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Stabilization of steady states in an array of all-to-all coupled oscillators
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An array of globally all-to-all coupled FitzHugh-Nagumo–type oscillators is considered. We suggest an
adaptive first-order stable filter control feedback technique to stabilize the steady states of the oscillators. The
overall system includes separate networks of coupling and control. Therefore, the controller does not depend
on the intrinsic parameters of coupling between the oscillators. We have investigated stabilization of the steady
states in an array of nonidentical oscillators analytically, numerically, and experimentally.
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I. INTRODUCTION

A large number of various couplings between dynamical
systems in general and, in particular, limit-cycle or chaotic
oscillators have been introduced and considered in the lit-
erature (see, for example, Ref. [1] and references therein).
Very recently, different networks of interacting units with
distinct design principles have been reviewed [2]. From the
point of view of network topology, there are three main
classes of couplings. The first is nearest-neighbors coupling
(also called local coupling), physically associated with the
diffusive mechanism of interaction. Geometrically, it can be
presented as a chain, ring, or lattice configuration. The sec-
ond is all-to-all or each-to-each coupling (also called global
coupling), physically characterized by the mean-field mech-
anism of interaction. The third is star coupling, where one
distinguished central node (CN) is coupled to all oscillators
[Fig. 1(a)]. Depending on the physical origin of the CN and
the coupling mode, some specific cases of the star coupling
can be attributed to global class of coupling. For example, if
the CN is a common external driving unit (exciter), then star
coupling represents a nonautonomous system with a common
drive signal. This case is not considered as global coupling.
However, if the CN is occupied by one distinguished oscillator
(leader) of the array, then the situation depends on the mode
of coupling (either unidirectional or bidirectional). In the case
of unidirectional mode (from the CN toward the periphery),
we come to the so-called master-slave(s) or drive-response
configuration, that, again, is not global, whereas the case of
a bidirectional mode (“weak leader”) implicates the mean-
field interaction, which is a characteristic feature of global
coupling. Finally, if the CN is simply a common connect-
ing node, bidirectionally coupled to the oscillators, then star
coupling and all-to-all coupling coincide, since both of them
are described by the mean-field mechanism of interaction
between the oscillators. In a very special case, when the CN
is “grounded” [3], the array becomes physically uncoupled.
Thus, it no longer belongs to any class of coupling.
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To summarize, there are two different global coupling con-
figurations, namely bidirectional star coupling [Fig. 1(a)] and
all-to-all coupling [Fig. 1(b)]. Obviously the term “global”
applies to the case of N � 3 only. For N = 2 it is simply a
bilateral coupling. We note that for N = 3 (as sketched in
Fig. 1 for simplicity) all-to-all coupling formally coincides
with nearest-neighbor coupling, specifically ring coupling,
which, in general (for arbitrary N), is not global.

Any kind of coupling of oscillators (except for the
star configuration with CN “grounded”) eventually leads to
synchronization—a universal phenomenon observed in a vari-
ety of natural systems and engineering [4]. In most cases, e.g.,
coupled spin-torque nano-oscillator arrays [5] and laser arrays
[6], synchronization increases the output power. Thus, it has
a favorable impact. However, sometimes it is an undesirable
effect, for example, synchrony of neurons in the human brain.
It is supposed that strong synchronization of neurons can
cause the symptoms of Parkinson’s disease [7,8]. A num-
ber of feedback techniques have been suggested to suppress
synchrony of coupled oscillators. They employ, for example,
repulsive coupling [3,9], mean-field nullifying [3,10], act-and-
wait algorithm [11], time delay [7,12], a passive oscillator in
the feedback loop [13], and a separate registration-stimulation
setup [14].

The most straightforward way to get around the problem of
undesirable synchrony is to suppress the activity of the oscilla-
tors. This can be achieved by externally driving the oscillators
at high frequency (much higher than their natural frequencies)
[15–17]. Another option to stabilize the intrinsic steady states
of the oscillators by means of either the second-order damped
oscillator (actually a band-pass filter) [13] or the first-order
low-pass filter-based adaptive feedback technique [18].

The external high-frequency drive in neurology is known
as deep brain stimulation (DBS), applying ≈100-Hz periodic
pulses to certain brain areas [19]. DBS is a clinically approved
therapy for patients with Parkinson’s disease. Unfortunately,
DBS often causes unpleasant side effects.

