
PHYSICAL REVIEW E 99, 042213 (2019)

Resonance-assisted tunneling in four-dimensional normal-form Hamiltonians
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Nonlinear resonances in the classical phase space lead to a significant enhancement of tunneling. We
demonstrate that the double resonance gives rise to a complicated tunneling peak structure. Such double
resonances occur in Hamiltonian systems with an at least four-dimensional phase space. To explain the tunneling
peak structure, we use the universal description of single and double resonances by the four-dimensional normal-
form Hamiltonians. By applying perturbative methods, we reveal the underlying mechanism of enhancement and
suppression of tunneling and obtain excellent quantitative agreement. Using a minimal matrix model, we obtain
an intuitive understanding.
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I. INTRODUCTION

Quantum tunneling connects classically disjoint regions
and therefore is one of the most prominent features of quan-
tum mechanics. In particular, the description of tunneling
through energy barriers allowed for computing of molecular
ground states [1] and explaining radioactive decay [2,3].
However, classical barriers may arise not only from potential
barriers but can be generated by the classical dynamics in
phase space, leading to the concept of dynamical tunneling
[4,5]. The paradigmatic example for this is tunneling be-
tween dynamically unconnected regions of a mixed phase
space in which chaotic and regular motion coexists. There,
for instance, tunneling between two regular regions, sepa-
rated by chaotic dynamics, is moderated by chaos-assisted
tunneling through the chaotic component of phase space
[6–8]. The tunneling between regular and chaotic regions
is described by regular-to-chaotic tunneling [9,10]. Being
a fundamental quantum mechanical effect, dynamical tun-
neling is of relevance in many different fields of physics,
e.g., vibrational spectra of molecules [4,11,12], systems of
ultracold atoms [13,14], optical microcavities [15–21], and
microwave billiards [22–24], and explains power-law-level re-
pulsion at small energy spacings in systems with mixed phase
spaces [25].

The presence of nonlinear resonances can drastically en-
hance the tunneling between disconnected regions in phase
space by the mechanism of resonance-assisted tunneling
[26–28]. Under variation of a parameter, significant enhance-
ment of tunneling is observed. This was recently demonstrated
in experiments for microwave resonators [29] and optical
microcavities [21] by varying the frequency or the shape of
the boundary. A lot of progress has been made concerning
the theoretical understanding of resonance-assisted tunneling
[9,12,20,23,26–28,30–49], mostly concentrating on systems
effectively described by two-dimensional (2D) maps. One
of the key tools for the theoretical description is the map-
ping of the system with nonlinear resonances to a universal
pendulum-like 2D normal-form Hamiltonian, arising from

secular perturbation theory [26,28] or normal form theory
[50]. The quantized normal-form Hamiltonians allow us to ex-
plain the universal features of resonance-assisted tunneling in
2D quantum maps, respectively, making them a key ingredient
for a comprehensive understanding.

Dynamical tunneling and specifically resonance-assisted
tunneling has also been studied in higher dimensional systems
[51–55]. Generically, in such systems resonances of higher
rank arise, which are not present in 2D systems. The case of
rank 2 is called double resonance and is the simplest case
showing these types of dynamics. It occurs in an at least
four-dimensional symplectic map or 6D Hamiltonian. In the
vicinity of a double resonance, the dynamics is effectively
described by the interpolating flow of a 4D normal-form
Hamiltonian [56–60]. Thus, studying tunneling in such 4D
normal-form Hamiltonians provides a first step toward the
understanding of resonance-assisted tunneling in 4D sym-
plectic maps. Experimentally realizable systems with double
resonances are, for example, three-dimensional optical mi-
crocavities or microwave resonators as well as periodically
driven two-dimensional systems. Moreover, the quantized
normal-form Hamiltonians have applications in the studies of
vibrational dynamics of chemical molecules [11,12,61–69].
In particular, the intramolecular energy transfer is heavily
influenced by classical nonlinear resonances, as they allow for
couplings between different vibrational modes [11,12]. How-
ever, a quantitative description based on resonance-assisted
tunneling has not been worked out so far.

In this paper, we give a qualitative as well as a quantitative
description of resonance-assisted tunneling in the presence of
a double resonance. To this end, we consider the classical dy-
namics of the simplest 4D normal-form Hamiltonians, which
describe the dynamics of either a single coupled resonance
or a double resonance. Subsequently, we study the phase-
space localization of the eigenstates of the quantized systems
in classically disjoint regions. We find that tunneling in the
vicinity of the single resonance shows the same characteristics
as in 2D systems, i.e., a drastic enhancement of tunneling.
Such an enhancement is also seen in the case of the double
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resonance but occurs in a very complex fashion. Additionally,
we also observe the suppression of tunneling. Utilizing a
perturbative expansion based on paths in action space, we are
able to quantitatively explain the complicated peak structure
of enhancement as well as suppression. This provides a first
step toward a detailed understanding of resonance-assisted
tunneling in higher dimensions. The application to generic 4D
quantum maps is beyond the scope of this paper and remains
subject of further research.

The paper is organized as follows: In Sec. II, a brief sketch
of the general approach is given. By means of the instructive
example of tunneling in the case of a single coupled reso-
nance, we introduce the methods and notation in Sec. II A.
Section II B treats the central case of a double resonance.
For both cases, the classical normal-form model as well as
the associated quantum system is investigated. Quantitatively
resonance-assisted tunneling is studied by means of numerical
diagonalization and a perturbative description of the underly-
ing mechanism is presented. The key features of resonance-
assisted tunneling in the normal-form Hamiltonians can be
intuitively understood within a minimal 4 × 4 matrix model
presented in Sec. II C. Finally, a summary and outlook is given
in Sec. III.

