = 0, x) > 0 and v(t = 0, x) > 0
for x ∈ � and the boundary conditions are zero-flux boundary
conditions ∂u

∂n = ∂v
∂n = 0 for x ∈ ∂� and t > 0, where n is

the outward normal to ∂�, the boundary of the interval and
domain, and � is the bounded interval or square domain for
1D and 2D diffusion. In the 1D case, it is the length of the
excitable cable (N = 10) and D is the strength of the synaptic
coupling. We use a finite-difference scheme for numerical
simulation of a cable of finite length. The numerical solution
for the 1D reaction-diffusion system is computed using the
pdepe method with zero-flux boundary conditions. The time
step �t = 0.001 and space step �x = 0.1 are considered and
are fixed for all the 1D simulations. The zero-flux boundary
condition indicates that the membranes are impermeable at
the boundaries and it acts as an isolated cable [12].

We apply an external stimulus I to all the excitable neurons.
As we have mentioned before, this external stimulus can
change the dynamical behavior of the uncoupled model. We
have investigated the spatiotemporal pattern in three regimes,
observed at different values of I . First, the impact of the
diffusion coefficient D has been tested by setting each neuron
in a phasic spiking state (I = 0.052), i.e., all the neurons
are settled into the phasic spiking regime [Fig. 1(c)]. At a
lower diffusion (D = 0.0001), the system loses its stability
and creates a inhomogeneous irregular pattern [Fig. 2(a)],
corresponding to a spiral-type instability. The vertical yellow
and blue stripes signify small oscillations deviated from the
original uncoupled steady states. For a better understanding,
we show the time series for an arbitrarily chosen node in

Fig. 3(a). Here there is spatial heterogeneity, and if we con-
sider an arbitrary node (vertical yellow strips) from the cable
it shows oscillations. At a higher diffusion (D = 0.0005 and
D = 0.0037), a more complex desynchronized firing pattern
[Figs. 2(b) and 2(c)] appears where a train of irregular spiking
and bursting [Figs. 3(b) and 3(c)] is generated. Finally, the
spatial instability has vanished for a higher diffusion coeffi-
cient (D = 0.5) by stabilizing the whole chain or cable into
a homogeneous fixed point [see Figs. 2(d) and 3(d)], which
is the stable node of an uncoupled neuron. We observe how
firing patterns of a neuronal cable is changed by the impact of
the diffusion coefficient value D. With systematic changes in
the value of D, the continuous medium (cable) passes from the
regime of inhomogeneous instability to a uniform steady state
[35] through the formation of irregular structures at intermedi-
ate values of diffusion coefficients. Next we consider a slightly
increased external current (I = 0.054). For this parameter
value, regular periodic oscillations like bursting emerge at
an intermediate diffusion value. The initial emergence of
instability, an irregular spiking pattern, periodic or regular
bursting, and collective quiescent states have been tested for
the same diffusion coefficients (D = 0.0001, 0.0005, 0.0037,
and 0.5, respectively). The spatiotemporal patterns are shown
in Figs. 2(e)–2(h) and the corresponding time series for an
arbitrary node are shown in Figs. 3(e)–3(h). Note that, in a
weakly coupled network of pancreatic β cells, the bursting
behavior becomes predominant in which pancreatic β cell
secretes insulin in the blood [16,36]. As we have discussed
before, each neuron has tristable behavior in this regime: Two
of them are stable fixed points (stable focus and stable node)
and the other is a limit cycle (tonic spiking). The basin of
attraction (not shown here) for each of those states is well
mixed in the coupled network, creating a periodic bursting-
type nature at an intermediate coupling strength analogous
to the periodic bursting pattern emerging in globally coupled
discretized active-inactive Josephson junctions [37]. Next we
consider each unit in a monostable quiescent state (I = 0.2),
a state far away from the bifurcation point (SH). At lower
diffusion, the system shows instability that creates an irregular
firing pattern [Fig. 2(i)]. Surprisingly, few nodes fire aperi-
odically with high amplitudes [Fig. 3(i)], although a small
increase in the diffusion strength returns the continuous cable
to the original quiescent state shown in Figs. 2(j)–2(l) and
3(j)–3(l).

IV. TWO-DIMENSIONAL SYSTEM OF 2D ML NEURONS
WITH DIFFUSION COUPLING

Now we extend our study of spatiotemporal patterns by
allowing 2D diffusion only in the membrane potential variable
in the excitable 2D ML system (1). The system is described by
the PDEs

C
∂u

∂t
= I − gL(u − VL ) − gCam∞(u − VCa)

− gKv(u − VK) + D

(
∂2u

∂x2
+ ∂2u

∂y2

)
,

∂v

∂t
= λ(u)[v∞(u) − v], (4)

with the same initial and boundary conditions as before.

