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Multifractality in random networks with power-law decaying bond strengths
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In this paper we demonstrate numerically that random networks whose adjacency matrices A are represented
by a diluted version of the power-law banded random matrix (PBRM) model have multifractal eigenfunctions.
The PBRM model describes one-dimensional samples with random long-range bonds. The bond strengths of
the model, which decay as a power-law, are tuned by the parameter μ as Amn ∝ |m − n|−μ; while the sparsity is
driven by the average network connectivity α: for α = 0 the vertices in the network are isolated and for α = 1
the network is fully connected and the PBRM model is recovered. Though it is known that the PBRM model has
multifractal eigenfunctions at the critical value μ = μc = 1, we clearly show [from the scaling of the relative
fluctuation of the participation number I2 as well as the scaling of the probability distribution functions P(ln I2)]
the existence of the critical value μc ≡ μc(α) for α < 1. Moreover, we characterize the multifractality of the
eigenfunctions of our random network model by the use of the corresponding multifractal dimensions Dq, that
we compute from the finite network-size scaling of the typical eigenfunction participation numbers exp 〈ln Iq〉.

DOI: 10.1103/PhysRevE.99.042303

I. INTRODUCTION

Fractality is related to phase transitions in critical phe-
nomena observed in several complex systems [1,2]: blood
vessels, proteins, ocean waves, animal collaboration patterns,
and earthquakes exhibit fractality [3,4]. Fractality can also be
understood as a signature of the organization and structure of
complex systems, which is far from random or regular [5].
Moreover, the structure of complex systems can be mapped to
networks, whose structure [6] and evolution [7] exhibit fractal
properties.

Fractality in networks has been extensively discussed from
several perspectives [6,8]. These studies have focused on
the structural characterization of fractal networks [6,7] or
networks expressly constructed as fractal objects (determin-
istic or disordered, e.g., see [9–13]). In this respect some
algorithms have been developed and applied to compute the
fractal dimension of complex networks, see, for example,
[6,10,14–19] and references therein. On the other hand, given
a fractal network, there is plenty of works devoted to the
signatures of the fractality on the network properties. Among
them we can mention the underlying tree structure or skeleton
[10,14] as well as dynamical and transport properties, see, for
example, [9,20–25].

Here, we approach an alternative but close-related sub-
ject: We explore the fractality of the eigenfunctions of
the adjacency matrices A of a random network model.
Moreover, we demonstrate that imposing power-law corre-
lations, i.e., Amn ∝ |m − n|−μ with μ ∼ 1, on a random net-
work model of the Erdös-Rényi–type produces multifractal
eigenfunctions.

Therefore, in the following section we first review the
power-law banded random matrix (PBRM) model; a random
matrix model used to study the Anderson metal-to-insulator
phase transition, which presents multifractal eigenfunctions
at the transition point. Then, we introduce the diluted PBRM
(dPBRM) model as an ensemble of adjacency matrices of
random networks of the Erdös-Rényi–type. Using scaling
arguments, in Sec. III we show that the dPBRM model also
exhibits a metal-to-insulator phase transition where the cor-
responding eigenfunctions are multifractal objects. Finally, in
Sec. IV we draw our conclusions.

II. THE RANDOM NETWORK MODEL

A. The power-law banded random matrix model

The power-law banded random matrix (PBRM) model
[26] is represented by N × N real symmetric matrices whose
elements are statistically independent random variables drawn
from a normal distribution with zero mean, 〈Amn〉 = 0, and a
variance given by