II. RESONANCE-ASSISTED TUNNELING

Classical nonlinear resonances are ubiquitous in Hamilto-
nian dynamical systems and manifest themselves by means
of resonance-assisted tunneling in the corresponding quan-
tum system. In order to explain the quantum features based
on classical properties, we utilize a universal description of
the classical dynamics in terms of a truncated 4D normal-
form Hamiltonian approximating both single and double
resonances [56–60]. The corresponding 4D phase space is
separated into dynamically disjoint regions by the resonance
channels associated with the nonlinear resonances. The eigen-
states of the quantum Hamiltonian predominantly localize
on classical quantizing tori, located in one of these regions.
However, due to tunneling, there is also nonvanishing proba-
bility in the other, classically forbidden, regions. We introduce
the weight in these regions as a quantitative measure of
resonance-assisted tunneling which shows similar character-
istics as known from two-dimensional quantum maps [48].
A perturbative description of resonance-assisted tunneling
is obtained for both single coupled resonances and double
resonances. This allows for an intuitive understanding of the
enhancement and, in the case of double resonances, also the
suppression of tunneling in terms of perturbative paths along
a discrete action grid.

A. Single coupled resonance

First, the instructive case of the single coupled resonance
in a 4D Hamiltonian system is considered, which will turn out
to be quite similar to 2D systems with a single dominating
resonance. To this end, we start with the classical resonant
Hamiltonian [56–60]

H (θ, I) = H0(I) + V (θ) (1)

obtained from normal-form analysis and truncation. It
is expressed in action-angle coordinates I = (I1, I2) and
θ = (θ1, θ2) of H0(I). Keeping only the nonresonant,
quadratic order gives

H0(I) = 1
2 (I − Ires)TM(I − Ires) (2)

for some real symmetric matrix M, such that H0(I) has an
isolated extreme at Ires.

For the single resonance, the lowest order resonant term
is given by V (θ) = 2Vs cos (sθ) and the resonance vector s =
(s1, s2). By means of a canonical transformation, either the
resonance vector can be brought to the form s = (s1, 0), i.e.,
an uncoupled resonance, or M may be transformed to diagonal
form. Here, we choose M = M−1

res 1. Since the potential V (θ)
is 2π periodic, the phase space of the system is the cylin-
der T2 × R2. Furthermore, the system is integrable because
energy is conserved and s2I1 − s1I2 is a second constant of
motion called polyad number [70].

For concrete numerical calculations and visualization, we
choose s = (1, 1), Vs = 0.1, Mres = 0.8 and Ires = (1.0, 1.0).
Instead of restricting the 4D phase space to a 3D energy
manifold and introducing a Poincaré section to obtain a 2D
representation of the dynamics, we show the 3D hyperplane
for a fixed value of θ2 = 0 and visualize the remaining three
coordinates (θ1, I1, I2). This allows for an intuitive represen-
tation of the phase-space structures for different energies. In
Fig. 1, this hyperplane for θ2 = 0 is shown. Regular dynamics
takes place on 2D tori so that they appear as 1D curves.
Furthermore, the 4D phase space is foliated into invariant 3D
planes of constant polyad number. In the 3D hyperplane, they
appear as 2D planes resembling the dynamics of a pendulum.
In Fig. 1, orbits in four such planes are shown. The stable and
unstable fixed points of these pendulums correspond to elliptic
and hyperbolic 1D tori in the full phase space. Their projection
onto the action coordinates is called resonance center line [71]
and fulfills

s1
∂H0(I)

∂I1
+ s2

∂H0(I)

∂I2
= 0. (3)

The families of the elliptic and hyperbolic 1D tori build up the
skeleton of the resonance channel [72]. The regular structures
form a tilted tube in phase space as shown in Fig. 1. Note
that the geometry of the 4D normal form system, represented
in the section with θ2 = 0, is very similar to that of a corre-
sponding 4D symplectic map, represented in a 3D phase space
slice [73].

The quantum system is obtained from the classical Hamil-
tonian Eq. (1) by means of Weyl quantization [74], which
yields the operators θ̂ and Î as well as the Hamiltonian Ĥ =
H0(Î) + V (θ̂). The eigenvalue equation

Ĥ |ψm〉 = E |ψm〉 (4)

gives the eigenstates and eigenenergies of the system.
The periodicity of V (θ̂) implies, analogously to Bloch’s

theorem [75], the discretization of action space, in terms of
the grid

Im = h̄(m + ϑ) with m ∈ Z2. (5)

Here, h̄ denotes an effective Planck’s constant, which may
be defined as the ratio of Planck’s constant and a typical
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FIG. 1. Phase space of the single coupled resonance shown in a 3D hyperplane for θ2 = 0 fixed. Regular structures are shown as 1D black
curves for four planes with constant polyad number. The eigenstate |ψ0〉 maximally localizing on the classical quantizing torus I0 = (0, 0)
(white line) is shown in a 3D Husimi phase-space representation (normal scale, see color bar) (a) for 1/h = 0.3450 and (b) for 1/h = 0.3979.
The region �, Eq. (9), trivially extended in the θ1 direction, is shown in light blue. For comparison, the squared amplitude of the eigenstate
|ψ0(I1, I2)|2 is shown in action-space representation (normal and logarithmic scale). The resonance center line, Eq. (3), is shown as dashed
line.

action of the system and plays the role of a semiclassical
parameter; i.e., h̄ → 0 corresponds to the semiclassical limit.
Note that changing the inverse effective Planck constant is
experimentally possible, e.g., in a microwave cavity, by vary-
ing the frequency [29]. Furthermore, we fix the Bloch phase
ϑ = (0, 0). Evaluation of the Hamiltonian in the action basis
Eq. (5) gives the matrix elements

Ĥm,n = H0(In)δm,n + Vs(δm,n+s + δm,n−s). (6)

As we are interested in quantum states in the vicinity of the
resonance channel near I = (0, 0), we restrict the action grid
to a rectangle, outside which the wave functions are supposed
to carry negligible probability. Truncation at |I1|, |I2| � 10
gives rise to a finite-dimensional Hilbert space.