042307-4



DIFFUSION DYNAMICS OF A CONDUCTANCE-BASED … PHYSICAL REVIEW E 99, 042307 (2019)

FIG. 2. Spatiotemporal plots of the 2D ML cable with 1D diffusion for (a)–(d) I = 0.052, (e)–(h) I = 0.054, and (i)–(l) I = 0.2 and
diffusion coefficients (a), (e), and (i) D = 0.0001; (b), (f), and (j) D = 0.0005; (c), (g), and (k) D = 0.0037; and (d), (h), and (l) D = 0.5. The
color bar of all these spatiotemporal plots indicates the value of the membrane voltage u. Transient parts are also shown to understand the
patterns clearly.

A. Amplitude equations

We have applied the multiple-scale analysis method
[3,29,38,39] near the bifurcation point. The relevant patterns
can be expressed by three active resonant pairs of modes
(k j,−k j ) such that |k j | = kT for j = 1, 2, 3. Expanding the
two trigonometric hyperbolic functions present in the sys-
tem and avoiding the higher-order nonlinear terms, we reach
tanh(x) ∼ x − x3

3 and cosh(x) ∼ 1 + x2

2! . Inserting these ex-
pressions into Eq. (1), we get

u̇ = I − gL(u − VL ) − 0.5gCa(u − VCa)

×
[

1 + u − V1

V2
− (u − V1)3

3V2
3

]
− gKv(u − VK), (5)

v̇ = 0.5

3

[
1 + (u − V3)2

8V 2
4

]

×
[

1 + u − V3

V4
− (u − V3)3

3V 3
4

− v

0.5

]
, (6)

where the meaning of the parameters V1, V2, V3, and V4 is
the same as mentioned in Sec. II. Now simplifying the above

system, we obtain

u̇ = I + a1u + a2v + a3u2 + a4uv + a5u3 + a6, (7)

v̇ = b1u + b2v + b3u2 + b4uv + b5u3 + b6u2v + b7. (8)

The expressions for all the coefficients of the above equations
are given in Appendix B. We consider a small perturbation
u = ũ + u∗ and v = ṽ + v∗ around the equilibrium point
(u∗, v∗). Then, expanding it with in a Taylor series expansion
and truncating the expression up to third order, we obtain

∂ ũ

∂t
= a11ũ + a12ṽ + (a3 + 3a5u∗)ũ2

+ a4ũṽ + a5ũ3 + D∇2ũ, (9)

∂ ṽ

∂t
= a21ũ + a22ṽ + (b3 + 3b5u∗ + b6v

∗)ũ2

+ (b4 + 2b6u∗)ũṽ + b5ũ3 + b6ũ2ṽ. (10)

Equations (9) and (10) can be written in the vector form

∂X

∂t
= LX + H, (11)
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FIG. 3. Time series of the end oscillator of the 2D ML cable with 1D diffusion. The external current stimulus is (a)–(d) I = 0.052, (e)–(h)
I = 0.054, and (i)–(l) I = 0.2. The values of the diffusion coefficients for all the panels are the same as in Fig. 2. We choose the end oscillator
as a random node to show the temporal evaluation for each panel.

where

X =
(

ũ
ṽ

)
, L =

(
a11 + D∇2 a12

a21 a22

)
,

H =
⎛
⎝(a3 + 3a5u∗)ũ2 + a4ũṽ + a5ũ3

(b3 + 3b5u∗ + b6v
∗)ũ2 + (b4 + 2b6u∗)ũṽ + b5ũ3

+ b6ũ2ṽ

⎞
⎠.

We expand the bifurcation parameter I as I − IT = εI1 +
ε2I2 + ε3I3 + o(ε3), where |ε| � 1 and IT is the Hopf bifur-
cation point. Similarly, we expand the variable X and the
nonlinear term H ,

X =
(

ũ
ṽ

)
= ε

(
p1

q1

)
+ ε2

(
p2

q2

)
+ ε3

(
p3

q3

)
+ o(ε3) (12)

and

H = ε2h2 + ε3h3 + o(ε3), (13)

where h2 and h3 are the second and third orders of ε in the
expansion of the nonlinear term H . At the same time, the
linear operator L can be written as

L = LT + (I − IT )L1 + (I − IT )2L2 + o((I − IT )3), (14)

L = LT + (I − IT )M + o((I − IT )2), (15)

where

Li = 1

i!

∂ iL

∂I i
,

LT =
(

aT
11 + D∇2 aT

12

aT
21 aT

22

)
,

M =
(

m11 m12

m21 m22

)
.

Now we can split the typical timescale in the time derivative
by [4]

∂

∂t
= ε

∂

∂T1
+ ε2 ∂

∂T2
+ o(ε2), (16)

where T1 = εt and T2 = ε2t .
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We have, from Eq. (11),

∂

∂t

{
ε

(
p1

q1

)
+ ε2

(
p2

q2

)
+ ε3

(
p3

q3

)}

= {LT + (I − IT )M}X + ε2h2 + ε3h3.

