
PHYSICAL REVIEW E 99, 042215 (2019)

Investigation of the mechanism of emergence of autowave structures at the reaction front
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A qualitative mechanism for autowave pattern formation at the reaction front, observed in certain chemical
systems including combustion, is suggested. It is assumed that patterns are formed as a result of interaction of
two subsystems, one of which is responsible for the reaction front propagation while the other determines the
formation of waves at the front. A corresponding phenomenological model is constructed in which reaction front
propagation is described by a submodel of the Fisher-Kolmogorov-Petrovskii-Piskunov type and waves on the
front are described by a submodel of the FitzHugh-Nagumo type. In the three-dimensional numerical analysis,
it is demonstrated that the model is able to qualitatively explain the emergence of wave patterns of both spiral
and target types, which are experimentally observed at the reaction front. The dependence of these patterns on
the velocity and thickness of the front is examined.
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I. INTRODUCTION

There are numerous examples of nonlinear reaction-
diffusion systems, which support the formation of com-
plex spatiotemporal structures in systems of different nature
[1–11]. These include traveling, pulsating, chaotic, quasiperi-
odic, target, spiral, cellular waves, oscillons, soliton-like
waves, etc., which may also exhibit diverse dynamical be-
havior. All these regimes are observed in chemical systems,
which provide a convenient tool for both experimental and
theoretical study.

In some cases, chemical reactions proceed not uniformly in
space but in the form of a propagating front. Among them are
the reaction between the initially spatially separated reagents
forming as the result insoluble precipitating matter, usually
nonuniformly distributed (the so-called Liesegang structures)
[12], and self-propagating high-temperature synthesis (SHS)
[13]. Another vivid example is propagation of a combustion
front. In combustion systems, the emergence of nonlinear
wave patterns may be due to diffusion-thermal instabilities
[14–16] or hydrodynamic instabilities [9,17]. The onset of
instabilities may also be enhanced due to the flame-wall or
burner [18,19] or flame-flow interaction [11,20].

In this work, we mainly focus on the case of the diffusion-
thermal instabilities as the source of the nonlinear waves. The
onset of the diffusive-thermal instabilities is known to be due
to imbalance of diffusive fluxes of heat and reactants, which
is quantified by the Lewis number [21]. In the case when the
Lewis number is less than one, the cellular or more common
term for nonlinear dynamics, the Turing type, of instabilities
occurs, leading to the formation of flame corrugation or cells
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in the direction transverse to the direction of flame propaga-
tion. For Lewis numbers greater than one, the flame front ex-
hibits the emergence of the traveling or pulsating instabilities,
which result in the formation of different unsteady regimes of
combustion.

In Refs. [18,19,22–27], the premixed hydrocarbon flames
stabilized on the porous plug burner were studied experimen-
tally, numerically, and analytically. It was found that under
certain conditions the pulsating, target, spiral, and cellular
waves can occur. The dynamics of these nonlinear structures
can also become complex and may lead to the formation
of quasiperiodic and chaotic regimes of combustion. Quan-
titatively and qualitatively it was demonstrated by means of
asymptotic [18,26] and numerical analysis [19,27], respec-
tively, that the emergence of traveling and cellular diffusive-
thermal instabilities are responsible for the formation of such
regimes.

In several studies [25,28–31], the occurrence of the pulsat-
ing, spiral, and target waves were investigated experimentally
for the case of the premixed flames propagating downward in
tubes of different diameters. The results were also repeated
under microgravity conditions to exclude the effects of buoy-
ancy, while leaving only the diffusive-thermal mechanism for
loss of stability. In a series of experiments with the spherically
expanding flames [32–34], it was demonstrated that there
may appear spiral and target patterns at the surface of the
symmetric radially expanding combustion wave. In these ex-
amples, there are two types of nonlinear waves, which coexist:
the basic automodel traveling or expanding solution and the
nonlinear structure (spiral or target waves) which appears on
top of the automodel solution and propagates with it.