Note that H0(Î) is diagonal in action space and therefore its
eigenstates |Im〉 are labeled by the quantum number m ∈ Z2.
By means of semiclassical Einstein-Brillouin-Keller (EBK)
quantization, this relates them to the quantizing torus Im, Eq.
(5), of the classical system given by H0(I). As long as V (θ̂)
is a small perturbation of H0(Î), this association of quantum
numbers remains valid and the eigenstates of interest localize
on quantizing tori of the perturbed Hamiltonian with the same
action as Im. Our choice of ϑ = (0, 0) as well as Ires, Mres,
and Vs ensures the existence of an eigenstate |ψ0〉 ≡ |ψm〉 with
quantum number m = (0, 0) which localizes on the corre-
sponding quantizing torus I0 = (0, 0) close to, but still outside
of, the resonance channel. In Fig. 1, this torus is depicted as a
white line. The choice m = (0, 0) is convenient as it allows us
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to study quantum states associated with the same torus when
varying h̄.

In order to visualize the eigenstates |ψ〉 in phase space, we
use the Husimi representation [76]

Hψ (θ, I) = 1

h̄2 |〈αcoh(θ, I)|ψ〉|2, (7)

defined by the overlap of |ψ〉 with a coherent state |αcoh(θ, I)〉
of minimal uncertainty centered at (θ, I) given in action
representation as

〈I|αcoh(θ0, I0)〉 = 1√
π h̄

exp

[
− (I − I0)2

2h̄
+ i

h̄
Iθ0

]
, (8)

and considered on the torus [77].
By fixing θ2 = 0, the Husimi representation can be com-

pared with the classical phase space structures. Note that this
representation is similar to the 3D Husimi representation on
the 3D phase space slice [73]. In Fig. 1(a), the eigenstate
|ψ0〉 for 1/h = 0.3450 is shown. The Husimi representation
is localizing on the quantizing torus I0. This can also be
seen in the action-space representation as one point with high
intensity in the normal scale and exponential tails along a
diagonal in action space, as can be seen in the logarithmic
scale.

The effect of resonance-assisted tunneling can be measured
in various ways. Following the studies of regular-to-chaotic
tunneling or partially open quantum systems, we measure
the weight of |ψ0〉 on the opposite side of the resonance
s = (s1, s2), accounting for the geometry of phase space [48].
In order to determine this weight, we formally follow Ref. [48]
and introduce a region � in action space given by

� := {(I1, I2) ∈ R2 :

I2 � − s1

s2

(
I1 − Ires,1

) + Ires,2 + �1}.
(9)

The trivial extension of � in the θ1 direction is shown as
blue shaded region in Fig. 1. The boundary is chosen parallel
to the resonance center line. It is located on the opposite
side of the resonance channel with respect to the quantizing
torus I0 = (0, 0). Its distance from the resonance channel is
controlled by �1. As � is dynamically separated from the
quantizing torus I0, the weight of the state |ψ0〉 on � measures
the strength of tunneling over the resonance channel. For the
quantum system, this translates into the projector [48]

P̂� |I〉 = χ�(I) |I〉 , (10)

where χ� denotes the characteristic function,

χ�(I) =
{

1 for I ∈ �

0 for I /∈ �.
(11)

The weight w0 of |ψ0〉 in � is determined by

w0 = ‖P̂� |ψ0〉‖2. (12)

Note that opening the system in � leads to decay rates
showing qualitatively the same results as the weights w0 [48].
In experiments, the weight can be related to quality factors of
optical modes in microcavities or to decay rates of resonance
states.
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FIG. 2. Weight w0 of state |ψ0〉, see Eq. (12), as function of
the inverse effective Planck constant 1/h for the single coupled
resonance shown as orange bullets. The perturbative prediction (18)
is shown as blue crosses.

In Fig. 2, the weight w0 is depicted semilogarithmically as
a function of the inverse effective Planck constant 1/h as or-
ange bullets. On average, it shows an exponential decay with
increasing 1/h, i.e., when approaching the semiclassical limit
h̄ → 0. This overall trend is well known from 2D quantum
maps [28,44] and experiments [29]. In addition to the overall
exponential decay, there are quantization jumps at equidistant
values of 1/h. They are due to points of the discrete action
grid that pass the border of the region � when h is varied.
That is, the quantization jumps are caused by the choice of �

and the associated projector. In principle, the jumps could be
avoided by smoothing the border of the region �. However,
as these quantization jumps are not related to tunneling, we
keep the definition of the projector Eq. (10} for simplicity.
In the numerical computation, we choose �1 = 2.35, which
ensures that quantization jumps and peaks do not coincide in
the considered range of 1/h.

Most importantly, on top of the overall exponential de-
cay, there are also sharp peaks occurring in a regular man-
ner at which tunneling is drastically enhanced by several
orders of magnitude. These peaks are the manifestation of
resonance-assisted tunneling first discussed in 2D systems
[27,28]. There, the enhancement of tunneling was traced back
to degenerate eigenstates of the unperturbed Hamiltonian,
localizing on quantizing tori symmetrically located with re-
spect to the resonance channel. Therefore, also for the 4D
system, right on top of one of the peaks, the state |ψ0〉 is
expected to localize equally on the torus I0 and its symmetric
counterpart in the plane of the same polyad number. This
is nicely seen in the Husimi distribution of |ψ0〉 for 1/h =
0.3979 and θ2 = 0 fixed and the corresponding action-space
representation shown in Fig. 1(b). In contrast, away from the
peak, the symmetric partner does not belong to the discrete
action grid.