Simplifying the above equation and comparing the order of ε,
ε2, and ε3 from both sides, we obtain

LT

(
p1

q1

)
= 0, (17)

LT

(
p2

q2

)
= ∂

∂T1

(
p1

q1

)
− I1M

(
p1

q1

)
− h2, (18)

LT

(
p3

q3

)
= ∂

∂T1

(
p2

q2

)
+ ∂

∂T2

(
p1

q1

)
− I1

×M

(
p2

q2

)
− I2M

(
p1

q1

)
− h3. (19)

The expressions of h2 and h3 are described in Appendix B.

Solving Eq. (17), we get p1 = aT
12

Dk2−aT
11

= f and q1 = 1 and we
can write

(
p1

q1

)
=

(
f
1

)⎛
⎝ 3∑

j=1

Wj exp(ik jr) + c.c.

⎞
⎠, (20)

i.e., (p1, q1) is the linear combination of the eigenvectors that
corresponds to the zero eigenvalue of the linear operation
LT , where Wj is the amplitude of the mode exp(ik jr) and
c.c. represents complex conjugate. Now, to get the nontrivial
solution of Eq. (18), we use the Fredholm solvability criterion
[3], where the zero eigenvectors of operator L†

T (the adjoint
operator of LT ) must be orthogonal to the right-hand side
of Eq. (18). Note that the zero eigenvectors of the operator
L†

T are described as (1
g)[exp(−ik jr) + c.c.], j = 1, 2, 3, where

g = − aT
12

aT
22

. Now, from Eq. (18) we can write

LT

(
p2

q2

)
�=

(
Fp

Fq

)
.

Here F j
p and F j

q represent the coefficients of exp(ik jr) in
Fp and Fq, respectively. Using the orthogonality condition

(1, g)(
F j

p

F j
q

) = 0, we can reach the relations

( f + g)
∂W1

∂T1
= I1[ f m11 + m12 + g( f m21 + m22)]W1

+ 2(l1 + gl2)W̄2W̄3,

( f + g)
∂W2

∂T1
= I1[ f m11 + m12 + g( f m21 + m22)]W2

+ 2(l1 + gl2)W̄1W̄3,

( f + g)
∂W3

∂T1
= I1[ f m11 + m12 + g( f m21 + m22)]W3

+ 2(l1 + gl2)W̄1W̄2.

Solving Eq. (18), we have

(
p2

q2

)
=

(
P0

Q0

)
+

3∑
j=1

(
Pj

Qj

)
exp(ik jr)

+
3∑

j=1

(
Pj j

Qj j

)
exp(i2k jr)

+
(

P12

Q12

)
exp[i(k1 − k2)r] +

(
P23

Q23

)
exp[i(k2 − k3)r]

+
(

P31

Q31

)
exp[i(k3 − k1)r] + c.c. (21)

The coefficients of Eq. (21) are described in Appendix B.
Using the approach described above and following the Fred-
holm solvability criterion, we get [from Eq. (19)]

( f + g)

(
∂W1

∂T2
+ ∂Q1

∂T1

)

= [ f m11 + m12 + g( f m21 + m22)]

× (I1Q1 + I2W1) + H (Q̄2W̄3 + Q̄3W̄2)

− [G1|W1|2 + G2(|W2|2 + |W3|2)]W1. (22)

The remaining two equations (not shown here) can be ob-
tained through the transformation of the subscripts of W and
Q. Here Aj and its conjugate Ā j ( j = 1, 2, 3) are the ampli-
tudes of the modes k j and −k j , respectively. The amplitude
Aj can be expanded as Aj = εWj + ε2Qj + o(ε3). With the
expression of Aj and Eq. (16), we can obtain the amplitude
equation corresponding to A1 as

τ0
∂A1

∂t
= μA1 + hĀ2Ā3 − [g1|A1|2

+ g2(|A2|2 + |A3|2)]A1, (23)

where μ = (I − IT )/IT is a normalized distance to the onset
and g1 and g2 explore the type of instability [40]. Expressions
for the factors g1, g2, τ0, and h are given in Appendix B. In
the same way, we can calculate the remaining two equations
(evaluation of A2 and A3).

B. Amplitude stability

We can transform the amplitude equations [Eq. (23) for
A2 and A3] from rectangular coordinates to polar coordinates
by setting the complex amplitude as Aj = ρ j exp(iϕ j ), where
ρ j = |Aj | and ϕ j represents the phase angle in the system.
Finally, we get a set of coupled equations with a constraint
(ϕ = ϕ1 + ϕ2 + ϕ3)

τ0
∂ϕ

∂t
= −h

ρ2
1ρ2

2 + ρ2
1ρ2

3 + ρ2
2ρ2

3

ρ1ρ2ρ3
sin ϕ,

τ0
∂ρ1

∂t
= μρ1 + hρ2ρ3 cos ϕ − g1ρ

3
1 − g2

(
ρ2

2 + ρ2
3

)
ρ1,

τ0
∂ρ2

∂t
= μρ2 + hρ1ρ3 cos ϕ − g1ρ

3
2 − g2

(
ρ2

1 + ρ2
3

)
ρ2,

τ0
∂ρ3

∂t
= μρ3 + hρ1ρ2 cos ϕ − g1ρ

3
3 − g2

(
ρ2

1 + ρ2
2

)
ρ3.

