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In this article, we investigate the effects of the interplay between quadratic and cubic nonlinearities on the
propagation of elastic waves in periodic waveguides. Through this framework, we unveil an array of wave control
strategies that are intrinsically available in the response of doubly nonlinear systems and we infer some basic
design principles for tunable elastic metamaterials. The objective is to simultaneously account for two sources
of nonlinearity that are responsible for distinct and complementary phenomena and whose effects are therefore
typically discussed separately in the literature. Our study explicitly targets the intertwined effects that the two
types of nonlinearity exert on each other, which modify the way in which their respective signatures are observed
in the dynamic response. Through two illustrative examples we show how the dispersion correction caused
by cubic nonlinearity can be used as an internal switch, or mode selector, capable of tuning on or off certain
high-frequency response features that are generated through quadratic mechanisms. To this end, a multiple scale
analysis is employed to obtain a full analytical solution for the nonlinear response that includes a complete
description of the dual frequency–wave number dispersion correction shifts induced on all the branches, and
elucidates the conditions necessary for the establishment of phase matching conditions.
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I. INTRODUCTION

The most distinctive and fundamental property of phononic
crystals (and periodic structures at large) is their inherent
ability to attenuate waves whose spectral content falls within
frequency intervals known as phononic band gaps [1]. This
property stems directly from the periodicity of the material
and strictly requires spatial compatibility between the wave-
length of the excitation and the characteristic size of the unit
cell. By incorporating internal resonators in the unit cells,
band gaps with subwavelength characteristics can be opened
at low frequencies [2], with onsets at the natural frequencies
of the resonators. These gaps survive the relaxation of period-
icity and can therefore be observed in spatially randomized
systems [3]. A medium with locally resonant mechanisms
displays negative effective mass density [4], which has also
been exploited, in conjunction with other negative effective
moduli, to achieve negative refraction [5]. In addition to mod-
ifying the band gap spectrum, the introduction of an auxiliary
microstructure of resonators enriches the band structure of a
crystal with new wave modes characterized by deformation
mechanisms and dispersive properties that are germane to the
resonators motion, thus stretching its functionality landscape.

While the bulk of the literature on phononic crystals has
been concerned with the linear regime, recently, nonlinearity
has received considerable attention as a means to endow ma-
terials with unprecedented tunability. The main manifestation
of nonlinearity is the amplitude dependence of the dynamic
response, which offers additional opportunities to tune the
spectrospatial characteristics of a periodic structure by simply
controlling the amplitude of excitation.

The weakly nonlinear regime has been studied with spe-
cial focus on cubic and quadratic nonlinearity, due to their
tractability and to the fact that they represent the dominant

terms in many arbitrary nonlinear material behaviors. The
main manifestation of cubic nonlinearity is a frequency cor-
rection of the dispersion bands, which can be predicted by
perturbation methods, as reported in classical applied math-
ematics textbooks [6]. Narisetti et al. [7,8] revisited this
concept and updated the perturbation technique in the context
of periodic structures to show amplitude dependence of the
dispersion branches of phononic media, while experimen-
tal evidence of the frequency shifts achievable in granular
chains was reported in [9,10]. Other interesting cubic non-
linear phenomena, not strictly limited to weak nonlinearity,
include intrinsic localized modes [11], chaotic bands [12], and
third harmonic generation (THG) [13]. In addition, Moore
et al. [14] achieved nonreciprocity in coupled oscillators
featuring strong cubic nonlinearity realized using thin acrylic
strips under transverse deformation.

In the case of quadratic nonlinearity, the main nonlin-
ear effect of interest is the second harmonic generation
(SHG) [15–17], while the correction of the dispersion relation
has been shown to be negligible [18]. Along these lines, per-
turbation analysis has been used to find the explicit solution of
second harmonic terms in monoatomic granular chains, and
to explore the interplay of SHG and dispersion [19]. Recently,
Mehrem et al. [20] have conducted a series of experiments to
confirm the existence of SHG in a nonlinear chain consisting
of repulsive magnets. A few recent works have addressed the
problem of nonlinear wave propagation in periodic structures
with multiple degrees of freedom, where the availability of
complex dispersive characteristics results in the nonlinear
enrichment of the default linear response and in the devel-
opment of new wave manipulation capabilities. Among these
effects, we recall modal mixing in granular systems [21,22]
and augmented spatial directivity in 2D metamaterial lat-
tices [23]. Jiao and Gonella [24] incorporated locally resonant
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mechanisms in nonlinear waveguides to realize via SHG inter-
modal energy tunneling from a fundamental flexural mode to a
nonlinearly activated axial mode with subwavelength charac-
teristics, and subsequently confirmed this phenomenon exper-
imentally [25]. Another example of this quadratic nonlinear
tunneling is an acoustic rectifier realized by coupling a su-
perlattice with a nonlinear microbubble suspension, in which
a rectified energy flux of acoustic waves can be nonlinearly
generated [26]. Moreover, a phase matching condition (PMC)
can be established when the fundamental harmonic and the
second harmonic have the same phase velocity, resulting in
cumulative second harmonic propagation [27,28]. This unique
feature significantly increases the strength of SHG, thus pro-
viding a practical way for experimental verification [29,30]
and applications of nonlinear effects [25,31].