In order to gain insight into the underlying mechanism
of resonance-assisted tunneling in 4D normal-form systems,
we follow Refs. [27,28] and use a perturbative approach to
give a quantitative accurate description of the weights. To this
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end, we start with H0(Î) and the orthonormal basis of action
states |Im〉, in which H0(Î) is diagonal, and consider V (θ̂) as a
sufficiently small perturbation. The only nonvanishing matrix
elements of V (θ̂) occur between action states whose quantum
numbers differ by ±s:

〈Im|V (θ̂) |Im+s〉 = Vs. (13)

The perturbative expansion of a state localizing predomi-
nantly on the quantizing torus Im is thus given by [9,10]∣∣ψpert

m

〉 = |Im〉 +
∑

l∈Z\{0}
A(l )

m |Im+ls〉 . (14)

As the polyad number has a quantum mechanical analog
given by the polyad number operator n̂ = s2 Î1 − s1Î2 com-
muting with Ĥ , only states within the subspace of same
polyad number contribute to this perturbative expansion. For
fixed l , the coefficient A(l )

m can be decomposed into distinct
contributions λ�

m that differ in the order of perturbation theory.
Each contribution is uniquely associated with a sequence � =
[t1, t2, . . . , tk] of couplings with t i ∈ {±s} which defines a
path on the action grid. The length of the path is given by
the number of elements in the sequence and is denoted as
|�| := k. It coincides with the order of perturbation theory in
which � contributes.

A path can contribute to A(l )
m only if |�| � |l|. Graphically

such a path � connects Im with Im+ls on the discrete action
grid, where intermediate subsequent actions differ by ±s in
their quantum numbers.

Schematically this is illustrated in Fig. 3, where the action
grid is indicated by gray points and the region � is shaded
blue. Figure 3(a) shows the path � = [s, s] of length |�| = 2
connecting I0, marked as green point, with I(2,2). In Fig. 3(b),
the path � = [s, s, s] of length |�| = 3 ending on I(3,3) is
shown.

Let Ml
m denote the set of all paths which connect Im with

Im+ls and for which no intermediate action coincides with Im,
i.e., paths coming back to their starting point are excluded in
the following according to perturbation theory [78]. Each path
� ∈ Ml

m then contributes with

λ�
m = V |�|

s

|�|∏
i=1

1

H0(Im) − H0
(
Im+∑i

j=1 t j

) , (15)

which includes the unperturbed energies of the intermediate
actions. Finally, the contributions from different paths add up
to the coefficients

A(l )
m =

∑
�∈Ml

m

λ�
m. (16)

Inserting the state |ψpert
m 〉, Eq. (14), into Eq. (12), we find for

the weight in the region �

wm =
∑
l∈N

Im+ls∈�

∣∣A(l )
m

∣∣2
. (17)

From the 2D case, it is known that it suffices to take
only the unique shortest path �l = [s, s, . . . s] of length l into
account. The sum in Eq. (17) may thus be rewritten as a sum
over all positive integers l starting from the smallest integer

(a)

Im1

Im2

0

0

(b)

Im1

Im2

0

0

FIG. 3. Scheme of perturbation theory for the single coupled res-
onance. The action grid Im is depicted as gray points, the quantizing
torus I0 = (0, 0) as green point. The dashed line shows the position
of the resonance center line; see Eq. (3). The circle indicates the level
set of constant energy H0(I0 ). The blue shaded area shows the region
�; see Eq. (9). The red line indicates the shortest path �. (a) The
nonresonant case for 1/h = 0.1314 and |�| = 2. (b) The resonant
case for 1/h = 0.1638 and |�| = 3.

lmin for which Im+lmins ∈ � holds and where we approximate
A(l )

m ≈ λ�l
m . In particular, neglecting all but the lowest con-

tributing order lmin of perturbation theory, i.e., including only
the shortest path, Eq. (17) reduces to

wm = ∣∣λ�lmin
m

∣∣2
. (18)

Note that the paths shown in Fig. 3 are exactly the shortest for
the two different values of 1/h, respectively. This lowest order
approximation already leads to excellent agreement with the
weights w0 obtained from diagonalization of the Hamiltonian,
see Fig. 2, where the prediction Eq. (18) is shown as blue
crosses comparing very well with the numerical results. This
is because higher orders are suppressed by |Vs|, i.e., by at least
one order of magnitude.

The emergence of resonance-assisted tunneling peaks can
be traced back to the energy denominators in Eq. (15). The
contribution λ�

m diverges whenever intermediate states |Im+ls〉
and |Im〉 are resonant; i.e., they are energetically degenerate
with respect to H0(Î), which gives rise to the peaks. This
mechanism is well known from 2D systems. It is further
illustrated in Fig. 3(a), where the nonresonant case is shown.
There no intermediate state lies on the circular level set

042213-5



MARKUS FIRMBACH et al. PHYSICAL REVIEW E 99, 042213 (2019)

of constant energy H0(I) = H0(I0) = constant. In contrast,
Fig. 3(b) depicts the resonant case where both I0 and I(2,2)

have approximately the same unperturbed energy. Note that
in the case of exact degeneracy of I0 with an intermediate
state, the perturbative prediction diverges and thus looses its
validity. This situation, which in principle could be treated by
degenerate perturbation theory, is also ignored in the work on
the 2D system. Furthermore, quantization jumps occur in the
perturbative result as well and coincide with the values of 1/h
at which the length lmin of the shortest path into the region �

changes by one. Despite being a 4D system due to integrabil-
ity and both classically and quantum mechanically conserved
polyad number s2I1 − s1I2, the results closely resemble what
is known from 2D systems.