(24)
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Depending on the parameters μ, g1, g2, and h, the 2D cable
can reveal structurally different patterns including stationary,
striped, and hexagons. (i) The stationary state is given by

ρ1 = ρ2 = ρ3 = 0

and is stable for μ < μ2 = 0 and unstable for μ > μ2. (ii) The
striped pattern is given by

ρ1 =
√

μ

g1
�= 0, ρ2 = ρ3 = 0

and the stable striped pattern occurs when μ > μ3 = h2g1

(g2−g1 )2

and it becomes unstable for μ < μ3. (iii) The hexagonal
patterns exist when

ρ1 = ρ2 = ρ3 = |h| ±
√

h2 + 4(g1 + 2g2)μ

2(g1 + 2g2)
,

with ϕ = 0 or π and when μ > μ1 = −h2

4(g1+2g2 ) .
The hexagonal pattern Hπ (when ϕ = π ) will be stable

only for μ < μ4 = 2g1+g2

(g2−g1 )2 h2 and H0 (when ϕ = 0) is al-
ways unstable. For detailed calculation and identification of
the parameters see Appendix A. We consider the same ML
model explored for 1D diffusion as described in Sec. III.
With the fixed set of parameters I = 0.052 and D = 0.001,
we obtain h = 4075.55, g1 = −17 95 960, g2 = −2 388 310,
μ1 = 0.631 794, μ2 = 0, μ3 = −85.0156, μ4 = −283.087,
and μ∗ = 27.4153. Here positive h indicates that there exist
H0 hexagons as μ∗ > μ1 and striped patterns do not exist

(as ρ1 =
√

μ∗
g1

becomes imaginary). As H0 is always unstable,

the solutions of ρ [Eq. (24)] will not exist. The existence of
H0 (although unstable) throughout a long range of diffusion
coefficient D is shown in Fig. 4(a), where it is clear that μ∗
(dashed magenta line) is always greater than μ1 (existence
condition shown by the solid black line). As a result, we
observe a mixture of regular and distorted hexagons (on a
blue backdrop), shown in the Fig. 5(a) (also a zoomed-in
view of the regular hexagons is marked with a white dashed
rectangle). However, as we increase the value of the diffu-
sion coefficient D we observe distorted hexagons [Figs. 5(b)
and 5(c)] only. Interestingly, if we increase D, it creates less
amplitude fluctuation in the membrane voltage expecting a
homogeneous pattern at higher D. Note that one can solve
the amplitude equations for negative g1,2 by considering the
higher-order approximations to get a better stability condition
[40] for hexagonal patterns, which is beyond the scope of the
present work.

Similarly, for I = 0.054 and D = 0.001, we obtain
h = 11 372, g1 = −21 724 200, g2 = −19 493 200, μ1 =
0.532 535, μ2 = 0, μ3 = −564.478, μ4 = −1635.46, and
μ∗ = 28.5082. Again we have h > 0 and μ∗ > μ1, which
leads us to the existence of unstable hexagons H0 [Fig. 4(b)],
therefore the stable solution of ρ will not exist throughout a
wide range of D. At lower diffusion (D = 0.001), a mixture
of regular and distorted hexagons exists [see Fig. 5(d), in
particular the zoomed-in view where regular hexagons are
marked by the dashed white line] which is similar to Fig. 5(a).
With an increase of D, we get more distorted hexagons in
our considered domain [Fig. 5(e)]. A further increase in the
diffusion coefficient leads most of the neurons towards the

(a) (b) (c)

(d)

FIG. 4. Characterization of patterns of the diffusively coupled 2D ML model: boundaries of the emergence of various structures (hexagons
and stripes) for (a) I = 0.052, (b) I = 0.054, and (c) I = 0.2. The dashed magenta line indicates the values of μ at (a) I = 0.052 (μ∗ =
27.4153), (b) I = 0.054 (μ∗ = 28.508), and (c) I = 0.2 (μ∗ = 108.2896). The thick black line indicates the condition for the existence of
hexagons whereas the thick blue and green lines indicate the boundary of the stability of stripes and Hπ hexagons, respectively. (d) Time
integration of Eq. (24) for I = 0.2.
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FIG. 5. Pattern formation in the 2D ML cable with 2D diffusion for (a)–(c) I = 0.052, (d)–(f) I = 0.054, and (g)–(i) I = 0.2 and diffusion
coefficients (a), (d), and (g) D = 0.001; (b), (e), and (h) D = 0.05; (c) and (f) D = 0.09; and (i) D = 5.

steady state of the system and only a few distorted hexagons
exist [see Fig. 5(f)].

