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Symmetry-based analytical solutions to the χ(2) nonlinear directional coupler
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In general, the ubiquitous χ (2) nonlinear directional coupler, where nonlinearity and evanescent coupling
are intertwined, is nonintegrable. We rigorously demonstrate that matching excitation to the even or odd
fundamental supermodes yields dynamical analytical solutions for any phase matching in a symmetric coupler.
We analyze second harmonic generation and optical parametric amplification regimes and study the influence
of fundamental field parity and power on the operation of the device. These fundamental solutions are useful to
develop applications in classical and quantum fields such as all-optical modulation of light and quantum-states
engineering.
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The nonlinear directional coupler (NDC) is a core device
in integrated optics. Its potential was first demonstrated in
χ (3) materials as an all-optical switch [1,2]. The possibilities
of the NDC in semiconductors were thoroughly analyzed [3].
For instance, ultrafast all-optical switching was demonstrated
even though it is limited by three-photon absorption [4]. This
and other interesting functionalities were later displayed in
the χ (2) NDC through cascaded second-order effects [5–9].
In the last years the χ (2) NDC has found a flourishing field of
application: quantum optics [10]. Its key strengths in quantum
information processing as a source of entangled photons and
entangled field quadratures have been demonstrated and are
still actively explored [11–16]. In general, the χ (2) NDC
is a nonintegrable system and only stationary solutions—
solitons—are available [17–19]. Even in this case, general
solutions are only obtained numerically or in a semianalytical
form [20]. The dynamical solutions of the χ (2) NDC have,
nonetheless, a broad range of applications in the classical
and quantum regimes [5–8,10–16]. Only two limiting cases
have up to now been identified as integrables, i.e., with
analytical dynamical solutions: (i) The propagation equations
can be reduced to those related to the simpler χ (3) NDC when
the phase mismatch between the fundamental and second
harmonic waves propagating in the device is large, which
corresponds to a regime of lower efficiency [18]. (ii) The un-
depleted harmonic-field approximation in spontaneous para-
metric downconversion linearizes the propagation equations
[10].

Analytical solutions are universally preferred, since they
can be used to contemplate new applications and engineer
the propagation of both classical and quantum light in these
devices. In this paper, we rigorously retrieve analytical so-
lutions for the χ (2) NDC for any phase matching under
specific symmetry conditions: pumping in the even or odd
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fundamental supermode. We show, indeed, that the propa-
gation equations are analogous to those related to a single
χ (2) nonlinear waveguide with imperfect phase matching. We
show that in the NDC case the effective coupling plays the
role of the wave-vector phase mismatch in the emblematic
single waveguide [22]. We can thus analyze second harmonic
generation (SHG) and optical parametric amplification (OPA)
in this configuration, shedding light on the influence of total
power and fundamental-modes phases on the operation of the
device, towards higher efficiency and quantum applications.

The χ (2) NDC, sketched in Fig. 1 (dashed box), is made of
two identical nonlinear χ (2) waveguides. In each waveguide,
an input fundamental field at frequency ω f is up-converted
into a second harmonic field at frequency ωh (SHG), or a
weak input fundamental field is amplified with the help of a
strong second harmonic field (degenerate OPA). For the sake
of simplicity, we consider all fields in the same polarization
mode. In the coupling region, the energy of the fundamental
modes propagating in each waveguide is exchanged between
the coupled waveguides through evanescent waves, whereas
the interplay of the generated, or injected, second harmonic
waves is negligible for the considered propagation lengths due
to their high confinement into the waveguides. Both physical
processes, evanescent coupling and nonlinear generation, are
described by the following system of equations [5]:

dA f

dz
= iCB f + 2igAhA∗

f ei�βz,
dAh

dz
= igA2

f e−i�βz,

dB f

dz
= iCA f + 2igBhB∗

f ei�βz,
dBh

dz
= igB2

f e−i�βz, (1)