B. Double resonance

Resonances of higher rank are possible in higher dimen-
sional systems only. The minimal example is the double
resonance in a 4D system. Using normal-form theory and
truncation yields an effective Hamiltonian [56–60]

H (θ, I) = H0(I) + 2Vr cos(rθ) + 2Vs cos(sθ), (19)

which describes the dynamics in the vicinity of a double
resonance, occurring at the isolated minimum of H0(I). When
we use Eq. (2) for H0(I), this minimum occurs at I = Ires.
Choosing linear independent resonance vectors r, s gives rise
to two different resonance channels parametrized by the corre-
sponding resonance center line; see Eq. (3). At the intersection
of both resonance center lines, i.e., the minimum of H0(I), the
double resonance condition is fulfilled.

In general, Eq. (19) gives rise to nonintegrable dynamics,
except for specific choices of r, s [60]. In particular, due to the
second resonant term, the polyad numbers corresponding to
either of the two resonance vectors are no longer conserved.
However, whenever perturbations are small, the system still
can be considered as near integrable.

In the following, we choose r = (r1, r2) = (1, 0) and s =
(s1, s2) = (1, 1) as linearly independent resonance vectors
with prefactors Vr = Vs = 0.05 and H0(I) as given by Eq. (2)
for Mres = 1 and Ires = (1.0, 1.0). The phase space is shown
in the 3D hyperplane for fixed θ2 = 0 in Fig. 4. Both reso-
nance vectors give rise to a resonance channel intersecting in
a so-called resonance junction at the minimum of H0(I) at
Ires = (1.0, 1.0). This corresponds to the point in which the
double resonance condition is fulfilled. It gives rise to four
equilibria with different types of stability, namely one elliptic-
elliptic at (θ1, θ2) = (π, 0), one hyperbolic-hyperbolic at
(0, 0), and and two elliptic-hyperbolic at (0, π ) and (π, π )
respectively [79,80]. Together with their invariant manifolds
or attached families of elliptic 1D tori, they organize the phase
space close to Ires. Along the resonance center line of each
resonance and sufficiently far away from Ires, the phase space
locally resembles the phase space of a 2D pendulum and
is governed by the associated resonance channel. Following
the resonance channels toward the junction at Ires chaotic
layers of both resonance channels begin to overlap and form
a connected stochastic layer. As usual in nonintegrable sys-
tems, also resonances of higher order occur. These regular

resonance structures are not shown but are indirectly seen by
the small holes in the chaotic layers.

From Fig. 4, we conclude that phase space and action space
are each divided into four dynamically separated regions by
the resonance channels and the resonance center lines, re-
spectively. Therefore, tunneling across both of the resonance
channels is expected. As the chaotic layer does not support
a relevant number of chaotic eigenstates in the considered
regime of h̄, we do not expect it to influence tunneling.

Accounting for the additional second resonant term in
Eq. (19), the matrix elements of the quantized Hamiltonian
read

Ĥm,n = H0(In)δm,n + Vs(δm,n+s + δm,n−s)

+ Vr(δm,n+r + δm,n−r). (20)

Our choice of parameters guarantees the existence of a quan-
tizing torus I0 for all values of the effective Planck’s constant.
This allows for studying tunneling of the eigenstate |ψ0〉 in
terms of its weight in a properly chosen region � in action
space located on opposite sides of both resonance channels.
We choose

� := {
(I1, I2) ∈ R2 :

I2 � − s1

s2
(I1 − Ires,1) + Ires,2 + �1,

I1 � �2
}
. (21)

For numerical computations, we set �1 = 1.7 and �2 = 2.7.
In Fig. 4, the region � is shown as a light blue region, trivially
extended in the θ1 direction. Using � in the definition of the
projector Eq. (10), the weight w0 is again given by Eq. (12).

The weight w0 of |ψ0〉 on � is shown in Fig. 5 as a function
of the inverse effective Planck constant 1/h by orange bullets.
Besides the overall exponential decay of the weight in the
region �, various peaks are visible, e.g., as indicated by
the vertical dashed lines at 1/h = 0.1591 and 1/h = 0.1991.
These peaks occur in a very complicated manner and have
a strong variation of their widths. Furthermore, between the
peaks also a drastic decrease of the weight w0 is observed,
e.g., for 1/h ≈ 0.146. Apart from peaks and suppression, also
plateaus of nearly constant weight over some interval of 1/h
are present, for example, around the vertical dashed line at
1/h = 0.375.

In Fig. 4, Husimi representations and the corresponding
action-space representations in normal and logarithmic scale
of |ψ0〉 are shown for different values of 1/h. For the non-
resonant case at 1/h = 0.375, see Fig. 4(a), the state |ψ0〉
localizes mainly on the quantizing torus I0 (white line). The
Husimi representations for 1/h = 0.1991 and 1/h = 0.1591
in Figs. 4(b) and 4(c) show resonant eigenstates with a signif-
icant weight in dynamically distinct regions. Both cross the
resonance junction; however, the morphology of the states
differs, best seen in the action-space representation, which
can be explained in terms of perturbation theory, which is
discussed next.

