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Mixing patterns and individual differences in networks
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We study mixing patterns in networks, meaning the propensity for nodes of different kinds to connect to one
another. The phenomenon of assortative mixing, whereby nodes prefer to connect to others that are similar to
themselves, has been widely studied, but here we go further and examine how and to what extent nodes that
are otherwise similar can have different preferences. Many individuals in a friendship network, for instance,
may prefer friends who are roughly the same age as themselves, but some may display a preference for older or
younger friends. We introduce a network model that captures this behavior and a method for fitting it to empirical
network data. We propose metrics to characterize the mean and variation of mixing patterns and show how to
infer their values from the fitted model, either using maximum-likelihood estimates of model parameters or in a
Bayesian framework that does not require fixing any parameters.
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I. INTRODUCTION

Networks are widely used to represent patterns of con-
nections in complex systems, such as the Internet, the World
Wide Web, and social and biological networks. A common
feature of many networks is assortative mixing, the tendency
of network nodes to be connected to others that are similar to
themselves in some way [1–4]. On the World Wide Web, for
instance, one might expect web pages to link to others written
in the same language more than they do to ones in different
languages. In friendship networks (where the phenomenon is
also known as homophily) many individuals have a preference
for friends who are similar to themselves in terms of age, race,
educational level, and other characteristics [1–3,5]. One can
also encounter disassortative mixing, the tendency for nodes
to connect to unlike others [2,4].

Assortative mixing has been studied widely. Researchers
have examined and quantified assortativity as it occurs in
a wide variety of real-world networks [1–3] and created
mathematical models such as the planted partition model
[6,7] and the stochastic block model [8] that can mimic both
assortative and disassortative behaviors. These methods and
models, however, capture only the average mixing behavior
of nodes, the average preference for members of one group
to forge connections with another. There can be, and in many
cases is, substantial variation about the average; all members
of a group do not necessarily behave the same.

As an example, networks of romantic interaction between
individuals, which are widely studied in sociology, are mostly
disassortative by gender: a majority of individuals have a
preference for romantic engagements with members of the
opposite sex. On the other hand, some people prefer romantic
engagements with the same sex. Standard measures of overall
assortative mixing would thus say that the average individual
has a small fraction of same-sex relationships and the rest are
opposite sex. But this is misleading: in fact, many individuals
have strong preferences for one or the other, so the “average

preference” does not, in this case, provide a good description
of individual behaviors.

Furthermore, there can be interesting mixing patterns even
when there is little or no average assortativity in a network.
For example, a recent study of friend networks on Facebook
showed little to no gender assortativity on average, yet some
people do appear to have preferences [9,10]. Some individuals
on Facebook strongly prefer either male or female friends—it
is only when we average over the whole population that we see
no effect. Thus traditional measures of average assortativity
do not tell the whole story.

There has been some previous literature discussing these
phenomena and advocating a move beyond average measures
of assortativity. In the study of Facebook mentioned above,
Altenburger and Ugander [10] introduced the concept of
monophily, the extent to which people’s friends are similar
to one another, while Peel et al. [11] define a variant assorta-
tivity coefficient that characterizes assortativity within a local
neighborhood in a network. Other approaches have defined
an assortativity coefficient at the level of individual nodes
[12,13].

In this paper we demonstrate that inferring and quantifying
individual differences in mixing is not trivial, in practice
or in principle, an observation that bears emphasizing. The
difficulty is not simply due to a lack of data. Even for arbi-
trarily large networks naive approaches will fail. To address
these issues we introduce a principled and general method for
analyzing mixing patterns in networks that does not require
large amounts of data or lengthy computations. Our solution
employs a generative stochastic model of individual-level
mixing, showing how it can be used to model and analyze em-
pirical network data. Crucially, the model allows for arbitrary
mixing patterns and does not assume that individuals behave
in accordance with the average within their group. By fitting
the model to data using statistical methods we infer quantities
that have straightforward interpretations and can thus be used
to characterize mixing patterns, in much the same way that
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the parameters of a normal distribution characterize mean and
variance.

