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By means of studying the evolution equation for the Wigner distributions of quantum dissipative systems we

derive the quantum corrections to the classical Liouville dynamics, taking into account the standard quantum
friction model. The resulting evolution turns out to be the classical one plus fluctuations that depend not only on
the 7 size but also on the momentum and the dissipation parameter (i.e., the coupling with the environment). On
the other hand, we extend our studies of a paradigmatic system based on the kicked rotator, and we confirm that

by adding fluctuations only depending on the size of the Planck constant we essentially recover the quantum
behavior. This is systematically measured in the parameter space with the overlaps and differences in the
dispersion of the marginal distributions corresponding to the Wigner functions. Taking into account these results
and analyzing the Wigner evolution equation we conjecture that the chaotic nature of our system is responsible

for the independence on the momentum, while the dependence on the dissipation is provided implicitly by the

dynamics.
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I. INTRODUCTION

There is a long standing connection between quantum
chaos and decoherence [1], that has proven to be very fruitful
in discovering quantum to classical correspondence proper-
ties. Nowadays we witness a renovated interest in complex
and dissipative phenomena. For instance, the decoherence
rate in fluctuating chaotic quantum systems shows an ex-
ponential behavior with the particle number, turning them
into ideal candidates for wave function collapse models [2].
There is also a long history of studies of the effect of dis-
sipation on kicked chaotic systems. For example, the degree
of agreement with the Markovian approximation and the
destruction of dynamical localization have been studied in [3].
Moreover, weak damping has been found to disrupt localiza-
tion in the action variable restoring its diffusion [4]. Also,
the transition from quantum to classical dynamics has been
semiclassically studied in the decoherent quantum standard
map [5].

There are also many other areas that have evolved in recent
times and that are intimately related to quantum complex
dissipative systems. We can mention optomechanics [6] and
many body systems [7] which could greatly benefit from a
better understanding of the quantum consequences of classical
dissipative chaos. There are promising first attempts to treat
quantum bifurcations [8,9] that could be very important in
elucidating the properties of Floquet crystals. Also, the details
of the environmental models, no matter how subtle, could
have very strong effects on the degree of complexity [10]. As
a matter fact, this idea has been turned into a proposal [11]
in order to control chaos at the quantum level. Very recently
[12], the relevance of the quantum friction model details have
been analyzed, underlining the need for a better understanding

*carlo@tandar.cnea.gov.ar

24770-0045/2019/99(4)/042214(8)

042214-1

of even this fundamental mechanism. This is a crucial issue
not only in view of all the intense research work that is being
carried out, but because this kind of dissipation is at the base
of any extension of the rich dynamical systems theory to the
quantum realm.

In order to look into the quantum properties of classically
chaotic and dissipative systems we have derived the evolution
equation for the Wigner distributions up to order /. We have
considered the standard quantum friction model that we used
in previous work. As a result we identify many ingredients that
appear as quantum corrections to the classical evolution for
Liouville distributions. These are dependent not only on the
size of /i, but also on phase space variables like the momen-
tum, and the friction parameter. We compare with comprehen-
sive calculations on the whole parameter space corresponding
to a paradigmatic model of dissipative quantum chaos, i.e., the
dissipative modified kicked rotator map (DMKRM) [13]. We
systematically confirm that a very simple model of classical
evolution plus Gaussian noise of the size of /i captures all the
main details of the marginal distributions corresponding to the
Wigner functions of the equilibrium states. This is measured
by calculating the overlaps between the quantum and classical
distributions and the difference in the dispersions, for several
finite values of the effective Planck constant /i.¢. We provide
with a complete explanation for this simplification that we
attribute to the chaotic nature of our system and an implicit
dependence given by the dynamics itself.

This paper has the following structure: In Sec. II we derive
the evolution equation for the Wigner function and specialize
it for the case of the standard friction model as the only source
of dissipation. In Sec. III we explore the whole parameter
space of the DMKRM by calculating the overlaps between
the classical and quantum marginal distributions and the dif-
ference in the dispersions. We explain the robust validity of
our very simple classical model as a consequence of chaotic
behavior. In Sec. IV we give our conclusions and outlook.
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II. WIGNER FUNCTION DISSIPATIVE EVOLUTION
EQUATION. THE STANDARD FRICTION MODEL

In classical mechanics, dissipative systems are governed
by the Fokker-Planck equation which describes the evolution
of Liouville distributions in phase space. On the other hand,
in the Markovian approximation the evolution of quantum
dissipative systems is governed by the Lindblad equation,
which expresses the evolution of density operators in their
corresponding Hilbert space. In order to perform an explicit
comparison between quantum and classical mechanics, it is
crucial to express both in the same framework.