The above-mentioned feedback technique of stabilizing
steady states [18] is limited to strong coupling of the oscilla-
tors. The coupling parameter k should exceed some threshold
value. In many engineering systems the k can be easily
adjusted to set a sufficient value. However, in natural systems,
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FIG. 1. Globally coupled oscillators. (a) Bidirectional star con-
figuration; here CN is a simple connection node (not an oscillator);
(b) all-to-all configuration.

e.g., in biological systems, k is an intrinsic parameter of the
system, which is not easy to tune and, in general, its value
is unknown. Therefore, it is important to develop a control
technique independent of the intrinsic coupling strength.

In this paper, we consider all-to-all globally coupled oscil-
lators with separate networks of coupling and control.

II. GLOBAL COUPLING

Let us consider an array of N globally coupled second-
order limit-cycle oscillators:

ẋi = F (xi, yi ) + Q(x j, xi ), (1)

ẏi = G(xi, yi ), i, j = 1, 2, . . . , N. (2)

Here F (. . .) is a nonlinear function, G(. . .) is either a nonlin-
ear or linear function, and Q(. . .) is the coupling-control term.

For the star coupling configuration [Fig. 1(a)]:

Q(x j, xi ) = Q(xi ) = k(XCN − xi ), (3)

where k is the coupling coefficient and XCN is the variable at
the CN.

Control of the array is implemented by “manipulating” the
variable at the coupling node, XCN. There are four different
cases for the variable XCN.

(1) No control; presence of 〈x〉 leads to synchronization,

XCN = 1

N

N∑
j=1

x j = 〈x〉. (4)

(2) “Grounding” the coupling node. The reason of synchro-
nization is removed. Thus, it leads to desynchronization [3],

XCN = 0. (5)

(3) Repulsive coupling [3,9]. This leads either to desyn-
chronization or to synchronization at the same frequency but
with the opposite phases distributed in the 2π phase circle.
Both of them yield a low value of the mean-field variable 〈x〉,

XCN = −〈x〉. (6)

(4) Adaptive control via stable filter [18],

XCN = z; ż = ω f (〈x〉 − z). (7)

Here the auxiliary variable z is a filtered copy of 〈x〉 and ω f �
1 is the cut-off frequency of the filter.

For the all-to-all coupling configuration [Fig. 1(b)] the
coupling term Q(x j, xi ) = Q(xi ) in the absence of control

FIG. 2. Globally coupled all-to-all oscillators (light gray
spheres) and a controller (dark gray sphere), coupled to all
oscillators.

reads:

Q(xi ) = k
N∑

j=1

(x j − xi ) = kN (〈x〉 − xi ). (8)

The structure of Q(xi ) given by formula (8) is the same
as in formula (3) with XCN = 〈x〉. However, its value is
significantly different, since it is multiplied by a factor of N .

III. GLOBAL CONTROL

In the case of star coupling [Fig. 1(a)] the control is
achieved via a single node, CN. Though the bidirectional star
coupling is global, the control can be considered a quasilocal
technique, whereas for all-to-all coupling [Fig. 1(b)] there is
no specified central node. Moreover, in natural arrays, e.g.,
biological systems, the structure of the coupling configuration
cannot be changed, and the coupling coefficient k cannot
be adjusted. Therefore, the control should be implemented
globally via applying the controller to all oscillators (Fig. 2).
Consequently, we add to the coupling term Q(x j, xi ), given by
formula (8), an independent control term q(z − xi ):

Q(x j, xi ) = kN (〈x〉 − xi ) + q(z − xi ),

ż = ω f (〈x〉 − z). (9)

Here, in contrast to the coupling coefficient k, the value of
control coefficient q can be set arbitrarily by an external
controller.

Further, to be specific, we consider control of an array of
all-to-all coupled FitzHugh-Nagumo (FHN)–type oscillators
[18]:

ẋi = f (xi ) − yi − ci + kN (〈x〉 − xi ) + q(z − xi ), (10)

ẏi = xi − byi, i = 1, 2, . . . , N, (11)

ż = ω f (〈x〉 − z). (12)

Here the f (xi ) is a three-segment piecewise linear strongly
asymmetric (d � g � 0) function,

f (xi ) = axi −
⎧⎨
⎩

d (xi + 1), xi < −1,

0, −1 � xi � 1,

g(xi − 1), xi > 1.