As for now, there are no models which can demonstrate
and describe such dynamical behavior. We can mention here
that in chemically reacting systems there are also cases of
the structures where one type of nonlinear pattern is hosted
by the other type of the nonlinear pattern. An example is
the segmented waves observed in the Belousov-Zhabotinskiy
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reaction [35]. In our study, we propose a theoretical model
for such phenomena of general nature, which includes two
submodels. One of them describes the propagation of a trav-
eling wave, while the other is responsible for generation of
nonlinear patterns at the traveling front. This approach has
already been successfully applied by us to two phenomena:
models for the mechanism of segmented waves formation [36]
and of oscillon (localized oscillating pattern) [37].

In the present paper, we first formulate a simple model
to explain formation of wave patterns at the combustion or,
more generally, at the reaction front and then demonstrate in
numerical experiments that it is able to describe the formation
of both target patterns and spirals. We also present the results
of systematic study of the dependence of these patterns on the
velocity and thickness of the reaction front.

II. MODEL

As is stated above, autowave structures at the reaction front
may be viewed as a superposition of two processes: propaga-
tion of the front and the development of wave patterns at the
latter. Thus, the model corresponding to this scenario should
consist of two submodels describing each of these processes.
We verify this hypothesis on a rather simple model in which
the block responsible for appearance and movement of the
reaction front is the Fisher-Kolmogorov-Petrovskii-Piskunov
(F-KPP) [38,39] equation:

∂g

∂t
= kg(1 − g) + Dg�g, (1)

while patterns formed on this front are due to the model of the
Fitzhugh-Nagumo (FHN) [40] type:

∂u

∂t
= 1

ε
[u(u − α)(1 − u) − v] + Du�u,

∂v

∂t
= u − v + Dv�v. (2)

We assume that the first submodel, Eq. (1), affects para-
metrically the second one, Eq. (2), so that the state of the
latter changes at the front from quiescent to either excitable
or oscillatory. The parameter responsible for this transition is
α, and we assume the following coupling equation between
this parameter and the variable g:

α = a − b(1 − g)g. (3)

The reason for choosing the F-KPP Eq. (1) for the propa-
gating reaction front is that it is perhaps the simplest model
describing a traveling wave. At the front, the corresponding
variable monotonically switches from the initial to the final
states. We may speculate that, on the one hand, in a real
chemical system the irreversible consumption of the source
substance will result in formation of such reaction front or,
on the other hand, we observe similar shape of temperature
profile on the front of the combustion wave. The nonlinear
form of the coupling Eq. (3) reflects the idea that the first
submodel [Eq. (1)] should influence the second one [Eq. (2)]
only in the region where reaction takes place in Eq. (1);
i.e., the source term in Eq. (1) is significantly nonzero. This
approach to some extent is similar to the work [41] in a

sense that the submodel (1) provides spatial modulation of the
properties of the system for the submodel (2).

In Eq. (1), there are two parameters: k, Dg. The first one
corresponds to the reaction rate while the second one is the
diffusion coefficient. Their combinations

√
kDg and

√
Dg/k

(up to a factor of the order of unity) correspond to the values
which have clear physical meaning—the speed of the front
and its thickness respectively. Thus, further results of our
numerical simulations are presented related to these very
combinations.

As to the parameters of the second block, Eq. (2), they are
chosen in such a way that away from the front the system is
unexcitable while on the front due to the coupling, Eq. (3),
spiral or circular waves can be formed. It is important for
the wave formation that the diffusion coefficient of the first
variable u, activator, should be significantly larger than the
diffusion coefficient of the second variable v, inhibitor: Du �
Dv . In all the numerical simulations presented below, we took
Dv = 0 and Du = 0.1, the latter being close to the range of the
varied diffusion coefficient Dg. Also, the characteristic time
of the first equation should be much smaller than that of the
second one, and thus in simulations we used ε = 1/200.

Though in real experiments autowave patterns are observed
at an expanding spherical front [32,33], in our simulations we
ignore curvature of the front, as we believe that it is not of
such importance, and consider the case of a flat propagating
reaction front.

We performed numerical simulations in a cubic domain
with the side length L = 10, setting no-flux boundary con-
ditions using the implemented code. Splitting with respect to
physical processes was used. Kinetic equations were solved
by the Runge-Kutta fourth-order method. Diffusion equations
were solved by alternating direction implicit method. Details
of the numerical scheme used are described in Appendix A.