The Weyl-Wigner representation provides with a phase
space description of quantum mechanics [14—16], where an
observable O = O(q, p) is assumed to be a real-valued func-
tion of coordinate ¢ and momentum p, and the state of the
system is represented by the Wigner function W = W (q, p).
Wigner functions provide with a very suitable quantum analog
of Liouville distributions. Recently, using the Weyl-Wigner
formalism and the star product, Bondar et al. [12] have
obtained the Lindblad-Wigner equation which describes the
evolution of the Wigner functions of dissipative systems in
phase space. We closely follow their approach and consider

d i ,

EW=—E(H*W—W*H)+D[W]+D[W], (1)
where the first term accounts for the evolution given by the
Hamiltonian,

H =p*/2m)+U(q),

with m the mass of the particle and U(q) the potential. The
second term in Eq. (1), the dissipator, involves the Weyl-
Wigner representation of the Lindblad operators L and is
given by

20 R T -
D[W]:E(L*W*L — WL «L— L *L*W),

where v is the dissipation parameter. The last term is

pwy = 2 ( Wag—w 2! *W)
= * * * g *x *
7 q=sWxqxq—3q4xq
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and accounts for thermal diffusion of size ®; we do not take
into account this thermal diffusion since we are interested in
the details of quantum to classical correspondence of velocity-
dependent friction forces. The star product between two phase
space distributions A and B is defined as

and can be expressed in terms of the symplectic differential
<>
product V |

where x; = g and x, = p, and the symplectic matrix J is given

by
0 1
=19 5] )
In fact,
<~ 0A 0B 0A0B 0A 0B
AVB= —Jj—=—————
ax;  Ox; dqg dp dp dq

and then the star product expansion in powers of 7 has the
following compact shape,

ih < " s 3
A*B=AB+SAVB— AV B+O(R),

where the double differential operator is simply

9%A 0°B

<>
AV*B = JijiJi

“

dx; 0 ax;ox;

Performing the 7 expansion for the Hamiltonian term in
Eq. (1), we obtain

—%(H*W—W*H) - —%[(HW—WH)
ih <~ <~
+ S HTW W H)

1/in\*> < =
+—<—> (HV?’W —W V2H)].

2\ 2
(5)
Using the definitions of Eq. (2) and Eq. (4) we get
i(H W W % H) — (H, W) ih[ 9*H 9*°W
——H>W =W % = {H, ——|=——
/) 41 ox2 9p?
0%H 9*W 0’H 9°W
ap* dx? dxdp dpdx |
(6)

The first term is exactly the classical evolution determined
by the Poisson bracket {H, W}. The second term, with an
imaginary part even for real valued Hamiltonians and Wigner
functions, is responsible for the development of the quantum
coherences and quantum coarse graining.

For the dissipator, expanding it in powers of /i we obtain

DIW] = E(LWL —SWLL- L LW) +ivS;
vhS _ivs vhS 7
) 2 =1V ) 25

where S| and S, contain terms with simple and double
differential product operators, respectively. The associative
property of the star product,

AxBxC=Ax(BxC)=(AxB)xC,

extends to the different powers in 7. So that

042214-2



EFFECTS OF CHAOTIC DYNAMICS ON QUANTUM ...

PHYSICAL REVIEW E 99, 042214 (2019)

<~ <~ 1. <
Si=LV WL+LW)V L* — EW V (L*L)

1 < l < 1, <
_EW(L*)VL_EL V(LW)—EL L)YVW=
<~ <~ <~

L*(LVW)+LW V L*)4+2W(L V L*), (8)
and

<GS, 1,3 1 P S
Sg:LV(WVL)—i—ELV (WL*)+§L(WVL)

= 3| WY @V L)+ W VELL) + WL VL)

[\

DN | =

<~ < 1 . & 1 =3
- = *V(LVW)—I—EL*V (LW)—i—EL*(LV w)H|.