For I = 0.2 and D = 0.001, we find that h = −14 804.8,
g1 = 5 456 040, g2 = 7 235 640, μ1 = −2.7498, μ2 = 0,
μ3 = 377.603, μ4 = 1255.97, and μ∗ = 108.2896. Here h <

0 and μ∗ < μ4 signify the existence of stable Hπ hexagons.
Also, the positivity of g1 predicts the existence of a striped
pattern. However, the inequality condition μ∗ < μ3 makes the
existing stripes unstable. The variations of μ1,3,4 and μ∗ as a
function of D are shown in Fig. 4(c). As we have analytically
calculated that a stable Hπ exists in this parameter space, we
further validate it by solving Eq. (24). The time-independent
stable numerical values ρ1,2,3 = 0.002 732 at D = 0.001 are
shown in Fig. 4(d). Interestingly, the values of ρ1,2,3 are
properly fitted with the analytical values of ρ mentioned in
(iii), the condition for the existence of hexagons. In the pres-
ence of an unstable stripe at D = 0.001, we get a mixture of
regular and irregular hexagons [see Fig. 5(g)]. As we increase
D = 0.05, some distorted hexagons and small irregular stripes
exist [Fig. 5(h)]. At a high value of the diffusion coefficient
(D = 5), there is unstable stripes leading to the homogeneous
structure as the amplitude values are not significantly different

in the 2D spatial domain [see Fig. 5(i)]. For I = 0.2 we
are not getting clear hexagons because unstable stripes exist
throughout the regime which break the hexagons. Also the
uncoupled system is strongly in a steady (quiescence) state,
therefore the amplitude is extremely small, which is reflected
in the diffusion patterns.

Note that at I = 0.052 and D = 0.001, the neurons with
high-amplitude oscillations (i.e., generating action potentials)
are distributed in a scattered way. In the spatial domain, the
neighboring nodes try to fire together or set themselves in
the steady states, although neither the synchronous firing nor
synchronous steady states dominate in the spatial domain. If
we increase the diffusive coupling to D = 0.05, hexagonlike
patterns (shown in red or yellow) become broader in size, sug-
gesting that small groups of nodes are firing asynchronously,
whereas inside the blue domain the neighboring nodes stay
below the subthreshold oscillations. With a further increase of
diffusion strength D = 0.09, the neurons in the spatial domain
form distinct clusters (shown in red) of firing surrounded by
a large subthreshold population, which will finally lead us
to a homogeneous state for higher diffusion or for a long
time evaluation. At I = 0.054 and D = 0.001, the network
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shows the same type of feature as before. However, with an
increase of diffusion to D = 0.05, most of the neurons divide
into two domains: One group generates firing and the other
shows subthreshold oscillations. With a further increase of
diffusion to D = 0.09, most of the neurons synchronize to the
quiescent state. At I = 0.2 for intermediate diffusion, a stable
hexagonal pattern exists in which a large number of nodes
fires together, although the amplitudes of the oscillatory nodes
are significantly small. The domain becomes equipotential at
D = 5, where all the neurons show synchronized steady states
[see Fig. 5(i)].

The diffusively coupled 2D ML oscillator is solved us-
ing a finite-difference scheme. We discretize the space and
time by taking the system as N × N with N = 100 and
step sizes are �x = �y = � = 0.25 and �t = 0.0001 for
the spatial mesh and time-integration step size, respec-
tively. The spatial derivative is approximated as ∂2u

∂x2 + ∂2u
∂y2 →

1
�2 (ui−1, j + ui+1, j + ui, j−1 + ui, j+1 − 4ui, j ). Note that there
are no significant changes in the stability if we vary the size
of the mesh grid. The spatiotemporal behavior is investigated
in the context of a highly nonlinear and coupled reaction-
diffusion system where the diffusive coupling indicates the
synaptic coupling between the individual neurons [12] while
being solved by a finite-difference scheme.

V. THE 1D CABLE OF THE 3D OSCILLATORY ML MODEL

An improved version of the 3D ML model is a slow-fast
system where the slow variable is the current injected into the
system [21,22]. The system variables are U , the membrane
potential of the cell; V , the activation variable of K+ ion

channels; and W , the external injected current. We write the
diffusion dynamics using the PDEs

∂U

∂t
= −0.5gCa(U − 1)

[
1 + tanh

(
U − V1

V2

)]
− gKV

×(U − VK) − gL(U − VL ) + W + D1∇2U, (25)

∂V

∂t
= φ cosh

(
U − V3

2V4

)

×
{

0.5

[
1 + tanh

(
U − V3

V4

)
− V

]}
, (26)

∂W

∂t
= −μ(V0 + U ). (27)