The model we study is conceptually similar to others that
have been studied previously. It shares with the well-known
stochastic block model [8] the ability to represent arbitrary
mixing patterns at the group level, but also goes further,
allowing for individual variation within the groups. A model
for individual variation was introduced previously in [10], but
it does not allow for arbitrary mixing patterns, nor was a direct
method proposed to fit the model to data. Variation within
groups can be approximated with mixed membership models
[14,15], in which network nodes can be members of multiple
groups and inherit the mixing patterns of all of their groups.
Two nodes in a given group might, for instance, be in different
other groups and hence need not mix equivalently. This ap-
proach is of little use, however, when group memberships are
already known or the categories are known to be distinct and
nonoverlapping. If we want to model individual differences in
the social mixing patterns of men and women, for instance,
we are not at liberty to reassign genders so that our model fits.

As a demonstration of our methods, we apply them to
two example networks, a friendship network of high school
students and a linguistic network of word adjacencies in
English text. We find that there is indeed substantial individual
variation in mixing patterns in both networks, implying that
traditional average measures of mixing offer an incomplete
description of network structure.

II. INDIVIDUAL PREFERENCES AND
PATTERNS OF CONNECTION

We consider networks in which the nodes are divided into
a number of discrete, nonoverlapping groups, types, or cate-
gories, and where individual nodes have preferences about the
types of the nodes with which they have network connections.
We will focus on labeled networks, meaning ones in which
the type of every node is known in advance—we are told the
sex of each individual in a social network, for example, or the
language that each web page is written in. Our network could
be directed or undirected, but we will concentrate primarily
on the directed case here, treating the undirected one as the
special case when all edges are reciprocated.

In the context of such labeled network data, how should
one define preference? By any reasonable definition, if a node
has a strong preference to connect to others of a certain type
then we should expect there to be a relatively large number of
edges to that type. Let us denote the number of edges from
node i to nodes of type s by kis and the total number of edges
from i to nodes of all types by ki = ∑

s kis. Then the ratio
kis/ki is the fraction of edges from node i to nodes of type s.

This ratio, however, is not necessarily an accurate guide
to i’s preference for connections to type s. We should expect
there to be some statistical fluctuations in the network for-
mation process, so that high or low values of kis could occur
just by chance. Let us define a quantity xis to represent i’s
underlying preference for nodes of type s, which will be equal
to the expected value of the ratio kis/ki, averaged over these
fluctuations:

xis = E[kis/ki], (1)

where we restrict ourselves to nodes i with nonzero degree—
the value of xis is not well defined when ki = 0. Note that
xis as defined is automatically normalized so that

∑
s xis = 1.

Note also that the ratio kis/ki is, by definition, an unbiased
estimator of xis, though it is not necessarily a good estimator.
In fact, as we demonstrate below, for many purposes it is
highly misleading.

One way to think about Eq. (1) is to imagine creating the
same network many times over and averaging over the ran-
domness in the creation process to calculate xis. Unfortunately,
in the real world we normally get to observe a network only
once and hence we cannot perform the average. This is the
root cause of the difficulty with estimating preferences that
we mentioned above.

To proceed any further we need to know more about the
nature of the fluctuations in the values of the kis. If we can
define a sensible model for these fluctuations then we can
make progress on estimating xis using the tools of statistical
inference.

A. Preference-based network model

How is kis generated? We could imagine that node i con-
siders every other node in turn and connects to those in group
s with some probability λis, which measures i’s affinity for
group s. Then the edges of the network would be Bernoulli
random variables with means λis, which in standard statistical
notation would be written Ai j ∼ Bernoulli(λig j ), where Ai j is
an element of the adjacency matrix, having value one if there
is an edge from i to j and zero otherwise, and gj is the group
or type label of node j.

This, however, is unsatisfactory for two reasons. First,
as is often the case, it is simpler to use a Poisson rather
than Bernoulli distribution: Ai j ∼ Poisson(λig j ). In a sparse
network where λis � 1 the two distributions are nearly iden-
tical, but the Poisson distribution offers significant technical
advantages. Second, and more importantly, many networks
have broad degree distributions that are not well captured by
either the simple Bernoulli or Poisson model. This issue can
be dealt with by “degree correction” [16–18], which in this
context involves the introduction of two additional parameters
φi and θi for each node i, which respectively control the in and
out degrees of the node. (In an undirected network, the two
would be equal φi = θi.) Then we let

Ai j ∼ Poisson

(
θiφ jxig j

�g j

)
, (2)

where

�s =
∑
i∈s

φi (3)

is the sum of all φi for nodes in group s. This definition does
not completely fix the values of the parameters, since we can
multiply the values of all the φ by any constant factor without
affecting the Ai j or any other property of the model. One can
fix this by choosing a normalizing condition for the φi, such
as requiring that they sum to 1, but this will not be necessary
for any of the calculations presented here.