(€))

We consider Lindblad operators such that their Weyl sym-
bols are of the form,

A
L(x) = lf(lpl + 2_1> exp (—isign(p)q/1), (10)

where [ is a length scale constant and f is an arbitrary function
defining the velocity dependence of the dissipative force. In
[12], it was shown that in these cases the first moments of
the Wigner function satisfy the Ehrenfest equations charac-
terizing the motion of a particle of mass m interacting with
an environment-induced velocity-dependent friction. Also,
introducing the expression of Eq. (10) in Eq. (8) we get

Lo . h

S1=—i—/[sign(p)f|Ipl+ 55 W |. (1n
op 21

Then, for Lindblad operators whose Weyl symbols obey the

form of Eq. (10), the classical limit of the Lindblad-Wigner

Eq. (1) corresponds to the appropriate Fokker-Planck equation

(171,

a
DW] = 2v$[sign(P)f(Ip|)W] + O(h). (12)

In order to obtain the quantum corrections we need the
expression of S, in Eq. (9). With the help of the symplectic
differential product definitions of Eq. (2) and Eq. (4) and
using the symplectic matrix form of Eq. (3) we get, after
straightforward calculations,

5, = — 82W3_L8L*_ 82_W8_L8L*
dxdx dp ap dpdp dx 0x
°W (OLOL* 9L OL*
%(a_p ox " ox ap)
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Using Lindblad operators whose Weyl symbols are of the
form given in Eq. (10), we get

1/0F\* ! 2w
Se==s\7") o Ty 9o
2\ap/) f(Ipl + %) oxdx
flpl+ &) 8>w 1950w
l apdp 1ap dp’
By employing the expressions of Eq. (11) and Eq. (13) for S;

and S, respectively, in the dissipator of Eq. (7) and expanding
up to first order in /i, we obtain

2 (13)

0
DW] = ZV%[Sign(P)f(lpl)W]

hu[s af oW +82_fw}

1 |20p dp 0p?
1/af\> | oW W
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4\dp/ f(Ipl) 0xox [ dpdp

or equivalently,

ad
DW] = 2v@[sign(p)f(|p|)W]
2
a0 () 1
1 12ap\adp 2 9p?

2 2 2
+hv[1<8_f) ! 8W+f(|pl)8W]'
4\ap/ f(pl) oxox [ dpdp
(14)

The first term in Eq. (14) gives the Fokker-Planck part. The
second term can be seen as an /i correction for the dissipative
constant v, while the last term performs a 7v size diffusion
on the Wigner function phase space distribution W. Note that
no imaginary term is present in Eq. (14), hence the dissipator
does not develop any coherence. Moreover, coherences will
be washed out by the diffusion implied by the last term.

In our previous studies ([13] and subsequent work) we have
taken into account Lindblad operators I:M given by

Li=g¥,vntTinn+1], (15)
fr=gY, V¥ |—m)(—n—1|.
where |n) are momentum eigenstates with n =0,1.... In

fact, this is the standard friction model found in the literature
[4,18]. In the classical limit this corresponds to an evolu-
tion under a velocity-dependent friction force. Identifying
g= \/ﬂ the dissipator is written in terms of the Lindblad
operator L =L, + L, with

L= \/gg;x/nwL ln){n + 1],

and

- h
Lzz\gg;m|—n><—n—u.

Now, for these Lindblad operators we perform the discrete

Weyl Wigner transformation in the N = 5= dimensional
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Hilbert space [19]. For the Lindblad operators L; we obtain
the Weyl Wigner symbols L;(x) as [19]

Lix) = Y _(2a — k|Lilk)e ¥ 2P,
k

which are functions of the phase space points x = (p, ) =
(1%,, %), with a and b semi-integer numbers. For L; we have
(simplifying the prefactor)

Li(x) = \/ﬁz Vn+1 Z(Za — k|n){n + 1|k>gi2ﬁv2(a7k)b.
n k

Performing the summations, with x = (p, q) = (5, %) and
defining [ = %, we get

L= i p+ L)
1(x) = <P 5)6

for positive values of p and zero otherwise. A similar proce-
dure for L, implies that the Wigner symbol for L is

Lx) = 1(|p| + 2%) exp(—isign(p)g/).  (16)
We observe that Eq. (16) is similar to Eq. (10) if we take
a linear function f(|p|+ %) = |p| + 2—"’, Hence, we verify
that the Lindblad operator L = L; + I, has the correct phase
space variables dependence in order to satisfy the Ehrenfest
equations. For this operator, the evolution of the Wigner
function in phase space is obtained with the dissipator as in
Eq. (14) which for this linear function becomes

0 3h
DIW] = gzﬁ[sign(p)(ml + ——)W]