〈|Amn|2〉 = 1

2

(
1 + δmm

1 + [sin (π |m − n|/N )/(πb/N )]2μ

)
, (1)

where b and μ are the model parameters. The PBRM model
has been used to describe one-dimensional tight-binding
wires of length N with random long-range hoppings. In
Eq. (1) the PBRM model is in its periodic version; i.e.,
the one-dimensional wire is in a ring geometry. Theoretical
considerations [26–29] and detailed numerical investigations
[27,30–32] have verified that the PBRM model undergoes
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a transition at μ = 1, i.e., from localized eigenfunctions for
μ > 1 to delocalized eigenfunctions for μ < 1. This transition
shows key features of the disorder driven Anderson metal-
insulator transition [27,33–35], including multifractality of
eigenfunctions and non-trivial spectral statistics. Thus the
PBRM model possesses a line of critical points b ∈ (0,∞)
at μ = μc = 1. By tuning the parameter b, from b 	 1 to
b 
 1, the eigenfunctions cross over from the strong mul-
tifractality (Dq ∼ b → 0) which corresponds to localized-
like or insulator-like eigenfunctions to weak multifractality
(Dq → 1), showing rather extended, i.e., metallic-like eigen-
functions [27,28]. Here, Dq are the eigenfunction’s multifrac-
tal dimensions (to be defined in Sec. III). At the true Anderson
transition in d = 3 or at the integer quantum-Hall transition
in d = 2 the eigenfunctions belong to the weakly multifractal
regime, i.e., d − D2 	 d; it is relevant to note that the PBRM
model allows for investigations without such a limitation.

B. The diluted power-law banded random matrix model

Here, we introduce the diluted PBRM (dPBRM) model as
follows: Starting with the PBRM model, we randomly set
off-diagonal matrix elements to zero such that the sparsity
(i.e., the average network connectivity) α is defined as the
fraction of the N (N − 1)/2 independent non-vanishing off-
diagonal matrix elements. According to this definition, a
diagonal random matrix is obtained for α = 0, whereas the
PBRM model is recovered when α = 1.

The Erdös-Rényi adjacency matrix is considered as a mask
to define the nonzero matrix elements of our dPBRM model.
Hence, notice that the dPBRM model of size N works as
an ensemble of adjacency matrices of Erdös-Rényi–type net-
works formed by N vertices. For such networks we allow self-
edges and further consider all edges to have random strengths;
however, notice that the random strengths are power-law
modulated, see Eq. (1).

The power-law correlations of the dPBRM model are tuned
by the parameter μ as Amn ∝ |m − n|−μ, see Eq. (1). Notice
that for μ → ∞ the vertices in the network become isolated
since Amn → 0; while for μ → 0 the dPBRM model repro-
duces the Erdös-Rényi random network model with maximal
disorder (see Refs. [36–38]). However, here we set μ ∼ 1
such that we recover the PBRM model at criticality (i.e.,
the PBRM model having multifractal eigenfunctions) when
α = 1. Moreover, without loss of generality, we will set the ef-
fective bandwidth b of the dPBRM model to unity; that is, we
use the bandwidth that produces multifractal eigenfunctions
with intermediate fractality, D2 ≈ 0.5, in the PBRM model.
Here, D2 is the correlation dimension of the eigenfunctions.

Note that another diluted version of the PBRM model was
reported in Refs. [39–41] in studies of quantum percolation.

In the following section we demonstrate that the eigenfunc-
tions of the dPBRM model are multifractal objects. Besides,
we share the implementation and analyses of the reported
model online [42], for easier reproducibility.

III. NETWORK EIGENFUNCTION MULTIFRACTALITY

Given an eigenfunction � it is a common practice (in
random matrix models and complex Hamiltonian systems)

to characterize its complexity by the use of the generalized
participation numbers

Iq =
(

N∑
i=1

|�i|2q

)−1

, (2)

where N is the corresponding matrix size. In particular, the
participation number I2 is roughly equal to the number of prin-
cipal eigenfunction components, and therefore, is a widely
accepted measure of the extension of the eigenfunction � in a
given basis. Participation numbers and also inverse participa-
tion ratios, i.e., (Iq)−1, have been already used to characterize
the eigenfunctions of the adjacency matrices of random net-
work models (see some examples in Refs. [43–50]).