Note that the choice of a Poisson rather than a Bernoulli
distribution in Eq. (2) implies that the network may have
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multiedges—there may be two or more edges running be-
tween the same pair of nodes, so that Ai j > 1. On a sparse
network, however, this happens vanishingly often and multi-
edges can normally be neglected [16].

For a better intuition on the role of the parameters in
the model, it is instructive to consider the distributions of
the quantities kis and ki. Given that the Ai j are independent
Poisson random variables and that a sum of Poisson variables
is itself Poisson, the distributions for kis and ki are also
Poisson:

kis ∼ Poisson(θixis) (4)

and

ki =
∑

s

kis ∼ Poisson(θi ). (5)

Thus θi is equal to the expected (out)degree at node i, indepen-
dent of the node’s preferences. A simple further computation
verifies that xis is indeed the expected value of kis/ki, consis-
tent with the definition of preference, given in Eq. (1).

We favor this model for the intuitive interpretation of its
parameters along with the mathematical simplicity of the
Poisson distribution.

B. Inferring individual preferences

Given the types of the nodes, we can now write down the
probability of observing any given pattern of connections at
node i:

P(Ai|xi, g, θ, φ) =
∏

j

P(Ai j |xi, g, θ, φ)

= e−θi
∏

j

(
θiφ jxig j

�g j

)Ai j 1

Ai j!
, (6)

where Ai denotes the ith row of the adjacency matrix and xi is
the vector with elements xis. The probability of observing the
whole network is then the product

P(A|x, g, θ, φ) =
∏

i

P(Ai|xi, g, θ, φ). (7)

The terms in Eq. (7) that depend on θ and φ can be factored
out from those that depend on x and thus one can write

P(A|x, g) = 1

Z

∏
i,s

xkis
is , (8)

where Z is a constant that depends on A and g but not x.
Given both the categories and the network structure, we

can use the model to infer the preferences xi. A tempting
approach is to use maximum-likelihood estimation. However,
maximization of Eq. (8) with the constraint that

∑
s xis = 1

just leads back to the estimate x̂is = kis/ki. As we now argue,
if we want to learn about the distribution of preferences, these
estimates may be misleading.

Consider, for illustrative example, the case in which all
nodes in a group have the same parameter values. (This case
is equivalent to the stochastic block model.) Even though all
nodes have the same preferences, kis/ki will not be the same
for every node, since it is a random variable. Worse, it will

FIG. 1. Histogram for kis/ki in the model of Eq. (2) when θi = 6
and xis = 2

3 . The dashed line is at 2
3 , the true value of xis. For an

arbitrarily large network with these parameters, the dashed line is the
true distribution of preferences, while the histogram corresponds to
the inferred distribution, if we used the naive–maximum-likelihood
estimator x̂is = kis/ki. The distribution of kis/ki is clearly a poor
approximation for the true distribution P(x).

often have significant variation. Figure 1 shows an example of
this situation.

Things are not too bad if we only want to measure the
average preferences in a group: we can average over the
values of kis/ki for all i in the group in question and the fluc-
tuations will average out. For anything beyond average-level
behavior, however, we are not so lucky. As demonstrated in
Fig. 1, even something as simple as the variance of xis is not
straightforward to estimate from kis/ki.

The root of the problem is the sparsity of the network.
When we only have a handful of connections for each node,
the ratio kis/ki will be broadly distributed even when all xis

are the same. This is not due to our networks being too small.
The amount of network data we have grows larger as the
network does, but so too does the number of parameters we are
estimating, and it is straightforward to show that the expected
variation of the individual estimates kis/ki will not vanish even
in the large size limit.