In order to explain the underlying mechanism of
resonance-assisted tunneling in the case of a double reso-
nance, we use a perturbative approach. As in Sec. II A, we
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FIG. 4. Phase space of the double resonance shown in a 3D hyperplane for θ2 = 0 fixed. Regular structures are shown as 1D black curves,
whereas chaotic structures are shown as points. The eigenstate |ψ0〉 maximally localizing on the classical quantizing torus I0 = (0, 0) (white
line) is shown in a 3D Husimi phase-space representation (normal scale, see color bar) (a) for 1/h = 0.375, (b) for 1/h = 0.1991, and (c) for
1/h = 0.1591. The region �, Eq. (21), trivially extended in the θ1 direction, is shown in light blue. For comparison, the squared amplitude
of the eigenstate |ψ0(I1, I2)|2 is shown in action-space representation (normal and logarithmic scale). The resonance center lines, Eq. (3), are
shown as dashed lines.
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FIG. 5. Weight w0 of state |ψ0〉, see Eq. (12), as function of the
inverse effective Planck constant 1/h for the double resonance is
shown as orange bullets. The perturbative prediction (27), only using
the shortest paths, is shown as blue crosses.

start with the unperturbed system but also consider the second
resonant term allowing for two nonvanishing matrix elements

〈Im|V (θ̂) |Im+r〉 = Vr, (22)

〈Im|V (θ̂) |Im+s〉 = Vs, (23)

for quantum numbers differing by ±s and ±r. The perturba-
tive expansion developed in Ref. [78] and previously similarly
applied to resonance-assisted tunneling in the 2D case with
multiple rank-1 resonances [9,81] reads∣∣ψpert

m

〉 = |Im〉 +
∑

(k,l )∈Z2\{0}
A(k,l )

m |Im+kr+ls〉 (24)

for the state localizing predominantly on the quantizing torus
Im. As Eqs. (22) and (23) suggest, there are twice the number
of possibilities of subsequent couplings in each order of per-
turbation theory compared to the case of the single resonance.
Thus, in the perturbative expansion of |ψpert

m 〉, an unperturbed
state |Im+kr+ls〉 contributes with a coefficient obtained by all
paths � which connect the initial quantizing torus Im with the
final torus Im+kr+ls in the discrete action grid, where subse-
quent actions differ in their quantum numbers by ±r or ±s,
respectively. Let Mk,l

m be the set of these paths. In contrast to
Sec. II A, here every path � ∈ Mk,l

m corresponds to a sequence
� = [t1, t2, . . . , t |�|] with t i ∈ {±r,±s}. Again, paths which
return to Im at some point are excluded from Mk,l

m . Taking all
paths into account, the coefficients in Eq. (24) read

A(k,l )
m =

∑
�∈Mk,l

m

λ�
m (25)

and every path contributes with

λ�
m =

|�|∏
i=1

Vt i

H0(Im) − H0
(
Im+∑i

j=1 t j

) , (26)

where we define V−t = Vt for t ∈ {±r,±s}.
Inserting the obtained state |ψpert

m 〉 of Eq. (24) into Eq.
(12), and using the definition of the projection operator P̂�,

10−15
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100

0.1 0.2 0.3 0.4 0.5
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2 paths
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1/h

w0

FIG. 6. Perturbative prediction using Eq. (27) incorporating an
increasing number of paths sorted by the absolute value of their
contribution |λ�

m|. Prediction for one path is shown as crosses, for
two paths as circles, and for all paths as squares.

see Eq. (10), we find

wm =
∑

(k, l )∈Z2

Im+kr+ls∈�

∣∣A(k,l )
m

∣∣2
. (27)

In order to apply Eq. (27), we consider only the shortest
paths �, which reach � as they give rise to the lowest order
contributions. Let n be the length of these paths. For our
choice of the resonance vectors r and s, this restricts the
relevant endpoints Im+kr+ls to those where k + l = n for
positive k and l . Given (k, l ) ∈ N2 the set Mk,l

m then contains(n
l

)
of these shortest paths. Here, taking only the shortest paths

into account, i.e., the lowest order of perturbation theory,
gives excellent agreement with the weights obtained from
numerical diagonalization. This can be seen in Fig. 5 where
the perturbative prediction of w0, Eq. (27), shown as blue
crosses, is compared with the numerically obtained weights.
The perturbative description covers the overall exponential
decay as well as the peaks and plateaus. Note that, in general,
considering only the shortest paths may not be sufficient. One
such example is the peak near 1/h = 0.5751. As in the case of
the single resonance, the peaks arise whenever an intermediate
state along one or more perturbative paths is resonant with
Im. Furthermore, quantization jumps occur when the minimal
length of paths, which reach �, increases by one.

In contrast to the single resonance case, there is a larger
number of shortest paths which enter the prediction Eq. (27).
As all these paths have the same length, it is a priori not clear
which of them will give the dominant contribution and which
paths need to be taken into account to achieve the accuracy
presented in Fig. 5. To this end, we sort all contributing
paths by their absolute value |λ�

m| in descending order. In
Fig. 6, the perturbative result is shown for an increasing
number of shortest paths �. Using only the path with the
greatest absolute value for a given inverse Planck’s constant
1/h is shown as crosses. While the positions of the peaks are
already resolved, the plateau-like structures show a mismatch
of several orders of magnitude.
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FIG. 7. Scheme of perturbation theory for the double resonance. The action grid Im is depicted as gray points and the quantizing torus
I0 = (0, 0) as green point. The dashed lines show the position of the two resonance center lines; see Eq. (3). The circle indicates the level
set of constant energy H0(I0). The blue shaded area shows the region �; see Eq. (21). In panel (a) for 1/h = 0.1991, five paths with an
resonant intermediate state are shown, and in panel (b) for 1/h = 0.1591, two resonant paths with different intermediate state are shown. In
Figs. 4(b) and 4(c), both states are shown in a Husimi representation. In panel (c) for 1/h = 0.1465, two canceling paths are shown, and in
panel (d) for 1/h = 0.2244, six nonresonant paths are shown.