In the context of random matrix models showing the metal-
to-insulator phase transition, such as the PBRM model, it is
well established that the distribution functions of the inverse
participation ratios are scale invariant at the transition point
[51] where the eigenfunctions are multifractal objects (see
also [32]). The PBRM model with μ = 1 is at criticality,
however, introducing the sparsity α may relocate the metal-
to-insulator transition point. Therefore, before talking about
multifractality of eigenfunctions for the dPBRM model we
first have to be sure that the system is at criticality. Thus,
to search out the critical points of the dPBRM model with
α < 1 we use the relative fluctuation (the ratio of the standard
deviation to the mean value) of the participation number I2,

η =
√

〈(I2)2〉 − 〈I2〉2

〈I2〉 . (3)

Indeed, this quantity has been used to locate the metal-to-
insulator transition point in random [40] and non-random [52]
long-range hopping models.

In the following, we use exact numerical diagonalization to
obtain the eigenfunctions � of the adjacency matrices of large
ensembles of random networks, represented by the dPBRM
model (characterized by N and α).

In Fig. 1 we present the curves of η vs. μ for the dPBRM
model with sparsity α. For a given value of the sparsity
α we show curves corresponding to different (exponentially
growing) network sizes. For all the values of α we con-
sider here, α = [0.02, 1], we observe two opposing behaviors:
When μ 	 1 (μ 
 1) the quantity η decreases (increases) for
increasing (decreasing) network size N . Moreover, we observe
that curves for different N have a fixed point at μ = μc,
revealing the invariance of η and therefore the existence of
a metal-to-insulator transition point at μc. Then, in Fig. 2(a)
we plot μc vs. α. From this figure we can see that for moderate
sparsity, i.e., α > 0.1, μc ∼ 1; while for relatively strong
sparsity, i.e., α � 0.1, μc decreases for decreasing α.

As complementary information, in Fig. 2(b) we report the
values of the relative fluctuation η of the participation number
that we found at μc. As for μc, here we also observe two
different behaviors for η: while it decreases for increasing α

when α > 0.1; it is interesting to note that η is approximately
constant (η ≈ 0.8) for relatively strong sparsity, α � 0.1.

We stress that from Fig. 1 we have located the critical
points μc for different values of α (reported in Fig. 2) by
the use of the invariance of the relative fluctuation of the
participation number I2. Moreover, we can further verify the
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FIG. 1. Relative fluctuation of the participation number, η, as a function of μ for the dPBRM model for selected values of the sparsity:
(a) α = 0.06, (b) α = 0.08, (c) α = 0.1, (d) α = 0.4, (e) α = 0.6, and (f) α = 0.8. In each panel we show curves for different network sizes
(arrows indicate increasing N).

existence of μc from the invariance of the probability distri-
bution function (PDF) of I2 itself (see, for example, [32,51]).
Thus, in Fig. 3 we show PDFs of the participation number
P(ln I2) for the dPBRM model with sparsity α = 0.3, 0.6, and
α = 0.9. For each α we have selected three values of μ: μ =
0.9 < μc, μ = μc, and μ = 1.2 > μc. As well as for η, here
we identify two behaviors for P(ln I2) depending on whether
μ < μc or μ > μc: When μ < μc (μ > μc) the histograms of
P(ln I2) are narrower (wider) the larger (smaller) the network
size. While, as predicted [32,51], P(ln I2) is invariant at μ =
μc and falls on top of a universal PDF when plotted as a
function of ln I2 − 〈ln I2〉. We merely want to comment that
for small network sizes, N < 103, at μ = μc we observe that
P(ln I2) evolves as a function of N ; which is a finite size effect.
Indeed, as clearly seen in Fig. 3, P(ln I2) is already invariant
for N > 103.