All simulations were performed with the fixed spatial and
time steps: �x = 0.1, �t = 0.005. The convergence of the
algorithm was verified by reducing of both time and spatial
steps, which resulted in essentially the same spatiotemporal
behavior of solution. We verified in simulations that solutions
are stable against perturbations of regular nature and with
respect to the numerical noise added to the computation
process.

III. RESULTS

In this section, we present the results of numerical simula-
tions of the above-formulated model. First, we demonstrate
how it is able to reproduce target patterns at the reaction
front.

Front propagation is described by Eq. (1), while at the front
the variable g changes from zero to unity. In this region, due to
the coupling Eq. (3) the submodel Eq. (2), which is originally
unexcitable, becomes excitable everywhere but in a small cen-
tral region of the front, which becomes oscillatory and serves
as a wave source or pacemaker. The emergence of this pace-
maker may be due to possible heterogeneity or impurity at the
front in real chemical system such as, for example, dust parti-
cles or the emergence of other types of instabilities (hydrody-
namic instabilities) superimposed over the diffusive-thermal
instabilities. Thus, in the coupling equation (3) a = 0.6
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FIG. 1. Typical evolution of a target pattern at the reaction front. Parameters of Eqs. (1) and (2):
√

Dg/k = 0.1,
√

kDg = 0.350 (k = 3.5,

Dg = 0.035), ε = 1/200, Du = 0.1, Dv = 0.0. The variable u is shown; color corresponds to the regions where its value is greater than 0.1.
(In the rest of the space, this variable is slightly different from zero.) From the center of the reaction front, where the source of oscillations is
located, circle patterns begin to form and move along with the front. The solid line on the left side of each figure corresponds to the variable g
and allows us to determine the position of the reaction front.

and b = 3 for a wave source and a = 0.6 and b = 2.2 in the
remaining region.

Typical result of numerical simulation of Eqs. (1) and (2)
with such coupling is shown in Fig. 1, where the front, at
which target pattern is formed (variable u), moves along ver-
tical axis. In this and other figures, color denotes the regions
where u exceeds the value 0.1.

We have performed systematic numerical investigation of
the conditions for the emergence of target patterns and their
shapes, depending on the reaction front parameters k and Dg,
or rather, on their combinations

√
kDg, which are proportional

to the front velocity, and
√

Dg/k, which characterizes the front
thickness. Results of simulations are presented in Fig. 2. In
this diagram, a “plus” sign corresponds to the parameters for
which target patterns are formed at the front while the “minus”
sign is for the parameters for which patterns do not arise. In
fact, we tried to trace the boundary between the parametric
regions for which target patterns take place or not. Above

FIG. 2. The diagram showing the boundary between the region
of parameters where target patterns are formed (+) and where they
do not exist (−) related to the combinations

√
kDg and

√
Dg/k

corresponding to the speed of the front and its thickness respectively.
Fixed parameters of Eqs. (1) and (2) are ε = 1/200, Du = 0.1,

Dv = 0.0. Characteristic types of target patterns at the reaction front:
(a) normal structures, regularly releasing from the source and moving
with the reaction front; (b) the case when structures are not formed,
only a localized spot (associated with the source) moves with the
reaction front (indicated by a different color); (c) pattern collapses
and the front becomes completely excited and keeps moving as a
whole.

this boundary, in Fig. 2 wave patterns are formed. However,
it should be stressed that the pattern within a layer in three-
dimensional (3-D) space may be treated as two dimensional
(spiral or target pattern) only if the layer is thin compared
to the pattern scale (pitch of the spiral or distance between
rings), and as we move upwards, the front thickness increases
and the pattern becomes in fact three dimensional. Below the
boundary, there are no patterns.