In general there is not necessarily one single dominating
path, but several paths may give rise to similar contributions.
This case is illustrated in Fig. 7(a) for 1/h = 0.1991 where on
the action grid five paths containing the resonant intermediate
state I(3,1) fulfilling H0(I0) = H0(I(3,1)) are shown. All these
paths contribute to w0 within the same order of magnitude.
Thus, considering only the most contributing path resolves the
position of the peaks while adding all resonant paths refines
the prediction. The sixth most contributing path, however,
gives rise to a contribution which is two orders of magnitude
smaller since no intermediate state is located on the circular
level set of constant energy H0(I0). Therefore, excluding these
nonresonant paths (if other resonant paths exist) does not
affect the result.

In Fig. 7(b), two points of the action grid I(2,0) and I(2,2) are
close to the level set of energy H0(I0) for 1/h = 0.1591. Thus,
both paths with a resonant intermediate state are essential for
an accurate prediction of the weight. This also nicely explains
the different morphologies of the Husimi distributions and
action-space representations; see Figs. 4(b) and 4(c). In 4(c),
the state |ψ0〉 has a higher density at the position of both
resonant intermediate states I(2,0) and I(2,2). In contrast, in
Fig. 4(b) only the intermediate state I(3,1) shows a higher
density.

In contrast to the case where several paths with resonant
intermediate states constructively interfere, also the case of
destructive interference of tunneling paths occurs. This is
best seen in the perturbative prediction arising from two
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paths depicted in Fig. 6 as circles. For specific values of
1/h, e.g., around 1/h = 0.1465, a drastic decrease of w0
can be observed. This happens if the two paths �1 and �2

under consideration fulfill λ�1
m = −λ�2

m . Figure 7(c) illustrates
this scenario, where two paths cancel each other. The two
involved paths differ in their intermediate steps I(2,0) and
I(2,1), respectively. These states lie on different sides of the
level set of constant energy such that the denominator in
Eq. (26) differs in its sign but is of equal absolute value.
Taking only the two most contributing paths into account thus
gives a qualitative description of the observed suppression
of tunneling. Such mechanism is also known from 2D maps
if several single resonances are present [9,10]. The basic
features, i.e., the overall exponential decay, the peaks, and
the suppression of tunneling, are already captured if only two
paths are taken into account, whereas considering all shortest
paths compensates the effect of destructive interference of
paths as depicted in Fig. 6. Furthermore, it emphasizes the
necessity to consider all paths for a quantitatively accurate
prediction of the plateau-like structures pronounced in the
regime of large 1/h. Schematically, the importance for consid-
ering all paths is depicted in Fig. 7(d), showing only the first
six most contributing nonresonant paths for 1/h = 0.2244. By
considering all paths, the weight of plateaulike structures can
be quantitatively predicted.

Note that for arbitrary resonance vectors, higher orders
of perturbation theory may be necessary, for instance, if
there are paths with a resonant intermediate state which need
an additional step to reach �. In other words, the shortest
paths do not necessarily lead to the largest contribution. If
necessary, these longer paths can be computed easily to refine
the prediction. In the considered system, including only the
shortest path in the perturbative expression Eq. (27) allows
for a successful prediction of the numerically obtained weight
w0, see Eq. (12), over several orders of magnitude.

C. A 4 × 4 matrix model

The underlying mechanism of the enhancement and sup-
pression of the weight wm in the situation of a double
resonance can be explained within a minimal 4 × 4 matrix
model. To this end, we consider four states |Ii〉 resembling the
unperturbed action states |Im〉 corresponding to the quantizing
actions I0 = I(0,0) = (0, 0), I1 = I(1,0) = (h̄, 0), I2 = I(1,1) =
(h̄, h̄), and I3 = I(2,1) = (2h̄, h̄). The unperturbed energies of
these states are given by Ei = H0(Ii ); see Eq. (2). We allow
for couplings between these states according to Eqs. (22) and
(23). The matrix representation then reads

Ĥ4×4 =

⎛
⎜⎝

E0 Vr Vs 0
Vr E1 0 Vs

Vs 0 E2 Vr

0 Vs Vr E3

⎞
⎟⎠. (28)

Diagonalization of Ĥ4×4 for a fixed value of h̄ yields the
eigenstates |ψi〉 in the basis of action eigenstates. We choose
for H0 the parameters Mres = 1 and Ires = (0.35, 0.55) and for
the resonances r = (1, 0) and s = (1, 1) with corresponding
coupling strengths Vr = 0.0025 and Vs = 0.005, respectively.
As the perturbations are small, the eigenstates will predom-
inantly resemble one of the action states and are labeled
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FIG. 8. Matrix model: (a) Weight w0 as a function of h̄ obtained
via Eq. (29) shown as orange line and w0,pert calculated using Eq. (32)
as blue line. (b) Energies Ẽi (solid lines) of the states |ψi〉 as
a function of h̄ in black, red, green, and gray for i = 0, 1, 2, 3.
The vertical dashed lines indicate the values of h̄ for the cases of
enhancement and suppression.

accordingly. Thus, resonance-assisted tunneling between I0

and I3 can be quantified by the overlap

w0 = |〈ψ0|I3〉|2 (29)

between the state |ψ0〉 associated with I0 and the state |I3〉.
The states |I1〉 and |I2〉 deal as intermediate states. In Fig. 8(a),
the weight w0 is depicted as a function of h̄ as (orange)
line. It resembles the basic features of resonance-assisted
tunneling observed in the full system with a double resonance.
In particular, the 4 × 4 matrix models shows three peaks of
enhancement as well as suppression in between the second
and third peaks.