41

+g A\[1 [ a*W N
2 )4 |pl oxox
This is a classical Fokker-Planck evolution with a dissipation

constant g> slightly corrected with 7 and a diffusion term that
scales with g*F.

pl 9°W
[ dpdp

] (17)

III. CLASSICAL AND QUANTUM MARGINAL
DISTRIBUTIONS: COMPARISON IN A
PARADIGMATIC SYSTEM

A. Dissipative modified kicked rotator map

For a systematic exploration (in a meaningful region) of
the parameter space of a quantum dissipative system sub-
ject to friction we consider the paradigmatic DMKRM. It
corresponds to a particle moving in one dimension [g €
(—o00, +00)] kicked in a periodic fashion by

+00
a
Vig,t)= k[cos(q) + 3 cos(2q + ¢)] mzz_oo 8(t —mrt),
(18)
being k the strength of the kick and 7t its period. Adding
dissipation we get a map with friction as follows [13]:

19)

where n is the momentum variable conjugated to ¢ and y =
exp —2v (0 < y < 1) is the dissipation parameter. We recover
the conservative system by setting y = 1; on the opposite
side y = 0 corresponds to the maximum friction. One usually
introduces a rescaled momentum variable p = tn and the
quantity K = kt in order to simplify things. This model has
been extensively used to study the properties of directed
transport, as such it shows a net current when breaking the
spatial and temporal symmetries (i.e., when a # 0 with ¢ #
mir, and y # 1). For historical reasons, we adopt the values
a = 0.5 and ¢ = 7 /2 for the rest of this work.

Inspired in the known general correspondence of the quan-
tum dissipative evolution with roughly a classical evolution
with noise, the main effects of the quantum fluctuations have
been proposed to be similar to those of Gaussian fluctuations
of the order of /iy imposed on the classical map [20] (the
definition of /i, the effective Planck constant, can be found
in the next paragraph). For that purpose we add & (i.e., the
random fluctuations) to the first line of Eq. (19), fixing (£2) =
Hiegr, having zero mean. This corresponds to a kind of diffusion
of 7. size. This exact identification could be relaxed, since
it is enough for the fluctuations to be of the order of /i to
comply with this conjecture.

On the quantum side we have that ¢ — ¢, n — 1 =
—i(d/dq) (h = 1). Given that [, p] = it (where p = t#1), we
define the effective Planck constant by means of identifying
fieie = 7. In the classical limit fieig — 0 and K = Ak remains
constant. Dissipation is treated in the usual way with a Lind-
blad master equation [21] for the density operator p,

_ X 12 2
b =il p) = 5 D ALl pY+ D LupLy = Ap.
u=1 pu=1
(20)
H, =7?/2+V(4,t) is the system Hamiltonian, { , } the
anticommutator, and ﬁﬂ the Lindblad operators defined in
Sec. II.

B. Overlaps and dispersions

Aiming at detecting differences between the quantum evo-
lution and the classical approximation given by our simple
surmise, we evaluate the probability distributions P(p) of
momentum p for both cases. In the classical case we take
a discretized P(p;) distribution where the number of bins is
given by the Hilbert space dimension used in the quantum
calculations. These distributions correspond to the marginal
ones associated with the Liouville and Wigner functions in
the whole phase space, giving a faithful representation of their
details despite the reduction in dimensionality and compu-
tational effort. The detailed study of the coherences which
were initially considered in [22], will be the focus of future
work. We evolve 10° classical random initial conditions in
the p € [—m; 7] band of the cylindrical phase space, and an
initial density matrix corresponding to these classical initial
conditions for the quantum counterpart. We have evolved
5000 classical time steps, and since the quantum equilibrium
distribution is obtained in a few periods, we have taken just
50 quantum ones (in fact, the classical distributions with
noise also stabilize very quickly but we have decided to rule
out any possible short time effects). As a first measure we
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FIG. 1. Overlaps O between the classical and quantum marginal
distributions in parameter space k, y. (a) fiegr = 0.412; (b) fiegr =
0.137; (c) hier = 0.046.

calculate the overlaps O = [ Py(p)P4(p)dp over the whole
parameter space. In Fig. 1 we show the results for /i = 0.412
in Fig. 1(a), A = 0.137 in Fig. 1(b), and /e = 0.046 in
Fig. 1(c) (we have taken a 100 by 100 points resolution in the
first two cases, while 50 by 50 points in the third one). It is

clear that this measure does not reveal significant differences
between the classical and quantum distributions, almost all
values are near 1, with a few low values around 0.7 for 7 =
0.046 essentially. If we look closer there is mainly a small area
where the overlap is low and this difference keeps more or less
the same location (but grows and enhances) with 7 — O,
roughly at the center left of the parameter space. There are
two other disagreement areas, one is located around small k&
and corresponds to very low forcing (whose overlaps are fairly
large) and the other is on the upper right of the largest one
(with lower overlaps but also enhancing for Z.i — 0). We will
refer to them later.