where A and B are the slowly varying amplitudes of funda-
mental (f) and second harmonic (h) fields corresponding to
the upper (a) and lower (b) waveguides, respectively, g is the
nonlinear constant proportional to χ (2) and the spatial over-
lap of the fundamental and harmonic fields in each waveg-
uide, C the linear coupling constant, �β ≡ β(ωh) − 2β(ω f )
the wave-vector phase mismatch with β(ω) the propagation
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FIG. 1. Sketch of the nonlinear directional coupler χ (2)-NDC
made of two identical waveguides a and b with second-order suscep-
tibilities χ (2). The dashed box indicates the nonlinear and coupling
region. Input fundamental fields produce second harmonic fields
through SHG, or input harmonic fields amplify injected fundamental
seeds through OPA. In red, the fundamental waves, evanescently
coupled (f). In blue, and more confined, the noninteracting second
harmonic waves (h).

constant at frequency ω, and z is the coordinate along the
direction of propagation. C and g are taken as real without
loss of generality. We consider C = 8 × 10−2 mm−1, g =
25 × 10−4 mm−1 mW−1/2, and lengths of few centimeters
in the simulations we show below. These are state-of-the-art
values in periodically poled lithium niobate waveguides [23].
The input powers used in the simulations are of the order of
those in [8].

In order to solve the set of Eqs. (1), we use dimensionless
amplitudes and phases related to the complex amplitudes
through

u f (z) = |A f (z)|√
P

, v f (z) = |B f (z)|√
P

,

θ f (z) = arg{A f (z)}, φ f (z) = arg{B f (z)},

uh(z) =
√

2

P
|Ah(z)|, vh(z) =

√
2

P
|Bh(z)|,

θh(z) = arg{Ah(z)}, φh(z) = arg{Bh(z)},
with P = |A f |2 + |B f |2 + 2|Ah|2 + 2|Bh|2 the total input
power. We also introduce a normalized propagation coordi-
nate ζ ≡ √

2Pgz, which is defined only in the nonlinear and
coupling region (Fig. 1, dashed box). Applying this change of
variables into Eq. (1), we obtain for the modes propagating in
waveguide a,

du f

dζ
= − κ v f sin(δ f ) − u f uh sin(�θ ), (2)

dθ f

dζ
= κ

v f

u f
cos(δ f ) + uh cos(�θ ), (3)

duh

dζ
= u2

f sin(�θ ), (4)

dθh

dζ
= u2

f

uh
cos(�θ ), (5)

and for the modes propagating in waveguide b,

dv f

dζ
= κ u f sin(δ f ) − v f vh sin(�φ), (6)

dφ f

dζ
= κ

u f

v f
cos(δ f ) + vh cos(�φ), (7)

dvh

dζ
= v2

f sin(�φ), (8)

dφh

dζ
= v2

f

vh
cos(�φ). (9)

The three governing parameters of the system are the ef-
fective coupling κ ≡ C/(

√
2Pg), the fundamental field phase

difference δ f ≡ φ f − θ f , and the nonlinear phase mismatches
�θ ≡ θh − 2θ f + �Sζ and �φ ≡ φh − 2φ f + �Sζ , where
�S = �β/(

√
2Pg) is an effective wave-vector phase mis-

match. Remarkably, the nonlinear phase mismatch drives the
nonlinear optical processes, whereas the effective coupling
indicates which effect is stronger, either the evanescent cou-
pling or the nonlinear interaction. Additionally, there are two
dynamical invariants, the energy and momentum of the total
system, given respectively by

u2
f + v2

f + u2
h + v2

h = 1, (10)

uhu2
f cos(�θ ) + vhv

2
f cos(�φ) + 2κu f v f cos(δ f ) = �,

(11)

where � is a constant given by the initial conditions [24].
The systems of Eqs. (2)–(5) and (6)–(9) are not integrable

in general [18]. The key to our analytical solution is to take
advantage of the fact that the full system of Eqs. (2)–(9)
is invariant under the following set of transformations
F (u f , θ f , uh, θh, v f , φ f , vh, φh):

u f ↔ v f , uh ↔ vh,

φ f ↔ θ f + nπ, �θ ↔ �φ, (12)

with n = 0, 1. The two last transformations can be combined
to obtain φh ↔ θh. In general, this set of transformations
modifies the initial conditions of the problem, thus losing
the symmetry and the dynamical invariance. Nonetheless, we
crucially notice that for symmetric initial conditions,

u f (0) = v f (0), uh(0) = vh(0),

φ f (0) = θ f (0) + nπ, φh(0) = θh(0), (13)

the symmetry relations between the field amplitudes and
phases persist along propagation, protected by the invariance
of Eqs. (2)–(9), so that at all z,

u f = v f , uh = vh,

φ f = θ f + nπ, φh = θh. (14)