To get around this issue we need some way to accurately
characterize individual preferences that does not require an
extensive number of parameters. Here we do this by inferring
the underlying distribution from which the xi are generated.
We describe this procedure in the next section.

III. DISTRIBUTIONS OF PREFERENCES

Suppose the preference variables xis for nodes in group r
are drawn from a distribution P(x|αr ), where αr is a set of
parameters for the distribution. If we know this distribution
then we can integrate over the unobserved preferences in
Eq. (8) and compute the likelihood of the network thus:

P(A|α, g) = 1

Z

∏
i

∫ (∏
s

xkis
s

)
P(x|αgi ) dx. (9)

Rather than infer the individual preferences directly we can,
using this likelihood, infer their distribution by fitting the
parameters α.

The only constraints on x are that xs > 0 for all s and∑
s xs = 1, meaning that the vector x lies on the standard
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unit simplex and P(x|αr ) can be any distribution on the
simplex. Here we make the simple and common assumption
that P(x|αr ) is a Dirichlet distribution [19]. For a network with
c groups the Dirichlet distribution takes the form

P(x|α) = 1

B(α)

c∏
s=1

xαs−1
s , (10)

where αs > 0 for all s and B(α) is the multidimensional beta
function

B(α) =
∏

s �(αs)

�(α0)
, (11)

with α0 = ∑
s αs and �(α) being the standard gamma func-

tion. The Dirichlet distribution is a convenient and flexible
distribution that allows us to vary the weight placed on each
of the xs independently. In the case of two groups, c = 2, the
Dirichlet distribution is equivalent to the beta distribution. The
expected value of x within the distribution is α/α0 and α0

controls the width of the variation about that value. In the limit
of large α0 the variance tends to zero and the distribution of x
is tightly clustered around the mean. Conversely, as α0 tends
to zero almost all the probability density is in the corners of
the simplex, as far away as possible from the mean.

We allow each group or type s to have a different distri-
bution of preferences and hence a different set of Dirichlet
parameters αs, so that the prior on xi is

xi ∼ Dirichlet
(
αgi

)
. (12)

This is a natural choice: one can well imagine, for instance,
that the men and women within a population have different
preferences for male and female friends.

With this choice we can now complete the integrals in
Eq. (9) and we find that

P(A|α, g) = 1

Z

∏
i

B
(
αgi + ki

)
B
(
αgi

) , (13)

where ki is the vector with elements kis. Estimates for α can
now be obtained by maximizing this likelihood.

Under certain circumstances, Eq. (13) may lack a well-
defined maximum. To deal with this one can add a regular-
ization term. The full details are given in Appendix A, but the
end result is that one determines the estimated value ŷrs by
maximizing

L(y) =
∑

i

[lnB(eygi + ki ) − ln B(eygi )] − λ
∑
r,s

y2
rs, (14)

where λ is a small positive constant and our estimate of αrs

is given by α̂rs = exp ŷrs. From a Bayesian perspective the
quadratic regularization term is equivalent to a log-normal
prior on αrs.

Our reasoning up to this point can be summarized as
follows. When we try to directly infer node preferences we
find that the distribution of our estimates does not in general
resemble the true underlying distribution, even for arbitrarily
large networks. In contrast, maximization of Eq. (14) should
give accurate estimates of α, at least for large networks, and
to the extent that the underlying distribution can be well fit
by the hypothesized Dirichlet distribution, these parameters
will describe the shape of that distribution. Thus it is now

possible to infer preference distributions accurately so long
as the network is sufficiently large.

In the real world we don’t have arbitrarily large networks
and so a different source of error could arise: the inability to
make accurate estimates of α because our data are limited.
One way to get around this problem is to take a Bayesian
approach.

Bayes’ theorem states

P(α|A, g) = P(A|α, g)P(α)

P(A|g)
. (15)

The distribution P(α) is the prior distribution for the parame-
ters, which we have to choose. Since the regularization term
introduced in Eq. (14) is equivalent to a log-normal prior for
αrs, we propose using this form as a prior. More details are
given in Appendix A.

A posterior distribution on α as above allows us to make
estimates of quantities of interest without having to estimate
α itself—we can average over it instead. In the next section
we define some useful metrics that can be evaluated within the
posterior distribution, and can thus be inferred in a parameter-
free way.