In the left half of the plot, in the region
√

kDg < 0.25,
where the front speed is small, the boundary is horizontal.
It means that for such velocities, the condition for target
pattern formation does not depend on the speed but only on
the thickness of the front. Qualitatively it can be explained
in the following way. Conditions for pattern formation at
the traveling wave front crucially depend on its thickness
because of the reactant loss into the outer space. This loss
is caused by two factors: diffusion of substances across the
front and their flow (convection) through the front due to its
motion. For small front velocities, the first factor dominates
and thus it results in the horizontal piece of the boundary. As
the front speed grows, the second factor becomes essential at√

kDg ≈ 0.3 and thus the boundary tends upward, and as for
pattern formation on the front its thickness should be larger for
higher velocity. These qualitative considerations are supported
by analysis, presented in Appendix B, of a piecewise-linear
equation revealing influence of thickness of the front and its
velocity on the reaction taking place in it.

From numerical simulations, we can estimate both the
speed of the front and the speed of the wave at the front. When
the front speed grows further and becomes approximately
equal to the speed of the waves at the front, it results in
total deformation of the waves which transform into a ho-
mogeneous layer, occupying the whole front. For larger front
speeds, wave patterns are not formed for any front thickness.

Figures 2(a), 2(b), and 2(c) give examples of patterns
for three combinations of the front parameters, indicated by
arrows. Figure 2(a) illustrates normal target patterns which
arise for relatively small front velocities and for sufficiently
large front thickness. When the front thickness decreases to
a certain value, target patterns cease to form [Fig. 2(b)].
Figure 2(c) illustrates the case of approximately equal front
and wave velocities.

The model in Eqs. (1) and (2) is also able to reproduce
spiral waves at the traveling front. As in the previous case,
front propagation is described by Eq. (1), and patterns formed
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FIG. 3. Evolution of the spiral at the reaction front. The parameters used in simulations:
√

Dg/k = 0.1,
√

kDg = 0.350 (k = 3.5,

Dg = 0.035), ε = 1/200, Du = 0.1, Dv = 0.0. The variable u is shown; color corresponds to the regions where its value is greater than 0.1.

on this front are due to the submodel, Eq. (2). However, now
the front is uniformly excitable (there is no pacemaker, which
is necessary for target patterns) and thus we take the same
parameters in the coupling Eq. (3) as in the first case, a = 0.6
and b = 2.2, but now in the whole domain. Spirals emerge
at the front due to appropriate initial conditions. For initial
conditions in Eq. (2), we take a segment of a plane wave
with a free end, which is a one-dimensional traveling-wave
solution of this model with the parameter α corresponding to
the excitable state. In the time course, this initial plane wave
bends to form a spiral, which moves along with the front. In
Fig. 3, results of numerical simulation are presented which
demonstrate evolution of the initial seed wave resulting in the
formation of the spiral at the traveling front.

Analysis of spiral wave formation dependent on the factor
of the front thickness

√
Dg/k and the factor of the front speed√

kDg shows that the system behaves in a way similar to the
previous case with target patterns. In numerical simulations,
we obtain either normal spirals, rotating around the core and
moving with reaction front, or the initial seed spiral extincts,
or the front becomes completely excited and keeps moving as
a whole.

Results of simulations are presented in Fig. 4. In this
diagram, a “plus” sign corresponds to the parameters for

FIG. 4. The diagram showing the boundary between the region
of parameters where spiral patterns are formed (+) and where they
do not exist (−) related to the combinations

√
kDg and

√
Dg/k

corresponding to the speed of the front and its thickness respectively.
Fixed parameters of Eqs. (1) and (2): ε=1/200, Du =0.1, Dv =0.0.
Observed types of patterns at the reaction front: (a) regular rotating
spirals and (b) pattern collapses and the front becomes completely
excited and keeps moving as a whole.

which spiral patterns are formed at the front and a “minus”
sign is for the parameters for which patterns do not arise. For
relatively small values of the front velocity (

√
kDg < 0.3), as

we approach the boundary between “pluses” and “minuses”
from above, the radius of the spiral core starts to increase and
at the boundary it becomes infinite (or at least larger than the
size of the domain) and the spiral vanishes. For larger values
of the front speed, we observe a completely different behavior
of the spiral as we approach the boundary. In this case, the
velocities of the reaction front and of the spiral at this front are
approximately equal, and thus as we approach the boundary
the spiral is blurring and finally uniformly occupies the whole
front. When we change the parameters further, we again have
the case of spiral extinction.