These relations were mentioned along the analysis of the
stationary solutions to Eqs. (1) [18]. However, the connection
between the initial conditions Eqs. (13) and the solution
Eqs. (14) was missing. We proceed here to give rigorous
justification to Eqs. (14). Let us rewrite Eqs. (2)–(5) and
(6)–(9) as a single vector equation,

dx
dζ

= h(x), (15)

with x = (u f , θ f , uh, θh, v f , φ f , vh, φh)T . Let F be the lo-
cally defined invertible differentiable map which is given by
Eqs. (12). Then, by the chain rule, y(ζ ) = F (x(ζ )) solves the
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system of ordinary differential equations

dy/dζ = H (y) = ∇F (F−1(y))h(F−1(y)),

where ∇F (x) denotes the Jacobian matrix of F at x. Now sup-
pose H = h on their common domain of definition, meaning
that the map F defines a symmetry of Eq. (15). Furthermore,
suppose F is also a symmetry of the initial conditions x(0) =
x0 such that F (x0) = x0. Then x(ζ ) and y(ζ ) both solve the
same initial value problem. Hence, since the system is smooth
(indeed analytic), by uniqueness of solutions to the initial
value problem, they must be the same, meaning that F is also
a symmetry of the solution:

x(ζ ) = F ( x(ζ )), (16)

which proves Eqs. (14). This proof is, indeed, general; any
system with smooth evolution and invariant under an invert-
ible and differentiable transformation F has solutions that
retain this invariance provided the initial conditions are also
F invariant. This result is related to century-old questions
concerning the impact of symmetries on physical systems,
formulated by Curie and Lie [21].

The symmetry of the solutions Eq. (16) thus simplifies the
system of Eqs. (2)–(9) into

du f

dζ
= − u f uh sin(�θ ), (17)

duh

dζ
= u2

f sin(�θ ), (18)

d�θ

dζ
=

(
u2

f

uh
− 2uh

)
cos(�θ ) − (−1)n2κ, (19)

and the dynamical invariants Eqs. (10) and (11) into

u2
f + u2

h = 1/2, v2
f + v2

h = 1/2, (20)(
1 − 2u2

h

)
(uh cos(�θ ) + (−1)nκ ) = �. (21)

Remarkably, these equations are analogous to those related to
the nonlinear interaction of two waves with imperfect phase
matching �β in a bulk crystal or single waveguide [22].
In our case, the effective coupling 2κ plays the role of �β

in the crystal or single waveguide. The reduced equations
(17)–(19) are fulfilled only when harmonic and fundamental
input powers are set equal in each waveguide, u2

f (0) = v2
f (0)

and u2
h(0) = v2

h (0), harmonic fields in phase, θh(0) = φh(0),
and fundamental fields either in phase, θ f (0) = φ f (0), or
π -dephased, θ f (0) = φ f (0) + π . This leads to a reasonable
set of initial conditions for the χ (2) NDC, as these conditions
correspond to the excitation of the even or odd fundamental
eigenmodes of the linear directional coupler, so-called super-
modes [25]. Outstandingly, the χ (2) NDC is a versatile source
of quantum entanglement under these conditions [14–16].

Equations (17)–(19) have analytical solutions in terms of
Jacobi elliptic functions [22]. We analyze thoroughly these
solutions in the SHG and OPA regimes. From Eqs. (18) and

(21) we get

ζ = ±1

2

∫ u2
h (ζ )

u2
h (0)

d
(
u2

h

)
√

u2
h

(
1
2 − u2

h

)2 − [
�
2 − (−1)nκ

(
1
2 − u2

h

)]2
.