The zero-flux boundary conditions are considered for mod-
eling the dynamical behavior of the spatially bounded ML
system [17,18,41]. The nonzero equilibrium point is not
locally asymptotically stable for the parameter values [21]
gCa = 1.2, V1 = −0.01, V2 = 0.15, gK = 2, VK = −0.7, gL =
0.5, VL = −0.5, φ = 1/3, V3 = 0.1, V4 = 0.05, V0 = 0.2, and
μ = 0.005. The ML system (25)–(27) presents a square wave
bursting pattern [21] for these parameter values in the absence
of diffusion. We consider a finite length of excitable cable
and the time step is δt = 0.01 in the numerical treatment.
The improved 3D ML model shows irregular bursting with
the influence of diffusion. The system shows an irregular
spike at low diffusion (D = 0.026) [Fig. 6(a)], which eventu-
ally leads to a nonhomogeneous irregular pattern [Fig. 6(d)].

FIG. 6. Time series of the end oscillator and spatial plot of the improved 3D ML cable with 1D diffusion. The diffusion coefficients D are
(a) and (d) D = 0.026, (b) and (e) D = 0.4, and (c) and (f) D = 0.7.
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The twisted red lines in Fig. 6(d) show the high amplitude
of spikes. At higher diffusion (D = 0.4), the system shows
irregular bursting and we get a more complex pattern [see
Fig. 6(b)]. The red horizontal stripes show the weakly syn-
chronized oscillations in the system [see Fig. 6(e)]. Again
at D = 0.7, the system shows bursting [see Fig. 6(c)] and a
wavelike spatiotemporal pattern (the nodes appear correlated
to each other) is generated and is shown in Fig. 6(e).

VI. CONCLUSION

In this paper a biophysically motivated 2D excitable ML
model and its modification as a fast-slow 3D ML model are
considered based on their neurocomputational activities. The
model plays a major role in signal processing and temporal
coding. By allowing diffusion in the conventional 2D ML
model, we have shown several types of dynamical behavior.
Interestingly, the 2D uncoupled model produces phasic and
tonic spiking for a specific parameter set [21] and the system
reaches a quiescent state for a higher external current stimu-
lus. The diffusive coupling changes the collective behavior of
the excitable cables and it dominates over the deterministic
system. For instance, the entire 1D excitable cable (which
is in the phasic spiking state or bistable regime) produces
regular or irregular bursting dynamics for intermediate dif-
fusion. We have explored the impact of 2D diffusion, which
shows complex and diverse patterns including a hexagon-
like structure to stripe or stationary states. In this paper
the stability of corresponding patterns was thoroughly ana-
lyzed and determined using amplitude equations. We further
extended our work in the 3D modified ML model setting
the parameter in the periodic bursting regime. Interestingly,
a 1D diffusion can create irregular bursting in the spatial
domain.

We extensively demonstrated the spatial dynamical behav-
ior of the excitable systems and explored different dynam-
ical and collective features. The emerging properties may
have particular relevance in the synchronized activities of a
population of neurons particularly for neurological diseases.
Analyzing pattern formation will also be helpful for the
properties of the neural network [42]. We can apply the
results into many areas such as associative memory, pattern
recognition, signal processing and optimization. This type of
reaction-diffusion system provides ideas for future works on
how chemical substances influence the dynamics of neuronal
networks. For instance, the determining factors of seizurelike
activities and different bursting patterns [43] can be revealed
through our work. The study will also allow us to understand
complex brain functions (such as brain working memory).
Zero-flux boundary conditions show that the membranes are
impermeable for ions [12]. Further, the method can be gen-
eralized to the exploration of the reaction-diffusion equation
and different neuroscience-related topics [42,44,45]. The spa-
tiotemporal regimes studied in this paper and their relation
to neurocomputational behavior can be further investigated
in future experiments. This work helps us in understanding
spatiotemporal signal pattern in diverse nonlinear systems
ranging from excitable neurons to the communities of species
[46].
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APPENDIX A: ANALYSIS OF AMPLITUDE STABILITY

We discuss the stability of the above three sets of fixed
points. In the case of striped patterns, we perturb the fixed
point (ρ0, 0, 0) to study the stability of the stationary solution
(24), where ρ0 = √

μ/g1. Setting ρi = ρ0 + �ρi, i = 1, 2, 3,
the linearization of Eq. (24) can be written as

∂ρ

∂t
= LAρ, (A1)

where

LA =
⎛
⎝μ − 3g1ρ

2
0 0 0

0 μ − g2ρ
2
0 hρ0

0 hρ0 μ − g2ρ
2
0

⎞
⎠,

ρ =
⎛
⎝�ρ1

�ρ2

�ρ3

⎞
⎠.

The characteristic equation of LA can be written as

λ3 + R1λ
2 + R2λ + R3 = 0, (A2)

where

R1 = (3g1 + 2g2)ρ2
0 − 3μ,

R2 = (
g2

2 + 6g2g1
)
ρ4

0 − (4μg2 + h2 + 6μg1)ρ2
0 + 3μ2,

R3 = 3g1g2
2ρ

6
0 − (3g1h2 + μg2

2 + 6μg1g2)ρ4
0

− (2μ2g2 + 3g1μ
2 + μh2)ρ2

0 − μ3.