IV. MEASURES OF ASSORTATIVITY
AND VARIATION OF PREFERENCES

In the previous section we described a procedure for in-
ferring preference distributions in networks. The full mul-
tidimensional distribution, however, is difficult to interpret
physically, so simple summary statistics are also useful. In
this section we propose two specific measures that quantify
the average assortativity in the network and the variation of
preferences around that average.

Assortative mixing occurs when nodes have a preference
for connecting to others of the same type. A natural measure
of assortativity is the expected value of the in-group prefer-
ence parameters. As discussed in Sec. III, the expected value
of the preference parameter xis describing the preference of a
node i in group r for connections to group s is αrs/αr0, where
αr0 = ∑

s αrs. The expected in-group preference of nodes in
group r—their preference to connect to other members of
the same group—is then equal to αrr/αr0, and the average
in-group preference over all nodes in all groups is

a =
∑

r

pr
αrr

αr0
, (16)

where pr is the fraction of nodes that fall in group r.
In a perfectly assortative network all nodes connect only to

their own group and a = 1, while in a perfectly disassortative
network a = 0. For most real-world networks we expect the
value to lie between these extremes, with higher values in-
dicating more assortativity. A natural question to ask is what
kinds of values do we expect to see? What constitutes a “high”
value of a? One way to answer this question is to calculate the
expected value within a null model.

A suitable null model in this case is one in which nodes are
connected according to their expected degrees,

Ai j ∼ Poisson

(
kikin

j

m

)
, (17)
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where ki denotes the out degree of node i, as previously, kin
i

denotes the in degree, and m = ∑
i ki is the expected number

of edges in the network. This is in essence just a directed
version of the standard random network model in which we
fix the expected degrees of all nodes, sometimes called the
Chung-Lu model after two of the first researchers to examine
its properties [20].

Applying the definition of preference from Eq. (1), all
nodes in group s have the same preference in this null model,
xis = Ks/m, where Ks = ∑

i∈s kin
i . Hence in this model the

average in-group preference is

anull =
∑

r

pr
Kr

m
. (18)

The difference between the observed value of a, Eq. (16),
and the expected value within the null model is then

a − anull =
∑

r

pr

(
αrr

αr0
− Kr

m

)
. (19)

When this quantity is greater than zero the preferences are
more assortative than we would expect by chance. When it
is less than zero the preferences are less assortative (or more
disassortative) than expected. If we wish, we can normalize
the difference so that it takes a maximum value of 1 at
perfect assortativity, and thus define a preference assortativity
coefficient

R(α) =
∑

r pr (αrr/αr0 − Kr/m)∑
r pr (1 − Kr/m)

. (20)

The range of allowed values is R ∈ [Rmin, 1], where in gen-
eral Rmin �= −1 and depends on the network in question. (A
similar behavior is seen for the conventional coefficient of
assortativity defined in [2], which is essentially a Pearson
correlation.)

In order to estimate the value of R, we need first to estimate
the α parameters. As discussed in the previous section, we
could do this by maximizing the likelihood of Eq. (13),
but this may give poor estimates in cases such as smaller
networks, where the amount of available data is limited. An
alternative approach is to compute the expected value of R in
the posterior distribution of Eq. (15); thus

R =
∫

R(α)P(α|A, g) dα. (21)

We can also compute the standard deviation of R in the
posterior which makes it easy to state estimates with error
bars. More details on this calculation are given in Appendix B.

The quantity R, however, only measures traditional assor-
tativity. As we have said, our main purpose is to examine
variation of individual preferences about group means. The
variance of a Dirichlet distribution can be quantified by the
mean-squared distance from its average. In group r this is

σ 2
r = E[(x − 〈x〉r )2] = 1 − ∑

s(αrs/αr0)2

αr0 + 1
. (22)

As discussed in Sec. III, the maximum value of the variance
occurs when αr0 → 0, which gives σ 2

r = 1 − ∑
s(αrs/αr0)2.