(22)
The expression in the square root has three roots, u2

h,3 >

u2
h,2 > u2

h,1 � 0. By using the function y and the parameter
γ , defined respectively as y2 = (u2

h − u2
h,1)/(u2

h,2 − u2
h,1) and

γ 2 = (u2
h,2 − u2

h,1)/(u2
h,3 − u2

h,1), we can rewrite Eq. (22) as

ζ = ±1

2
√

u2
h,3 − u2

h,1

∫ y(ζ )

y(0)

dy√
(1 − y2)(1 − γ 2y2)

.

y is the Jacobi elliptic function of ζ . The normalized harmonic
power is thus given by

u2
h = u2

h,1 + (
u2

h,2 − u2
h,1

)
sn2

[√
u2

h,3 − u2
h,1(ζ + ζ0), γ

]
,

(23)
where sn stands for the Jacobi elliptic sine. ζ0 is determined
by the initial condition u2

h(0) and the parameter γ , and it is
given by

ζ0 = 1√
u2

h,3 − u2
h,1

arcsn

[√
u2

h(0) − u2
h,1

u2
h,2 − u2

h,1

, γ

]
,

where arcsn stands for the inverse Jacobi elliptic sine. The
period of oscillations in the harmonic powers is thus

L = 2K (γ )√
u2

h,3 − u2
h,1

, (24)

with K the complete elliptic integral of first kind. The indi-
vidual phases θ f ,h and the nonlinear phase mismatch �θ can
be straightforwardly obtained from Eqs. (3), (5), and (23), and
the invariants given by Eqs. (20) and (21).

Now we show the solutions for two specific cases of SHG
and OPA. We consider perfect wave-vector phase matching
�β = 0 in both situations for the sake of simplicity. For
SHG u2

h(0) = 0 and � = (−1)nκ , so that the roots from the
expression in the square root of Eq. (22) are solutions of

u6
h − (1 + κ2)u4

h + u2
h

4
= 0,

which read

u2
h,1 = 0, u2

h,2(3) = 1 + κ2 ± κ
√

2 + κ2

2
. (25)

Notably, these solutions depend only on the strength of the
effective coupling κ and not on the supermode parity, i.e., not
on n. This point is clarified in the analysis of the nonlinear
phase mismatch evolution below.

Figure 2 displays the dimensionless powers [Eqs. (23) and
(25)] for each mode in waveguide a (or equally b) along the
propagation in the SHG regime. We have set κ = 0.51, equiv-
alent to P = 2W for our realistic values, in lithium niobate.
A strong fundamental field depletion and a periodic switch
from fundamental-to-harmonic conversion to harmonic-to-
fundamental conversion are observed. L = 3.35 is the period
of oscillation analytically calculated through Eq. (24). L/2
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FIG. 2. Fundamental (upper curve) and harmonic (lower curve)
field power propagation in the SHG regime. Dimensionless funda-
mental power u2

f (dash) and second harmonic power u2
h (dot). κ =

0.51. The vertical lines show the effective coupling coherence length
L/2, with L = 3.35 the oscillation period analytically calculated.
ζ is the normalized propagation coordinate. ζ = 1 stands for z ≡
(
√

2Pg)−1 = 6.3 mm.

is the effective coupling coherence length defined in analogy
with the wave-vector coherence length. The connection of the
observed periodic behavior and a coupling-based nonlinear
phase mismatch has been proposed recently through the anal-
ysis of numerical simulations [15,16]. To clarify the origin
of these periodic oscillations, we calculate the evolution of
phases along propagation. The individual phases are given by

θh(ζ ) = θh(0) + (−1)nκ ζ ,

θ f (ζ ) = θ f (0) + (−1)nκ

uh,3
�[2u2

h,2,�(uh,3ζ , γ ), γ ], (26)

where � is the elliptic integral of the third kind and � the
amplitude of Jacobi elliptic functions. Figure 3 shows the
evolution of the nonlinear phase mismatch �θ (ζ ) in a period
of oscillation L. We set κ as above, θ f (0) = 0 and θh(0) =
π/2, due to the well-known SHG phase jump [22]. The phase
mismatch evolves from π/2 down to −π/2 in an oscillation
period L when the parity is set as n = 0 (Fig. 3). A symmetric