Figures 4(a) and 4(b) illustrate typical results of evolu-
tion of the seed spiral qualitatively described above. (We do
not present the case of spiral extinction, as finally there is
no pattern at all.) Figure 4(a) shows normal spirals, which
arise for relatively small front velocities and for sufficiently
large front thicknesses. Fiugre 4(b) illustrates the case of
approximately equal front and wave velocities. The arrows
point out the combinations of the front parameters used in the
corresponding simulations.

IV. CONCLUSION

The aim of the present study was to suggest a mechanism
for formation of autowave structures at the traveling reaction
front. Such patterns are observed in different chemical sys-
tems, which proceed sequentially in space, the most striking of
which are combustion waves. We suppose that these patterns
are formed as a result of interaction of two subsystems, one
of which is responsible for the reaction front propagation
while the other determines the formation of waves at the
latter. Such suggestion is quite natural, as any reaction which
demonstrates this phenomenon is rather complex and includes
many elementary reactions and intermediate substances. Even
the simplest case—combustion of oxygen—includes tens of
reactions.

The suggested mechanism is verified on the example of a
simple phenomenological block model in which reaction front
propagation is described by a submodel of the Fisher-KPP
type and waves at the front are described by a submodel of the
FitzHugh-Nagumo type. Earlier, we have demonstrated [42]
that this model is able to describe wave patterns at the reaction
front in the two-dimensional (2-D) spatial case. In the present
paper, we present results of our systematic study of this model
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FIG. 5. Boundaries between regions in the parameter space cor-
responding to existence and absence of spiral (dashed line) and target
(dotted line) patterns at the front.

for the three-dimensional (3-D) case. It is demonstrated that it
is able to explain the experimentally observed wave patterns
of both spiral and target types at the reaction front.

In addition, it is shown that the emergence of the waves
at the reaction front and their shape crucially depend on
the velocity and thickness of the latter. It is shown that
for both spiral and target patterns to emerge at the reaction
front it is necessary that the front is sufficiently thick. In
both cases, the boundary between regions in the parameter
space corresponding to existence and absence of wave pat-
terns on the front in Figs. 2 and 4 is horizontal for small
values of its velocity and tends upward for higher veloc-
ities, which means that the front becomes thicker, and in
fact the pattern becomes three dimensional. Thus, for both
cases this boundary behaves qualitatively quite similarly. To
see a quantitative difference between them, we have drawn
both boundaries in one plot in Fig. 5. A certain difference
is observed only in the right-hand side of the plot: The
boundary for target patterns goes lower than for spirals, which
means that target patterns can arise in a thinner reaction front
than spirals. The possible reason is the existence of a local
pacemaker, which makes the conditions for pattern formation
more advantageous for target patterns, at least for higher front
speed.

In the current formulation, we do not expect that the results
will change if we replace the leading subsystem which defines
the traveling wave solution with a model of a different type.
The role of this subsystem is to create certain distribution of
the variable g that moves with a constant velocity along the
z axis. The choice of the model would be important if we
consider a feedback mechanism from the second subsystem
in Eq. (2) to the first subsystem in Eq. (1). We would certainly
like to undertake such analysis in future work.

In the present study, the plausibility of the proposed mech-
anism is verified numerically by the example of a simple
phenomenological model. In the future, we plan to apply this
approach to real chemical systems, demonstrating such types
of patterns, especially to combustion waves.

ACKNOWLEDGMENTS

The work was supported by RFBR Grants No. 17-01-
00070, No. 18-31-00411, and No. 17-53-12018. Analytical
estimates and development of the numeric scheme presented
in the appendix were funded by the RUDN University Pro-
gram 5-100.

APPENDIX A

For solving three-dimensional unsteady reaction-diffusion
equations, we use the following scheme. Equations (2) are
rewritten in the form

∂

∂t

(
u
v

)
=

(
1
ε
[u(u − α)(1 − u) − v]

u − v

)
+

(
Du

Dv

)
�

(
u
v

)
,

or equivalently

∂f
∂t

= S(f, t ) + D
(

∂2f
∂x2

+ ∂2f
∂y2

+ ∂2f
∂z2

)
, (A1)

where f (x, y, z, t ) is the unknown vector with the initial con-
dition

f (x, y, z, 0) = f0(x, y, z)

and Neumann boundary condition

∂f
∂n

= 0.