(13)

The mean-field variable 〈x〉 is defined as

〈x〉 = 1

N

N∑
i=1

xi. (14)
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FIG. 3. Maximal value of the real parts of the eigenvalues λ1,2,3,
Reλ vs. the control parameter q. The arrow indicates the threshold
parameter qth = 2.9. a = 3, b = 0.1, ω f = 0.1.

Equations (10)–(12) are a (2N + 1)-dimensional system. Its
analysis is very complicated. Therefore, we use the mean-field
approach. All terms in Eqs. (10)–(12) are averaged over the
ensemble:

˙〈x〉 = 〈 f 〉 − 〈y〉 − 〈c〉 + q(z − 〈x〉), (15)

˙〈y〉 = 〈x〉 − b〈y〉, (16)

ż = ω f (〈x〉 − z). (17)

Here 〈x〉 is given by Eq. (14). Other mean values are defined
in the same way:

〈y〉 = 1

N

N∑
i=1

yi, 〈c〉 = 1

N

N∑
i=1

ci, 〈 f 〉 = 1

N

N∑
i=1

f (xi ).

(18)

Note that the coupling term kN (. . .) in Eq. (15) has conve-
niently disappeared, since kN〈〈x〉 − xi〉 = 0. The only control
term q(z − 〈x〉) has been left. In addition, Eqs. (15)–(17) is
a three-dimensional system. Though Eqs. (15)–(17) are not
suitable to describe full dynamics of the mean field, because
〈 f 〉 �= f (〈x〉), they can be used to find the steady state of the
mean field. If ab < 1 and for all i the |ci| � 1/b − a, then
|xi0| � 1. According to the definition of f (xi ), it is a linear
function in the range −1 � xi0 � 1: f (xi0) = axi0. Conse-
quently, 〈 f 〉0 = a〈x〉0. Eventually, the steady-state solution of

FIG. 4. Waveforms of isolated uncontrolled oscillators. k = q =
0. (a) Individual variable x16 and (b) mean variable 〈x〉.

FIG. 5. Waveforms of coupled uncontrolled oscillators. k = 0.3,
q = 0. (a) Individual variable x16 and (b) mean variable 〈x〉.

Eqs. (15)–(17) reads:

〈x〉0 = − b〈c〉
1 − ab

, 〈y〉0 = − 〈c〉
1 − ab

, z0 = 〈x〉0. (19)

Now we linearize Eqs. (15)–(17) around the fixed point
(19):

˙〈x〉 = a〈x〉 − 〈y〉 + q(z − 〈x〉), (20)

˙〈y〉 = 〈x〉 − b〈y〉, (21)

ż = ω f (〈x〉 − z). (22)

Note that Eqs. (20)–(22) do not include parameter 〈c〉. The
characteristic equation has the following algebraic form:

λ3 + h2λ
2 + h1λ + h0 = 0,

h2 = q − a + b + ω f ,

h1 = bq + 1 − ab − (a − b)ω f ,

h0 = (1 − ab)ω f . (23)

FIG. 6. Steady states. (a) Isolated uncontrolled oscillators, k =
q = 0, from formula xi0 = −bci/(1 − ab). The dashed line is 〈x〉0 =
−0.18 from formula (19). (b) Coupled controlled oscillators from
Eqs. (10)–(12), k = 0.3, q = 3, ω f = 0.1. The dashed line is at
−0.18.
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FIG. 7. Circuit diagram of a single FHN-type oscillator. CA is
the coupling array [see Table I, outputs of all N individual oscillators
are connected to the CA via “basement” (B)].

This cubic equation has been solved numerically for different
values of the control parameter q. It has three eigenvalues
λ1, λ2, λ3. The maximal value of the real parts, max(Reλ1,2,3),
is plotted in Fig. 3. It becomes negative at q � qth = 2.9,
indicating stability of the steady state (19).