One can divide by this maximum to give a normalized vari-

ance

Vr = σ 2
r

1 − ∑
s(αrs/αr0)2

= 1

αr0 + 1
, (23)

which lies between zero and one and also has the nice property
of being independent of the mean. Then we can define an
overall normalized variance coefficient by

V (α) =
∑

r

prVr =
∑

r

pr

αr0 + 1
, (24)

which also lies between zero and one. V can be estimated
in the same way as R by averaging its value in the posterior
distribution. See Appendix B for further details of this calcu-
lation.

The quantity V represents the normalized mean-square
distance between the preferences and their group means,
averaged over all groups. When V is close to zero every node
in every group has preferences close to the group mean. If
preferences are homogeneous in this way then the network
is well described by the group average mixing parameters
and individuals’ preferences are well described by simply
stating to which group they belong. Such a finding could be
informative for instance in a social network: it would tell us a
lot about a population if we found that their preferences were
entirely determined by, say, gender or race.

At the other extreme, when V approaches one, node pref-
erences are as far away from the group mean as possible
and nodes, even within the same group, are very unlike each
other in their preferences. In this scenario mixing is poorly
described by average rates, since virtually no nodes behave
according to the average for their group.

V. EXAMPLES

Table I shows results for the preference assortativity and
variance measures, R and V, for a selection of previously
studied networks with known group assignments, listed in
order of increasing variance. As the table shows, all of the
networks are highly assortative by our measure, except for the
word adjacency network, which is disassortative.

The normalized variances V take a range of values from
zero up to 0.3. Recall that low normalized variance indicates
a network in which the members of a group have similar

TABLE I. Estimates of normalized preference assortativity R and
preference variance V for a selection of networks with known group
assignments. Results are computed from the posterior distribution
and stated as μX ± σX . Numbers in brackets indicate references for
each network, except for the network of political books, which was
compiled by Valdis Krebs and is currently unpublished.

Network R V

College football [21] 0.60 ± 0.015 0.01 ± 0.004
Karate club [22] 0.72 ± 0.063 0.07 ± 0.059
Political books 0.72 ± 0.028 0.12 ± 0.034
Political blogs [23] 0.80 ± 0.010 0.15 ± 0.012
High school race or ethnicity [24] 0.55 ± 0.012 0.16 ± 0.011
Provisional IRA affiliation [25] 0.62 ± 0.025 0.22 ± 0.026
Word adjacency [26] −0.27 ± 0.018 0.30 ± 0.024
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FIG. 2. Friendship preferences by race or ethnicity in a US high school. We show separate results for Asian, black, Hispanic, and white
students. For each race or ethnicity the histogram (in green) shows the observed distribution of kigi /ki, the naive estimate of within-group
preference. The red dashed line is the inferred preference distribution from a point estimate of α, found by maximizing Eq. (14). The gray
vertical line is where the average preference would be, in the absence of assortativity.

preferences; high variance indicates that they have widely
varying preferences. Thus, for instance, the “karate club” net-
work, which is a social network of university students, appears
to have no significant variance, meaning it shows traditional
community structure in which the members of a community
are roughly alike in their preferences. The network of high
school students, on the other hand, which one might expect to
be similar shows higher variance. We discuss the high school
and word networks in more detail below.

A. High school friendships and ethnicity

The network denoted “High school race or ethnicity” in
Table I is a network of self-reported friendships between
students in a US high school, taken from the National Longi-
tudinal Study of Adolescent to Adult Health [24] (commonly
known as the “Add Health” study). The node labels in this case
represent the (self-identified) ethnicities of the students, which
take values “Asian,” “black,” “Hispanic,” “white,” “other,”
and “missing.” In our analysis we discard the “other” and
“missing” categories and focus on the remaining four. The
particular school we look at is chosen for its diverse racial
and ethnic composition.

The value of R = 0.55 ± 0.012 for this network indicates
that the school is strongly assortative by race, meaning that
students had more within-group friendships than would be
expected by chance. However, the groups also display differ-
ences in the inferred distributions of their preferences, which
are plotted in Fig. 2. Hispanic students, for instance, show a
larger range of preferences than others. Note that this doesn’t
necessarily imply that Hispanic students individually have
diverse friendship groups—some of them do, but others show
a strong preference for having mainly Hispanic friends, or for
having few.

Also shown in Fig. 2 are histograms of the naive preference
estimates kis/ki, which look quite different from the inferred
distributions. This discrepancy is expected: as discussed in
Sec. II, the distribution of naive estimates is an unreliable
indicator of the true preference distribution.