Then, S(f, t ) is the reaction vector function and D is the non-
negative diagonal diffusion matrix.

First, we build the rational high-order compact alternating-
direction-implicit (RHOC ADI) [43] scheme for homoge-
neous differential equation

∂f
∂t

= D
∂2f
∂x2

+ D
∂2f
∂y2

+ D
∂2f
∂z2

, (A2)

(1 − Ax )f∗∗ = (1 + Ax )(1 + Ay)(1 + Az )fτ ,

(1 − Ay)f∗ = f∗∗,

(1 − Az )fτ+1 = f∗, (A3)

where Axf = D�t
2 ∂2

x f = D�t
2

fx−1−2fx+fx+1

�x2 , �x is the mesh size
in the x direction, and �t is the time-step size. The same is
used for Ay, ∂2

y , and Az, ∂2
z ; fτ and fτ+1 are current and next

steps respectively.
Then, we solve

∂f
∂t

= S(f, t )

by the Runge-Kutta fourth-order method and add the result
(fRK4) to the first equation in Eq. (A3). That addition step is
an element of the method for splitting into physical processes.

Finally, we solve resulting equations by the three-diagonal
matrix algorithm, also known as the Thomas algorithm, with
the given initial and boundary conditions:

(1 − Ax )f∗∗ = (1 + Ax )(1 + Ay)(1 + Az )fτ + fτ
RK4,

(1 − Ay)f∗ = f∗∗,

(1 − Az )fτ+1 = f∗. (A4)
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APPENDIX B

In order to estimate the dependence of a reaction, taking
place at a traveling front, on its speed and thickness, we
examine the following piecewise-linear equation:

∂u

∂t
= f (u, x) + D

∂2u

∂x2
, (B1)

where

f (u, x)=
{

k(u0 − u) for x ∈ [− L
2 − vt, L

2 − vt
]
,

−ku for x < − L
2 −vt and x> L

2 −vt .

We seek the automodel solution u = u(ξ ) of this equation,
where ξ = x − vt . Thus, we obtain the following equation:

Du′′
ξξ + vu′

ξ + k(u0 − u) = 0, ξ ∈
[
−L

2
,

L

2

]
,

Du′
ξξ + vu′

ξ − ku = 0, ξ < −L

2
and ξ >

L

2
. (B2)

Eigenvalues of this equation are roots of the equation

Dλ2 + vλ − k = 0

and are the following:

λ1 = −v+√
4kD+v2

2D
, λ2 = −v−√

4kD+v2

2D
. (B3)

A general solution of Eq. (B2) is given by

u = aeλ1ξ for ξ < −L

2
,

u = beλ1ξ + ceλ2ξ for ξ ∈
[
−L

2
,

L

2

]
,

u = deλ2ξ for ξ >
L

2
.

Applying the condition of continuity for the function u and
its derivative, we determine constants a, b, c, and d .

Thus, the solution of Eq. (B2) in the interval [− L
2 , L

2 ] is the
following:

u = u0

[
1 − λ1

λ1 − λ2
eλ2(ξ+ L

2 ) + λ2

λ1 − λ2
eλ1(ξ− L

2 )

]
. (B4)

The maximal value of u in this interval is reached in the
point ξ = (λ1+λ2 )L

2(λ1−λ2 ) and is equal to

u = u0

[
1 − exp

λ1λ2L

λ1 − λ2

]

= u0

[
1 − exp

(
− kL√

4kD + v2

)]
. (B5)

From Eq. (B5), it follows that thickness L of the traveling
layer significantly influences the value of u if it is smaller than
the value L0 ≈ √

4kD + v2/k. While the speed of the front is
small (v � 2

√
kD), its critical thickness L0 does not depend

on the former and in fact is determined by the diffusion length
2
√

D/k of Eq. (B1). For larger values of v, it grows, as is
observed in Figs. 2 and 4.
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