Stability analysis of Eqs. (20)–(22) can be also performed
analytically using the Hurwitz matrix:

H =
⎡
⎣h2 h0 0

1 h1 0
0 h2 h0

⎤
⎦. (24)

According to the Routh-Hurwitz stability criterion the system
is stable if all diagonal minors of the H matrix are positive:

�1 = h2 > 0, �2 = h2h1 − h0 > 0,

�3 = h2h1h0 − h2
0 = h0(h2h1 − h0) = h0�2 > 0. (25)

Since h0 > 0 it is sufficient to analyze �1 and �2. In the limit
case of ω f → 0 the �2 → h2h1. For ω f → 0 the element
h1 > 0. Thus, the stability depends on the first minor �1 = h2

only. The threshold control coefficient is found from a single
inequality h2 > 0: qth = a − b. In the case of finite ω f both
minors, �1 and �2, should be analyzed. For the specific
parameter values a = 3 and b = ω f = 0.1, used further in the
numerical simulations, we find from the inequalities (25) the
threshold value of the control coefficient qth = 2.9 in excellent
agreement with the plot in Fig. 3.

Numerical results obtained from Eqs. (10)–(12) for three
different sets of the coupling-control parameters (1) [k = q =
0], (2) [k �= 0, q = 0], and (3) [k �= 0, q �= 0] are presented
in Figs. 4 to 6, respectively. The following dimensionless
parameters have been used: N = 24, a = 3, b = 0.1, ci =
44/(24 + i), d = 60, g = 3.

FIG. 8. Circuit diagram of the controller. R∗C0Rctrl is a stable
first-order branched filter. See formula (26) for definition of q
and ω f .

TABLE I. Map of connections in the coupling array CA.

8th floor 8-10
7th floor 7-9 7-10
6th floor 6-8 6-9 6-10
5th floor 5-7 5-8 5-9 5-10
4th floor 4-6 4-7 4-8 4-9 4-10
3rd floor 3-5 3-6 3-7 3-8 3-9 3-10
2nd floor 2-4 2-5 2-6 2-7 2-8 2-9 2-10
1st floor 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10
G floor 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

B 1 2 3 4 5 6 7 8 9 10

IV. ELECTRONIC EXPERIMENT

Experiments have been carried out using an array of FHN-
type oscillators, described in detail elsewhere [20]. A single
oscillator is sketched in Fig. 7. The OA is an NE5534 op-
erational amplifier, and the D1,2 are general-purpose BAV99
type diodes (V ∗ = 0.6 V, the breakpoint voltage of the I − V
characteristic). The following values of the circuit elements
have been set: L = 10 mH, C = 3.3 nF, R1 = R2 = 1 k�,
R3 = 510 �, R4 = 30 �, R5 = 510 �, R6 = 275 � (resistor
220 � in series with coil resistance 55 �), R(i)

7 = (24 + i) k�,
V0 = −15 V.

Figure 8 schematically illustrates the controller. The ad-
justable resistance Rctrl can be set positive (to decrease the
control coefficient, q < ρ/R∗), to zero (to ground the capac-
itor C0 and to set q = ρ/R∗), or negative (to increase the
control coefficient, q > ρ/R∗). In the latter case, a negative
impedance converter should be employed.

The coupling array (CA) for the all-to-all configura-
tion (N = 10) has been built using multi-story construction
(Table I), starting from the “basement” (B) for connecting the
oscillators, then rising to the ground floor (G), and eventually
going to the 8th floor, used for coupling the cells. The number
of coupling resistors is given by M = N (N − 1)/2, e.g., for
N = 10 the M = 45.

Dimensionless variables and parameters in Eqs. (10)–(13)
are related to the circuit variables and element values in Fig. 7

FIG. 9. Waveforms of isolated uncontrolled oscillators, individ-
ual variable VC5 and mean variable 〈VC〉. Rm → ∞.
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FIG. 10. Waveforms of coupled uncontrolled oscillators, individ-
ual variable VC5 and mean variable 〈VC〉. Rm = 5.6 k�, R∗ → ∞.

and Fig. 8 as follows:

xi = VCi

V ∗ , yi = ρILi

V ∗ , z = VC0

V ∗ , t → t√
LC

, ρ =
√

L

C
,

a = ρ

R3
, b = R6

ρ
, ci = ρV0

R(i)
7 V ∗ , d = ρ

R4
, g = ρ

R5
,

k = ρ

Rm
, q = ρ

R∗ + NRctrl
, ω f = N

√
LC

(R∗ + NRctrl )C0
.

(26)

Here VC is the voltage across the capacitor C and IL is the
current through the inductor L in Fig. 7. VC0 is the voltage
across the external control capacitor C0, Rm is the mutual
coupling resistance between two oscillators, R∗ is the coupling
resistance between the controller and an individual oscillator,
and Rctrl is the adjustable resistance of the controller in Fig. 8.