In order to provide with another point of view for these
deviations we calculate the complement of the difference
between the relative dispersions of the classical and quantum
P(p) distributions given by ¢’ =1 — |og — 0ql/(0c + o).
We take o = /(p?) — (p)? for both cases and () stands for
the corresponding statistical averages. This is displayed in
Fig. 2, where we use the same three different 7.4 values of
Fig. 1 corresponding to panels (a), (b), and (c). It is clear
that there is an overall agreement between the classical and
quantum distributions. However, there is again a main region
with different behavior that grows and enhances as fi.g — 0.
This time the location and shape is different from the one
detected with the overlap measure, though sharing some area.
Moreover, there are two smaller regions as before, located at
similar places and one in the upper left corner for the higher
values of /. In fact, this latter becomes the biggest one
for hesr = 0.412 but it is significantly reduced when going
towards the classical limit. Moreover, from o’ point of view
all this 7i¢ case does not show a clear region of better or worse
agreement with the exception of this region. This is due to the
fact that fluctuations dominate this measure in this small sized
basis, and amplify the differences for peaked distributions.

To clarify this behavior, in Fig. 3 we show the P(p;)
distributions as a function of i, to also show the different
dimension of the Hilbert space. We select four cases inside
the largest difference regions for both measures. We begin
with % = 0.137 where the area of interest is already defined
for o'. Figure 3(a) roughly corresponds to the center of the
minimum overlap region and Fig. 3(b) to the minimum o’
region. In the latter case both distributions are more peaked
than in the former. This makes small differences between
the classical and quantum curves to enhance the distance
in the dispersion measure more than in the overlap. On
the contrary, when the distributions are more extended in p
the differences are better noticed through the overlap. To be
exhaustive we show two more cases corresponding to the area
of coincidence of both regions of maximum disagreement in
overlap and o'. These are shown in Fig. 3(c) for the overlap
and in Fig. 3(d) for ¢’. Again the same explanation as in the
previous pair of cases is valid though the dispersion is a little
larger. In Fig. 4 we show the same results for /i = 0.046.
The behavior is qualitatively the same though the Hilbert
space dimension grows. This time it is clear that the overlap
disagreement is larger [see Figs. 4(a) and 4(c)]. For ¢’ the
maximum corresponds now to Fig. 4(d) and again this is due
to a long quantum tail outside of the peak for negative i, that
the classical model is not able to reproduce.
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FIG. 2. Complement of the difference between the relative dis-
persions of the classical and quantum marginal distributions o”, in
parameter space k, y. (a) fiegr = 0.412; (b) hegr = 0.137; (€) fier =
0.046.

But what are these two main regions that are different for
these measures? As a matter of fact, they represent the same
one. In Fig. 5 we show a measure of chaoticity (or simplicity)
of these distributions by means of the participation ratio n =
Q- P(p;)*)"!/N. This measure has been originally defined
as an indicator of the fraction of basis elements that expand a
quantum state and we have extended this concept to the clas-
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. (b)
& 003} .
&
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0.06 (d) . T .
7~~~
B 003t
&
0 == e L
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i
FIG. 3. Classical (black lines) and quantum [(red) gray lines]
marginal distributions P(p;) as a function of i, for meaningful points
in parameter space (see main text). In (a) k = 4.56 and y = 0.56,
in (b) k=7.12 and y =0.34, in (¢c) k = 5.2 and y = 0.48, and in
(d) k =5.8 and y = 0.44. In all cases h.g = 0.137.