Once we know the position of μc for the dPBRM model,
we can characterize the multifractality of the corresponding
eigenfunctions through the eigenfunction multifractal dimen-
sions Dq, which are defined by the scaling of the typical
participation numbers

I typ
q ≡ exp〈ln Iq〉 (4)

as a function of N :

I typ
q ∝ N (q−1)Dq . (5)

The multifractal dimensions Dq can also be extracted from the
scaling of the average participation numbers, 〈Iq〉 ∝ N (q−1)Dq ,
however, here we choose to use typical participation num-
bers. We recall that for strongly localized eigenfunctions
the corresponding I typ

q does not scale with the system size:
I typ
q ∼ 1 and Dq → 0 for all q. This situation corresponds to
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FIG. 2. (a) The critical value μc as a function of the sparsity α for the dPBRM model. Here, we define error bars as the width of the μ

region where the curves of Fig. 1 cross. (b) Relative fluctuation of the participation number, η, at α(μc ).
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FIG. 3. Probability distribution functions of the participation number P(ln I2) for the dPBRM model with sparsity α = 0.3 (upper row),
α = 0.6 (middle row), and α = 0.9 (lower row). We used μ = 0.9 < μc (left column), μ = μc (middle column), and μ = 1.2 > μc (right
column). Each histogram was constructed from 215 data values. Arrows indicate increasing N .

an insulating regime. While extended eigenfunctions always
feel the entire system. Thus, a signature of the metallic regime
is given by I typ

q ∝ N and Dq → d . Moreover, multifractal
eigenfunctions should be described by the series of Dq, which
are nonlinear functions of the index q.

We extract the multifractal dimensions Dq from the linear
fit of the logarithm of the typical participation numbers 〈ln Iq〉
versus the logarithm of N [see Eq. (5)]. We use N = 2n,
7 � n � 12. The average was performed over 2n−3 eigen-
functions with eigenvalues around the band center with 218−n

realizations of our dPBRM model. As examples, in Fig. 4 we
present the scalings of 〈ln I2〉 vs. ln N for selected values of
sparsity. Therefore, the correlation dimension D2 is extracted
from the linear fits to the data (see dashed lines). We note the
remarkably clean linear scaling of 〈ln I2〉 vs. ln N .

Finally, in Fig. 5(a) we report the multifractal dimensions
Dq as a function of q for the dPBRM model with selected
values of α (to avoid figure saturation). The nonlinearity of
the curves Dq vs. q is the signature of the multifractality of
eigenfunctions of our network model. Also, as a reference,
in Fig. 5(a) we include the values of Dq for the PBRM

4 5 6 7 8 9
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−2

ln N

<
ln

 I 2>
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α = 0.9

FIG. 4. Logarithm of the typical participation numbers 〈ln I2〉
as a function of the logarithm of N for the dPBRM model
with sparsity α. Dashed lines are linear fittings to the data used
to extract the following correlation dimensions: D2(α = 0.3) =
0.6084 ± 0.0179, D2(α = 0.6) = 0.7010 ± 0.0037, and D2(α =
0.9) = 0.7475 ± 0.0073.
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FIG. 5. (a) Multifractal dimensions Dq as a function of q for the dPBRM model with sparsity α = 0.3, 0.5, 0.7, and 0.9 (from bottom
to top). Red symbols correspond to the multifractal dimensions of the PBRM model, i.e., α = 1. (b) Dq as a function of α for selected
values of q.

model (i.e., the values of Dq for the dPBRM model with
α = 1). Additionally, in Fig. 5(b) we show Dq vs. α for
selected values of q, in particular we include the information
dimension D1 and the correlation dimension D2. From this
figure we observe two behaviors: an initial decrease of Dq for
decreasing α, for relatively large values of α (α � 0.2); while,
remarkably, the further decreasing of α (i.e., α < 0.08) makes
the multifractality of the eigenfunctions of the dPBRM model
to grow to values close to those for weak sparsity.