B. Word adjacencies

The Brown corpus is a widely used data set consisting of
samples of written English text compiled by researchers at
Brown University in the 1960s [26]. Words in the data set
are labeled with their part of speech—noun, adjective, verb,
etc. Working from the fiction text contained in the corpus,
we create a directed word adjacency network in which nodes

FIG. 3. Preferences of different parts of speech to be followed by nouns. Each word is followed by a noun some proportion of the time, and
this proportion is different for different words. For each type of word the histogram (in green) shows the observed distribution of ki,noun/ki, the
naive estimate of noun preference. The red dashed line is the inferred preference distribution from a point estimate of α, found by maximizing
Eq. (14). The three plots represent the distributions for nouns, verbs, and adjectives from the fiction portion of the Brown corpus of English
text [26].
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represent words (limited to nouns, adjectives, and verbs) and
there is a directed edge from word i to word j if word i is
followed by word j at any point in the text.

Figure 3 shows the inferred distributions of preferences
within this network for nouns, verbs, and adjectives to be
followed by nouns. For example, since adjectives normally
come before nouns in English we would expect adjectives to
have a preference for being followed by nouns. And indeed
this is what we see—the red curve in the third panel of Fig. 3
shows that most adjectives have a high preference for being
followed by nouns. Nouns, on the other hand, aren’t usually
followed by other nouns, although they can be: the distribution
(shown in the first panel of the figure) takes its most likely
value around a preference of zero, but is spread across the
whole range and there is still a relatively large density around
preference 1, which is to say that some nouns strongly prefer
to be followed by other nouns. Classic examples are titles
such as “Mr.” and “Mrs.,” which are almost always followed
by proper nouns. Likewise, although most verbs prefer to be
followed by nouns, there are a handful that have a strong
preference to be followed by another verb. These are typically
auxiliary verbs, such as “has” and “was,” in sentences like “He
was sleeping.”

VI. CONCLUSIONS

In this paper we have considered the problem of character-
izing mixing patterns in networks. Average mixing patterns
have a long history of study and can be quantified using
standard methods, but anything beyond the average requires
additional machinery for its description. We analyze within-
group variation in mixing using a model of individual pref-
erences in networks, showing how to fit the model to data
using Bayesian methods. The parameters of the fit have simple
interpretations and we use them to define coefficients that
quantify the average assortativity and variation of preferences.
The method is computationally efficient, with running time
growing linearly in the size of the data set, which puts appli-
cations to large networks within reach.

We have given applications of our methods to a range of
social and information networks. We find that some, though
not all, of these networks do display significant within-group
variation in their mixing patterns, and that where such varia-
tion is present the mixing is not well described by traditional
community structure. Even when there is little or no variation
in preferences the analysis is still informative, since it implies
that preferences are well described solely by to which group a
node belongs.

A limitation of our approach is the assumption that the
preferences are drawn from a Dirichlet distribution, which
rules out multimodal distributions for example. One natural
avenue of extension for the approach would be to experiment
with other choices of distribution. Instead of a single Dirichlet
distribution, for example, one could use a mixture (i.e., a
linear combination) of two or more. This would allow us to
model more complex behaviors, at the expense of a more
complicated fitting procedure. We have also here considered
only the case in which the label or group membership of every
node is known. One could generalize our methods to deal with

cases in which all or some of the data are unknown, but we
leave these developments for future work.
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APPENDIX A: POINT ESTIMATES FOR α

The maximum likelihood estimate for αr is given by the
location of the maximum of

Lr (αr ) =
∑
i∈r

[ln B(αr + ki ) − ln B(αr )]. (A1)

Here ln B(x) is the log of the multivariate beta function,

ln B(x) = − ln �(x0) +
∑

s

ln �(xs), (A2)

with x0 = ∑
s xs. Both the Jacobian and Hessian of Lr are

straightforward to compute, so in principle one could perform
the maximization using optimizers such as Newton’s method
that require second derivatives.