The eigenvalues of the characteristic equation (A2) can be
obtained as

λ1 = −2μ,

λ2 = μ

(
1 − g2

g1

)
+ h

√
μ

g1
,

λ3 = μ

(
1 − g2

g1

)
− h

√
μ

g1
.

The system will be stable if all the eigenvalues are negative.
These three eigenvalues are negative if the conditions μ > 0,
g2

g1
> 1, and μ > μ3 = h2g1

(g2−g1 )2 hold. Next we consider the
case of hexagon. We perturb the fixed point (ρ0, ρ0, ρ0) to
study the stability of the stationary solution, i.e., Eq. (24),

ρi = ρ0 + �ρi (i = 1, 2, 3), where ρ0 = |h|±
√

h2+4(g1+2g2 )μ
2(g1+2g2 ) .

Equation (24) can be linearized as

∂ρ

∂t
= LBρ, (A3)
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where

LB =

⎛
⎜⎝

μ − 3g1ρ
2
0 − 2g2ρ

2
0 hρ0 − 2g2ρ

2
0 hρ0 − 2g2ρ

2
0

hρ0 − 2g2ρ
2
0 μ − 3g1ρ

2
0 − 2g2ρ

2
0 hρ0 − 2g2ρ

2
0

hρ0 − 2g2ρ
2
0 hρ0 − 2g2ρ

2
0 μ − 3g1ρ

2
0 − 2g2ρ

2
0

⎞
⎟⎠,

ρ =
⎛
⎝�ρ1

�ρ2

�ρ3

⎞
⎠.

The characteristic equation of LB can be written as

λ3 + S1λ
2 + S2λ + S3 = 0, (A4)

where

S1 = (9g1 + 6g2)ρ2
0 − 3μ,

S2 = (
27g2

1 + 36g2g1
)
ρ4

0 + 12g2hρ3
0 − (18μg1 + 3h2 + 12μg2)ρ2

0 + 3μ2,

S3 = (
54g2

1g2 + 27g3
1

)
ρ6

0 + 36g1g2hρ5
0 + (

6g2h2 − 36μg1g2 − 9g1h2 − 27μg2
1

)
ρ4

0 (2h2 + 12μhg2)ρ3
0

+ (9μ2g1 + 6μ2g2 + 3μh2)ρ2
0 − μ3.

The characteristic equation (A4) can be solved to obtain the eigenvalues λ1 = λ2 = μ − hρ0 − 3g1ρ
2
0 and λ3 = μ + 2hρ0 −

3ρ2
0 (g1 + 2g2). The system (24) has a stable solution when all the eigenvalues are negative. For ρ−

0 = |h|−
√

h2+4(g1+2g2 )μ
2(g1+2g2 ) , λ1

and λ2 are always positive, so the corresponding pattern is always unstable. For ρ+
0 = |h|+

√
h2+4(g1+2g2 )μ

2(g1+2g2 ) , all the eigenvalues are

negative if the parameter μ satisfies the condition μ < μ4 = 2g1+g2

(g2−g1 )2 h2.

APPENDIX B: COMPUTATIONS OF THE PARAMETERS

The following are the coefficients of Eqs. (7) and (8):

a1 = −gL − 0.5gCa + 0.5gCa

V2

[
V1 − V1

3

3V 2
2

+ VCa − VCaV 2
1

V 2
2

]
,

a2 = gKVK, a3 = 0.5gCa

V2

[
−1 + V 2

1

V 2
2

+ VCaV1

V 2
2

]
,

a4 = −gK,

a5 = −0.5gCa

V 3
2

[
V1 + VCa

3

]
,

a6 = VLgL + 0.5VCagCa − 0.5VCagCaV1

V2

[
1 − V 2

1

3V 2
2

]
,

b1 = 0.5

3V4

[
1 − 5V 2

3

8V 2
4

− V3

4V4
− 5V 4

3

24V 4
4

]
,

b2 = −1

3
− V 2

3

24V 2
4

,

b3 = 0.5

3V 2
4

[
V3

V4
+ 1

8
− 3V3

8V4
+ 5V 3

3

12V 3
4

]
,

b4 = V3

12V 2
4

,

b5 = −2.5

72V 3
4

− 5V 2
3

72V 5
4

, b6 = −1

24V 2
4

,

b7 = 0.5

3

[
1 − V3

V4
− 5V 3

3

24V 3
4

+ V 2
3

8V 2
4

+ V 5
3

24V 5
4

]
.
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The following are expressions of some parameters used in the multiple-scale expansion method:(
P0