IV. DISCUSSION AND CONCLUSIONS

In this paper we consider random networks whose adja-
cency matrices A are represented by a sparse version of the
power-law banded random matrix (PBRM) model, therefore
having a power-law structure, Amn ∝ |m − n|−μ, tuned by
the parameter μ [see Eq. (1)]. We call this random network
model the diluted PBRM (dPBRM) model. We would like
to emphasize that the dPBRM model belongs to the same
universality class than the PBRM model, as discussed in [53]
where more general long-range quantum hopping models in
one-dimension have been studied.

The sparsity of the dPBRM model is driven by the average
network connectivity α: for α = 0 the vertices in the network
are isolated and for α = 1 the network is fully connected.
Notice that the original PBRM model is recovered for α = 1,
which is known to have multifractal eigenfunctions at the
critical value μ = μc = 1 where a metal-to-insulator phase
transition takes place. Here, we show that the dPBRM model
exhibits a critical value μc ≡ μc(α) for α < 1, as reported
in Fig. 2. Moreover, we found that μc ∼ 1 for α > 0.1;
while for relatively strong sparsity, 〈k〉 	 N or α 	 1 (since
〈k〉 ≡ αN , where 〈k〉 is the average degree), μc decreases for
decreasing α.

In addition, we demonstrate the multifractality of the
eigenfunctions of our random network model at μc by the
calculation of the corresponding multifractal dimensions Dq.
Indeed, we observed from Fig. 5 that the multifractality of the
eigenfunctions of the dPBRM model can be effectively tuned
by the average network connectivity α.

We emphasize that the calculation of Dq from the finite
network-size scaling of the typical eigenfunction participation

numbers, see Eq. (5), is equivalent to a standard box covering
algorithm (where the network size N works as the box size).
However, due to the normalized nature of the eigenfunctions,
the scaling of 〈ln Iq〉 vs. ln N is very stable, as clearly shown
in Fig. 4, providing quite precise values of multifractal
dimensions.

Our approach may be used to investigate the multifractality
of eigenfunctions in other random network models. Indeed,
similar studies have been already performed to explore the
multifractality of eigenfunctions of the Anderson model on
Cayley trees (AMCT) [13,54,55] and random graphs [56]. It
is relevant to stress that there are three important differences
between the network model studied here and the AMCT
studied in Refs. [13,54]: (i) Cayley trees have a fixed degree
(the AMCT in [13,54] is characterized by k = 3), while due to
the random-network nature of the dPBRM model the degree
is defined as an average quantity here. (ii) The dPBRM model
represents networks with randomly weighted bond strengths
between vertices, while the AMCT in [13,54] is defined as a
network with constant bond strengths. (iii) The dPBRM model
possesses an infinite line of critical points characterized by the
parameter b ∈ (0,∞) [that we did not examine here since we
fixed b = 1 in Eq. (1) as a representative case], whereas the
AMCT has a single critical point for a given on-site disorder
strength. Thus, even though it may be expected that the
dPBRM with 〈k〉 ≈ 3 should show similar properties than the
AMCT in [13,54], this must be properly verified, given the dif-
ferences between both models. Moreover, inspired by [54,57]
it should also be interesting to explore the eigenfunction
statistics of the dPBRM model off criticality, i.e., μ 
= 1 in
Eq. (1).

The relation between the fractality of networks (in net-
works specifically constructed as deterministic or disordered
fractal objects) and the (possible) fractality of the eigenfunc-
tions of the corresponding adjacency matrix is also another
important subject to be explored.

We would like to add that the dPBRM model, when inter-
preted as a model for one-dimensional quantum chains with
long-range interactions, has characteristics proper of models
currently used in the study of excitation transport [58]: dis-
order and power-law decaying bond strengths. Furthermore,
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these characteristics can presumably be implemented and
tuned in state-of-the-art ion-chain experiments; thus the dP-
BRM model may find applications related to quantum trans-
port with high efficiencies [58].
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