Typical experimental signals taken from the screen of a
multichannel analog oscilloscope for N = 10 are presented
in Figs. 9 and 10. They are in a good agreement with the
corresponding numerical plots in Figs. 4 and 5, respectively.

Instead of experimental photos (several horizontal lines)
demonstrating constant (stabilized) steady states, we present
in Table II measured voltages VC0. The employed digital dc
voltmeter has higher accuracy than an analog oscilloscope.
Note that the mean value 〈VC0〉 = −298 mV is the same for
both, the array of isolated and the array of coupled controlled
oscillators.

TABLE II. Stabilized steady states. Isolated damped oscilla-
tors, Rm → ∞. Coupled controlled oscillators, Rm = 5.6 k�, R∗ =
240 �, Rctrl = 0, C0 = 2.2 μF. N = 10. 〈VC0〉 is the mean of all N
oscillators.

VC0 Isolated damped osc. Coupled controlled osc.

V max
C0 (mV) −211 −279

〈VC0〉 (mV) −298 −298
V min

C0 (mV) −360 −314

The threshold coupling resistance R∗
th is about 560 � (sta-

bilization can be achieved for R∗ < R∗
th). The corresponding

dimensionless value, estimated using formula (26), is qth ≈
3.1 (for ρ = 1.74 k� and Rctrl = 0), which is in reasonable
agreement with the numerical value qth = 2.9 in Fig. 3. The
experimental results presented in Table II have been obtained
for R∗ = 240 �, which corresponds to the dimensionless
value q = 7.25.

V. CONCLUDING REMARKS

The performed analytical, numerical, and experimental
investigation of the all-to-all globally coupled FitzHugh-
Nagumo–type oscillators with separate coupling and control
networks and the stabilization of the steady states by means of
the stable first-order RC branched filter induce the following
conclusions.

All-to-all global coupling, in comparison with star global
coupling, exhibits a significantly stronger interaction by a
factor of N [see formula (8)], where N is the number of the
involved oscillators. This result could be intuitively predicted.

An important advantage of a separate control network is the
possibility to set the control parameter q above the threshold
qth independently of the intrinsic coupling parameter kN .
The threshold qth does not depend on the intrinsic bilateral
coupling coefficient k. In Eq. (23) and in the Hurwitz matrix
(24) the h parameters do not include coefficient k.

The dependence of the maximal value of the real parts of
the eigenvalues λ1,2,3 on q demonstrates that the steady states
can be stabilized in a wide range of q above the qth. This is a
convenient property of the controller in practical applications.
Moreover, the control parameter q = ρ/(R∗ + NRctrl ) [see
formula (26)] can be easily tuned by the external controller via
R∗ (if accessible) and/or via Rctrl (Fig. 8). The resistance of the
controller Rctrl can be set positive, to zero, or even negative.
In the latter case a negative impedance converter should be
employed to obtain Rctrl < 0.

An interesting result is that coupling of the oscillators does
not change the mean value of the steady states. The 〈x〉0 in
Fig. 6 and 〈VC0〉 in Table II are exactly the same in the array
the isolated oscillators and in the array of coupled oscillators,
whereas the individual steady states of the nonidentical oscil-
lators depend on the coupling strength. They are less spread
and are coming closer to the mean value in the coupled array
(Fig. 6 and Table II) than in the isolated oscillators.

Concerning nonglobal connections, which may manifest
in biological systems, the following remark should be added.
To be specific, we consider the nearest-neighbors coupling,
which is attributed to the class of local connection. In the
case of the ring configuration, the coupling term reads: Q =
k(xi+1 − 2xi + xi−1), i = 1, . . . , N , where xN+1 ≡ x1 and
x0 ≡ xN . Using the same mean-field approach as in the case
of global coupling, we find that the coupling term Q vanishes,
because k〈xi+1 − 2xi + xi−1〉 = 〈x〉 − 2〈x〉 + 〈x〉 = 0. Thus,
we come to Eqs. (15)–(17) and eventually to Eqs. (20)–(22),
yielding the same results of the stability analysis, i.e., the same
dependence Reλ(q) and the same value of qth.
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[20] E. Tamaševičiūtė, G. Mykolaitis, and A. Tamaševičius, Nonlin.
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