FIG. 3. Nonlinear phase mismatch evolution along propagation
in one oscillation period L in the SHG regime (dash). κ = 0.51
and n = 0. The vertical line shows the effective coupling coherence
length L/2, with L = 3.35 the oscillation period analytically calcu-
lated. ζ is the normalized propagation coordinate. ζ = 1 stands for
z ≡ (

√
2Pg)−1 = 6.3 mm.

evolution curve from π/2 up to 3π/2 is obtained for n = 1
(not shown). Since the evolution of sin(�θ ), and thus of the
u f and uh solutions in Eqs. (17) and (18), is the same in both
cases, SHG is independent of the input supermode parity.
Equations (26) show that the linear coupling of the funda-
mental modes κ produces a nonlinear phase mismatch which
cyclically destroys the wave-vector phase matching initially
fulfilled, driving two successive nonlinear optical processes,
upconversion in the first effective coupling coherence length
followed by downconversion in the second coupling length.
We stress that our analytical solutions perfectly match with
the numerical solutions of Eqs. (2)–(9).

For OPA with a set of input phases such that �θ (0) =
0, � = uh(0) − 2u3

h(0) + (−1)nκ (1 − 2u2
h(0)) is preserved

along propagation, and the roots of the expression in the
square root of Eq. (22) are given by solving the expression

u2
h

(
1

2
−u2

h

)2

−
[

uh(0)

2
− u3

h(0) + (−1)nκ
(
u2

h−u2
h(0)

)
]2

= 0,

with general solutions

u2
h,1 = u2

h(0), u2
h,2(3) = 1

2

[
1 − u2

h(0) + κ2 ∓
√

2u2
h(0)

(
1 − 3κ2 − 3

2
u2

h(0)

)
+ 4(−1)nκ u2

h(0)
(
1 − 2u2

h(0)
) + κ2(2 + κ2)

]
.

(27)

These solutions also include SHG when u2
h(0) = 0. Note that

Eqs. (27) have to be suitably ordered in order to be used in
Eq. (23). In contrast to SHG, Eqs. (27) depend in this case
on the input harmonic power u2

h(0), the effective coupling κ ,
and the parity of the input fundamental supermode via the
parameter n. We show below the dependence of the solutions
on parity and input harmonic power.

Figure 4(a) displays the dimensionless fundamental powers
[Eqs. (23) and (27)] in waveguide a (or equally b) along

the propagation in a specific case of OPA. We have set
u2

h(0) = 0.499, κ = 0.92 (P = 600 mW), and n = 0 [Fig. 4(a),
black dash] and n = 1 [Fig. 4(a), gray dash]. The har-
monic fields are not shown, since they remain almost un-
depleted for this set of parameters. Note that the power
scale (ordinate axis) has been expanded by a factor of
103. In contrast with SHG, OPA depends on the parity
of the input fundamental supermodes. The system periodi-
cally switches from harmonic-to-fundamental conversion to
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FIG. 4. (a) Fundamental field power propagation in the OPA
regime for an even and odd input fundamental supermode. Even
dimensionless fundamental power u2

f ,e (dash, black). Odd dimension-
less fundamental power u2

f ,o (dash, gray). (b) Ratio between even and
odd fundamental field power u2

f ,e/u2
f ,o (solid, black) along propaga-

tion. κ = 0.92. The vertical lines show the even and odd effective
coupling coherence lengths Leven/2 (dash) and Lodd/2 (solid), with
Leven = 5.19 and Lodd = 5.27 analytically calculated. ζ is the normal-
ized propagation coordinate. ζ = 1 stands for z ≡ (

√
2Pg)−1 = 11.5

mm.