In the following, we treat the 4 × 4 matrix model also
perturbatively. In order to compute the weight w0, Eq. (29),
there are only two paths to be considered. They connect I0

with I3 and differ by their intermediate step. Explicitly, they
are given by �1 = [r, s] and �2 = [s, r] and contribute with

λ1 = Vr

E0 − E1

Vs

E0 − E3
, (30)

λ2 = Vs

E0 − E2

Vr

E0 − E3
. (31)

The perturbatively computed weight is given by

w0,pert = |λ1 + λ2|2 (32)

and is shown as the (blue) line in Fig. 8(a). They are in perfect
agreement with the numerically obtained weights away from
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the peaks and as long as the coupling terms are sufficiently
small. The position of the peaks are given by the denominators
of Eqs. (30) and (31), whenever there is a degeneracy of the
unperturbed state |I0〉 with either one of the remaining three
states. This is exactly the case for h̄ = 2Ires,1, h̄ = Ires,1 + Ires,2

and h̄ = 4Ires,1+Ires,2

5 . Instead, destructive interference occurs if
λ1 = −λ2 which is equivalent to (E0 − E1) = −(E0 − E2)
and holds for h̄ = 4Ires,1+2Ires,2

3 . The values of h̄ for enhancement
and suppression are marked in Fig. 8 as black dashed lines.
For the case of suppression, the origin of the opposing signs
can be read off from the denominators of Eqs. (30) and (31),
indicating that states I1 and I2 lie on different sides of the level
set of constant energies and have equal energy difference from
E0 but with a different sign.

Additionally, in Fig. 8(b) the energy levels Ẽ of the
eigenstates |ψi〉 are shown. The black line corresponds to Ẽ0

and shows avoided crossings with either the energies of the
intermediate states (green and red) or the energy of the final
state (gray). The positions of these avoided crossings match
with the positions of the peaks of enhancement of the weight
w0. On the other hand, in the case of suppression, the energy
difference between Ẽ0 and the energy of the two intermediate
states is equal in size, but of opposite sign.

III. SUMMARY AND OUTLOOK

In this paper, we studied resonance-assisted tunneling by
exploiting the universal description of the classical dynamics
in the vicinity of a nonlinear resonance in terms of normal-
form Hamiltonians. In particular, we concentrated on single as
well as double resonances in 4D normal-form Hamiltonians,
where we visualized classical phase space in a suitable hy-
perplane. Numerical diagonalization of the quantized normal-
form Hamiltonians yielded its eigenstates, whose Husimi rep-
resentation allowed for the comparison with classical phase-
space structures. There, we observed enhanced probability on
classical tori located on opposite sides of the resonance chan-
nels. In particular, for specific values of the effective Planck’s
constant, this effect becomes significantly enhanced due to
resonance-assisted tunneling. We introduced the weight of an
eigenstate localizing on one side of the resonance channel
in a disjoint phase-space region as a quantitative measure of
tunneling, which gives qualitatively the same behavior as, e.g.,
phase splittings or tunneling rates studied in a 2D system.
That is, we found an overall exponential decay as well as
prominent peaks, where tunneling is enhanced over several
orders of magnitude, showing a complicated peak structure
already for just one double resonance. Furthermore, in this
situation suppression of tunneling is possible. This also occurs
in 2D systems but only when multiple single resonances are
involved, which happens in the deep semiclassical regime in
which also small resonance chains become important. This
is different in 4D systems, as typically double resonances
dominate resonance-assisted tunneling even in the quantum
regime of large h̄.

In order to predict the weight and understand the mecha-
nism for the peaks and cases of suppression, the use of the
normal-form Hamiltonians allowed us to perform the pertur-
bative calculation in both the single and the double resonance
cases. Tunneling across the single resonance turns out to be
effectively 2D due to a second constant of motion. In contrast,
the situation of the double resonance is more involved. This
was visualized by introducing paths on the discrete action
grid. There, for the single resonance, just one path needs
to be considered, while for the double resonance multiple
paths must be included to obtain an accurate description. In
particular, this allows for destructive interference of different
paths leading to the suppression of tunneling for specific
values of h̄. In contrast, the mechanism causing the peaks is
the same for both cases and corresponds with the one known
from 2D systems. Crucial for enhancement in either case is the
energetic degeneracy of action states with respect to the unper-
turbed Hamiltonian. Note that for different sets of resonance
vectors even higher orders of perturbation theory may yield
the dominant contribution in comparison with lower orders,
i.e., shorter paths. For the concrete systems studied in this
paper, this was not the case and it was sufficient to take only
the lowest order in terms of the shortest paths into account.
Furthermore, we presented a minimal 4 × 4 matrix model,
which captures the observed features of resonance-assisted
tunneling in 4D and allowed for a simplified explanation of
the observed phenomena.

The perturbative description provides a first step toward
a detailed understanding of resonance-assisted tunneling for
general higher dimensional systems, e.g., for experimentally
feasible three-dimensional optical microcavities or microwave
resonators. For a universal description of a generic system,
e.g., a 4D quantum map, several presently open problems
have to be solved: For example, in phase space the relevant
resonances for a given regime of h̄ need to be identified. For
these resonances, the parameters for the construction of the
normal-form Hamiltonian have to be extracted. Furthermore,
for these local approximations of the resonances, a canonical
transformation to the phase space of the map needs to be con-
structed. The subsequent quantization would then allow for a
quantitative prediction of the tunneling rates and resonance-
assisted tunneling peaks. Beyond that, the development of a
semiclassical description only based on the classical proper-
ties of the nonlinear resonance would be desirable. Another
phenomenon, occurring in at least 4D symplectic maps or 6D
Hamiltonians, is the famous Arnold diffusion. It provides a
classical transport mechanism connecting different regions in
phase space. Its interplay with tunneling is not clear at present.
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