sical case by simply applying it to the discretized distribution.
It is worth noticing that we explore the parameter space of the
DMKRM in a meaningful big area where many regular isope-
riodic stable structures (ISSs [20,22-25], originally termed as
periodicity hubs [26]) appear. They are characterized by low
values of n and can be noticed as the dark areas with sharp
borders in Fig. 5. We can see that both regions of disagreement
between the classical and quantum distributions correspond to
different subregions of the largest regular (black) one. Then,
the difference has the same origin and this is the presence of
the largest ISS in the DMKRM. Now, let’s explain why the
quantum subregions are different. Near the borders of this ISS
the quantum asymptotic distributions explore a larger effective
complex basin of attraction in addition to the simple limit
cycle (of higher periodicity). In these cases the biggest differ-
ence is noticed by the overlap. When this basin is less explored
by the asymptotic distributions the difference is more evident
in the dispersion and this is associated with the inner part of
the ISS. The enhancement as /i — 0 reveals a compromise
between the vanishing prefactor of quantum corrections to
the classical evolution, and a better resolution of the larger
regular regions. In fact, in the smaller regular domains the
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FIG. 4. Classical (black lines) and quantum [(red) gray lines]
marginal distributions P(p;) as a function of i, for meaningful points
in parameter space (see main text). In (a) k = 4.56 and y = 0.56,
in(b) k=7.12and y =0.34,in (¢c) k =5.2 and y = 0.48, and in
(d) k = 5.8 and y = 0.44. In all cases /iy = 0.046.

classical model behaves as in the chaotic background, while in
the larger ones the correction dependence in p could become
relevant.

A word regarding the smaller areas of disagreement is
in order here. The one appearing on the left-hand side (i.e.,
at small k) of Figs. 1 and 2 corresponds to a big roughly
regular region that is also associated with low forcing. The
explanation for this behavior is similar to the one for the
big regular area; regularity enhances quantum classical dif-
ferences. The small region approximately around & = 8 and
y = 0.6 belongs to the same family than the ISS previously
studied, then again, the same reasoning applies.

This suggests the main result of our paper: We conjecture
that the chaotic dynamics reduces the dependence of the quan-
tum corrections to just the size of /i. The terms that depend on
the value of the momentum p in the Wigner evolution equation
[i.e., the dissipator given in Eq. (17)] become averaged out
by the classical chaotic behavior underlying the quantum
counterpart. This is the main signature of chaos in this kind of
quantum dissipative systems. The dependence in y is partly
embedded in the dynamics after each map iteration. The last
classical map step that has a y-independent Gaussian noise

FIG. 5. Classical participation ratio n in parameter space k, y
without Gaussian noise. We have taken 7.z = 0.137. The four small
(yellow) gray squares inside the largest regular region correspond to
the parameter values considered in Fig. 3 and Fig. 4.

simply stands for the /i size quantum uncertainty that is
embodied in Eq. (6).

IV. CONCLUSIONS

We have derived the evolution equation for the Wigner
distributions of dissipative systems. In particular we have
evaluated the case with friction using the standard model
found in the literature and employed by us in previous work.
At first sight, it turns out that the quantum corrections to
the classical evolution of Liouville distributions depend non-
trivially on the phase space variable p and the dissipation
strength y (i.e., the coupling with the environment). By
further studying a paradigmatic model of quantum dissipa-
tive systems given by a modified kicked rotator (namely the
DMKRM [13]) we confirm that the main features of the
asymptotic Wigner distributions can be obtained by a very
simple classical Gaussian noise model. The noise strength
is solely given by the size of /. In fact, when we system-
atically analyze the overlap of the marginal distributions of
the Wigner functions in the whole parameter space, we find
that the agreement is uniform with the exception of the largest
regular regions. Moreover, when looking at the dispersion of
these distributions we find a complementary behavior. The
difference is related to the specific shape of the quantum
distributions in different subregions inside these largest reg-
ular domains, and helps us to identify a shared source for
them.

It is worth underlining that in this paper we have on one
hand a theoretical result that gives a momentum, dissipation,
and /i dependence of the quantum correction terms with re-
spect to the classical evolution. On the other hand, numerical
results differ in that they only depend on the size of /i with
the only exception of the largest regular regions in param-
eter space. Then, we conjecture that the underlying chaotic
dynamics of our system is responsible for self-averaging the
quantum corrections terms containing p, erasing the memory
of this dependence at each time step of the map. We expect
that in the classical limit this finite % effect vanishes and both
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the classical and the quantum P(p) converge. The dependence
on y is present through the dynamics, in fact the noise of the
previous steps of the map suffer from a y sized contraction.
Finally, the last step of the noise is related to the 7i-sized quan-
tum uncertainty embodied in the first terms of the quantum
corrections to the classical evolution. In the future, we plan

to rigorously proof this conjecture by means of a simplified
model.
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