fundamental-to-harmonic conversion for even input parity,
whereas it switches from fundamental-to-harmonic conver-
sion to harmonic-to-fundamental conversion for odd input
parity. Unlike in SHG, the nonlinear phase mismatch �θ

evolves in OPA from the initial value �θ (0) = 0 to negative
(n = 0) or positive (n = 1) values (not shown). This mod-
ifies the evolution of the amplitudes u f ,h through the sign
of sin(�θ ) in Eqs. (17) and (18). The period of oscillation
is also modified by the input parity with Leven = 5.19 and
Lodd = 5.27. At Lodd/2 the fundamental odd mode is reduced
by approximately a factor of 7.5, whereas at Leven/2 the funda-
mental even mode is amplified by the same factor. Figure 4(b)
displays the ratio between even and odd fundamental field
powers u2

f ,e/u2
f ,o along propagation. Notably, a ratio higher

than 50 is obtained at the odd effective coupling coherence
length Lodd/2.

Figure 5 displays the dimensionless fundamental and har-
monic powers [Eqs. (23) and (27)] in waveguide a (or equally
b) along propagation in the OPA regime for equal injection of

FIG. 5. Fundamental (dash) and harmonic (dot) field power
propagation in the OPA regime for an even (black) and odd (gray)
input fundamental supermode. Even dimensionless fundamental and
harmonic power u2

f (h),e [dash (dot), black]. Odd dimensionless funda-
mental and harmonic power u2

f (h),o [dash (dot), gray]. κ = 0.92. The
vertical lines show the even and odd effective coupling coherence
lengths Leven/2 (dash) and Lodd/2 (solid), with Leven = 2.62 and
Lodd = 3.46 analytically calculated. ζ is the normalized propagation
coordinate. ζ = 1 stands for z ≡ (

√
2Pg)−1 = 11.5 mm.

fundamental and harmonic fields, i.e., u2
h(0) = 0.25. For the

sake of comparison, the effective coupling is set as above (κ =
0.92). We show the evolution of the fields produced by injec-
tion of even (black) or odd (gray) fundamental supermodes
at the input. Fundamental and harmonic fields are in dash
and dot, respectively. Strong harmonic field depletion and
fundamental field amplification are achieved for even (n = 0)
input. Lower fundamental field depletion and harmonic field
amplification are obtained for odd (n = 1) input. Shorter peri-
ods of oscillation and larger even-odd oscillation period shifts
are observed in comparison with those in Fig. 4. The even
configuration allows switching from harmonic undepletion
to a large amount of depletion at Leven/2 by either injection
of no, or very small, fundamental seed, as in Fig. 4, or a
substantial fundamental seed, as in Fig. 5. We have also found
that the higher the total input power P, the larger the harmonic
field depletion (not shown). In contrast, the odd configuration
yields the converse effect: the harmonic fields are amplified
when substantial fundamental seeds are injected. Hence, two
mechanisms, parity and power of the fundamental supermode,
can be used as modulation parameters for a χ (2) NDC all-
optical switch. The analytical solutions enable prediction of
the amplitude and period of oscillation of the optical fields
along propagation through Eqs. (23) and (24), respectively.
It is then possible to appropriately fix the initial conditions
for the desired operating mode, even in the quantum regime
[15,16].

In conclusion, we have studied the χ (2) NDC and rig-
orously demonstrated that matching excitation to the even
or odd fundamental supermodes yields dynamical analytical
solutions for any phase matching. The propagation equations
are analogous to those related to a single χ (2) nonlinear
waveguide with imperfect phase matching, but in the NDC
we show that the effective coupling plays the role of the
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wave-vector phase mismatch. We have reviewed the SHG
and OPA regimes and studied the influence of fundamental
field parity and power on the operation of the device. We
have investigated the possible application of this device as an
all-optical switch. This study completes the analysis carried
out in [15,16], where the versatility of this device as a resource
for quantum information processing was shown. Finally, we
want to stress that our analysis can open new avenues in
the study of general coupled χ (2) nonlinear systems, such as
arrays of nonlinear waveguides in optics and Fermi resonance
interface modes in solid-state physics [26,27]. The use of
symmetries can indeed help to simplify these systems and

obtain analytical solutions to understand their dynamics better
[28].
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