Q0

)
=

(
zp0

zq0

)
(|W1|2 + |W2|2 + |W3|2),

Pj = f Q j,

(
Pj j

Qj j

)
=

(
zp1

zq1

)
W 2

j ,

(
Pjk

Qjk

)
=

(
zp2

zq2

)
WjW̄k,

τ0 = f + g

IT [ f m11 + m12 + g( f m21 + m22)]
,

h = H

IT [ f m11 + m12 + g( f m21 + m22)]
,

g1 = G1

IT [ f m11 + m12 + g( f m21 + m22)]
,

g2 = G2

IT [ f m11 + m12 + g( f m21 + m22)]
,

H = 2(l1 + gl2),

l1 = f 2(a3 + 3a5u∗) + f a4, l2 = f 2(b3 + 3b5u∗ + b6v
∗) + f (b4 + 2b6u∗),

k2
T = �T

0

DaT
22

, �T
0 = aT

11aT
22 − aT

12aT
21,

h2 = [
(a3 + 3a5u∗)p2

1 + a4 p1q1(b3 + 3b5u∗ + b6v
∗)p2

1 + (b4 + 2b6u∗)p1q1
]
,

h3 = [
2(a3 + 3a5u∗)p1 p2 + a4(p1q2 + p2q1) + a5 p3

12(b3 + 3b5u∗ + b6v
∗)p1 p2 + (b4 + 2b6u∗)(p1q2 + p2q1)

+ b5 p3
1 + b6 p2

1q1
]
,(

zp0

zq0

)
= −2

�T
0

(
aT

22l1 − aT
12l2

aT
11l2 − aT

21l1

)
,

(
zp1

zq1

)
= −1(

aT
11 − 4Dk2T

T

)
aT

22 − aT
12aT

21

(
aT

22l1 − aT
12l2(

aT
11 − 4Dk2T

T

)
l2 − aT

21l1

)
,

α1 = (a3 + 3a5u∗), β1 = a4, γ1 = a5, δ2 = b6,(
zp2

zq2

)
= −2(

aT
11 − 3Dk2T

T

)
aT

22 − aT
12aT

21

(
aT

22l1 − aT
12l2(

aT
11 − 3Dk2T

T

)
l2 − aT

21l1

)
,

α2 = (b3 + 3b5u∗ + b6v
∗), β2 = (b4 + 2b6u∗), γ2 = b5,

m11 = {− [gCa(1/{V2 cosh [(V1 − u∗)/V2]2} − {tanh [(V1 − u∗)/V2]2 − 1}/V2

+ {2 sinh[(V1 − u∗)/V2](u∗ − 1)}/{V 2
2 cosh [(V1 − u∗)/V2]3})]/2}[gL + gKv∗ − (gCa{tanh[(V1 − u∗)/V2] − 1})/2

+ (gCa{tanh [(V1 − u∗)/V2]2 − 1}(VCa − u∗))/2V2]−1 − 1/(u∗ − Vk ),

m12 = (−gK)/[gL + gKv∗ − (gCa{tanh[(V1 − u∗)/V2] − 1})/2 + (gCa{tanh [(V1 − u∗)/V2]2 − 1}(VCa − u∗))/2V2],

m21 = [(φ sinh[(V3 − u∗)/2V4]{tanh[(V3 − u∗)/V4]2 − 1})/4V 2
4 − (φ cosh[(V3 − u∗)/2V4]{v∗

+ tanh[(V3 − u∗)/V4]/2 − 0.5})/4V 2
4 − {φ sinh[(V3 − u∗)/2V4]}/{4V 2

4 cosh[(V3 − u∗)/V4]2}
+ {φ cosh[(V3 − u∗)/2V4] sinh[(V3 − u∗)/V4]}/{V 2

4 cosh[(V3 − u∗)/V4]3}]/[gL + gKv∗

− (gCa{tanh[(V1 − u∗)/V2] − 1})/2 + (gCa{tanh[(V1 − u∗)/V2]2 − 1}(VCa − u∗))/2V2]

+ φ sinh[(V3 − u∗)/2V4]/2V4gK(u∗ − VK),

m22 = {φ sinh[(V3 − u∗)/2V4]}/2V4[gL + gKv∗ − (gCa{tanh[(V1 − u∗)/V2] − 1})/2

+ (gCa{tanh[(V1 − u∗)/V2]2 − 1}(VCa − u∗))/2V2],

−G1 = [
(2α1 f + β1)

(
zp0 + zp1

) + β1 f
(
zq0 + zq1

) + 3γ1 f 3
] + g

[
(2α2 f + β2)

(
zp0 + zp1

) + β2 f
(
zq0 + zq1

) + 3δ2 f 2 + 3γ2 f 3
]
,

−G2 = [
(2α1 f + β1)

(
zp2 + zp0

) + β1 f
(
zq2 + zq0

) + 6γ1 f 3
] + g

[
(2α2 f + β2)

(
zp2 + zp0

) + β2 f
(
zq2 + zq0

) + 6γ2 f 3 + 6δ2 f 2
]
.
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