There are however some technical complications with di-
rect maximization of (A1). First, one must impose the con-
straint αrs > 0, which can be done by re-parametrizing with
yrs = ln αrs and writing

Lr (yr ) =
∑
i∈r

[ln B(eyr + ki ) − ln B(eyr )]. (A3)

An unconstrained maximization with respect to yr then
achieves the desired goal.

Second, and more important, under some circumstances
the maximum is not guaranteed to exist and Lr can increase
as yrs → ±∞. For a well-defined estimate we must insist on
a maximum at a finite value of yrs. A simple way to do this is
to add a quadratic regularization term to the likelihood; thus

Lr (yr ) =
∑
i∈r

[ln B(eyr + ki ) − ln B(eyr )] − λ
∑

s

y2
rs, (A4)

where λ is a small positive constant.
From a Bayesian perspective this quadratic regularization

corresponds to placing a normal prior on yrs with mean zero
and variance (2λ)−1, or equivalently a log-normal prior on
αrs. As λ → 0 the prior on yrs becomes uniform, so any
small fixed value of λ should give acceptable results. We use
λ = 2−7, equivalent to σ = 8, which implies that αrs falls
roughly between the 3σ bounds 10−10 and 1010.

To find the maximum of Eq. (A4) one can use any numer-
ical optimization technique. For techniques that make use of
the Jacobian and/or Hessian, the Jacobian is given by

∂Lr

∂yrs
= eyrs

∑
i∈r

[
ψ (eyrs + kis) − ψ

(∑
t

eyrt + ki

)

− ψ (eyrs ) + ψ

(∑
t

eyrt

)]
− 2λyrs, (A5)
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where ψ (x) = �′(x)/�(x) is the so-called digamma function. The Hessian is given by

∂2Lr

∂y2
rs

= eyrs
∂Lr

∂yrs
+ e2yrs

∑
i∈r

[
ψ ′(eyrs + kis) − ψ ′

(∑
t

eyrt +ki

)
− ψ ′(eyrs )+ψ ′

(∑
t

eyrt

)]
− 2λ,

∂2Lr

∂yrs∂yrt
= eyrs+yrt

∑
i∈r

[
ψ ′

(∑
t

eyrt

)
− ψ ′

(∑
t

eyrt + ki

)]
, (A6)

where ψ ′(x) is the trigamma function.

APPENDIX B: BAYESIAN ESTIMATES FOR R AND V

To compute an estimate of any quantity that depends on α,
we can average its value over the posterior distribution. For
any function f (α) the average is given by

〈 f 〉 =
∫

f (α)P(α|A, g) dα, (B1)

which can also be written

〈 f 〉 =
∫

f (y) exp
[∑

rLr (yr )
]

dy∫
exp

[∑
rLr (yr )

]
dy

, (B2)

where yrs = ln αrs and Lr (yr ) is defined by Eq. (A4).
Both R and V , as we have defined them, are averages

over the groups R = ∑
r prRr and V = ∑

r prVr . For any
such function we can compute the averages for the individual
groups separately

〈F 〉 =
∑

r

pr〈Fr〉 =
∑

r

pr

∫
Fr (y) exp[Lr (y)] dy∫

exp[Lr (y)] dy
. (B3)

Integrals of this form can be approximated using Laplace’s
method, which in this case gives

〈Fr〉 �
√

det �∗
r

det �r
exp[L∗

r (ŷ∗
r ) − Lr (ŷr )], (B4)

where

L∗
r (y) = Lr (y) + ln Fr (y), (B5)

ŷr = argmax
y

{Lr (y)}, (B6)

ŷ∗
r = argmax

y

{
L∗

r (y)
}
, (B7)

and �∗
r and �r are minus the inverse of the Hessians of L∗

r
and Lr at ŷ∗

r and ŷr . In this ratio form some errors cancel and
Laplace’s approximation has only an O(n−2) error [27].

Estimates for R and V can now be computed from
Eqs. (B3) and (B4) with

F (R) =
∑

r

pr
eyrr∑
s eyrs

, (B8)

F (V ) =
∑

r

pr
1

1 + ∑
s eyrs

. (B9)

The values of ŷr and ŷ∗
r along with the Hessians can be

computed from Eqs. (A5) and (A6). Error estimates can also
be computed from estimates of R2 and V 2.

Software to compute estimates of R and V is available in
Ref. [28].
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