While, in most relevant contexts, the effects of quadratic
and cubic nonlinearity have been studied separately, a few
works have dealt with these two types of nonlinearity
jointly to study wave propagation in classical anharmonic
lattices [32–34] and in granular systems obeying Hertz con-
tact law [9,35], and to explore amplitude gaps for solitary
waves in elastic metamaterials [36,37]. However, little atten-
tion has been paid to the implications of the quadratic-cubic
(QC) interplay for wave control and tunability. The scope
of this article is precisely to fill this gap. To this end, we
consider a medium—here a spring-mass chain on nonlinear
elastic foundation—that features simultaneously both sources
of nonlinearity (at different orders) embedded in the chain and
in the support elastic elements. The coexistence of QC effects
opens unprecedented opportunities for amplitude-controlled
wave tuning. We are interested in how the cubic nonlinearity
can be used to effectively modify the way in which the
quadratic nonlinear effects manifest in the response. Specifi-
cally, we investigate whether the dispersion correction caused
by cubic nonlinearity can be used as an internal switch (or
mode selector) capable of switching on or off certain high-
frequency features of the response that are generated by the
quadratic mechanisms, or at least controlling their strength.
This additional tuning capability is fully intrinsic to the sys-
tem, as the selection of the functionality is solely due to the
nonlinear effects, and therefore controlled by the amplitude of
excitation, without resorting to any active external tuning.

In Sec. II, a multiple scales analysis is applied to obtain
the full nonlinear response of the chain. Due to the QC
interaction, SHG is observed with some unique modal char-
acteristics, including magnified dispersion shift and tunable
PMCs. In Sec. III, we proceed to verify our analytical model

spring 1

spring 2

spring 3

FIG. 1. Nonlinear spring-mass chain with locally resonant non-
linear elastic foundation.

by performing a suite of numerical simulations with absorbing
boundary layers. Finally, in Sec. IV, two examples of tunable
systems with self-adaptive switches are given to illustrate
the wealth of wave manipulation capabilities that directly
leverage the QC nonlinear interaction. The highlights of this
investigation are summarized in the concluding Sec. V.

II. MULTIPLE SCALES ANALYSIS

A. Governing equations and linear dispersion relation

Our reference system is the spring-mass chain with a
locally resonant nonlinear foundation shown in Fig. 1. In each
cell, the primary mass m1 is connected to an auxiliary mass m2

through linear spring 1 and m2 is connected to a fixed point via
spring 2, which is assumed to feature cubic nonlinearity, thus
implementing a locally resonant nonlinear foundation. Spring
3, connecting m1 to its neighbors along the chain, is assumed
to feature quadratic nonlinearity. Under weak nonlinearity
assumptions, the force-stretch relations in the three springs
can be expressed as

f1 = J2δ,

f2 = G2δ + ε1G4δ
3,

f3 = K2δ + ε2K3δ
2, (1)

where ε1 and ε2 are small parameters for the cubic and
quadratic nonlinearities, respectively. In this analysis, we take
all the material parameters (i.e., J2, G2, K2, K3, and G4) to be at
the same order, e.g., O(1), while ε1 and ε2 are small quantities
of order greater than O(1) which control the relative smallness
of the different terms. Here, specifically, we assume that ε1 >

ε2, in order to establish the hierarchy between nonlinear terms
that is necessary to achieve the desired tuning effects.

The equations of motion for the two masses (m1 and m2) in
nth unit cell can be written in matrix form as

[
m1 0
0 m2

]{
ün

v̈n

}
+

[
2K2 + J2 −J2

−J2 J2 + G2

]{
un

vn

}
+

[−K2 0
0 0

]{
un−1

vn−1

}
+

[−K2 0
0 0

]{
un+1

vn+1

}

+ ε1

{
0

G4v
3
n

}
+ ε2

{
K3[(un − un−1)2 − (un+1 − un)2]

0

}
=

{
0
0

}
. (2)

In the spirit of multiple scales analysis, we introduce a fast
spatiotemporal variable θn = ξn − ωt , where ξ and ω are the
normalized wave number and frequency, respectively, and n

is an integer mass index, as well as the two slow variables
s = ε1n (spatial) and τ = ε1t (temporal). Accordingly, the cell
nodal response is expressed as an expansion, up to O(ε2), in
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successive approximations as

un =
{

un(t )

vn(t )

}

=
{

u0
n(θn, s, τ ) + ε1u1

n(θn, s, τ ) + ε2u2
n(θn, s, τ )

v0
n (θn, s, τ ) + ε1v

1
n (θn, s, τ ) + ε2v

2
n (θn, s, τ )

}
. (3)

Substituting this into Eq. (2) and using the chain rule to
resolve the time derivatives, one obtains the following system
of cascading linear equations at each order of expansion:

O(1) : ω2M
∂2u0

n

∂θ2
n

+ K1un + K2u0
n−1 + K2u0

n+1 = 0, (4)

O(ε1) : ω2M
∂2u1

n

∂θ2
n

+ K1u1
n + K2u1

n−1 + K2u1
n+1 = f1, (5)

O(ε2) : ω2M
∂2u2

n

∂θ2
n

+ K1u2
n + K2u2

n−1 + K2u2
n+1 = f2, (6)

where M = [m1 0
0 m2

], K1 = [2K2 + J2 −J2
−J2 J2 + G2

], K2 =
[−K2 0

0 0], and the forcing terms at O(ε1) and O(ε2) are

f1 = 2ωM
∂2u0

n

∂θn∂τ

−
{

0
G4

(
v0

n

)3

}
+

{
K2

( ∂u0
n+1

∂s − ∂u0
n−1

∂s

)
0

}
, (7)

f2 = −
{

K3
[(

u0
n − u0

n−1

)2 − (
u0

n+1 − u0
n

)2]
0

}
. (8)

The general solution at O(1) can be expressed as

u0
n = A(s, τ )φeiθn + A∗(s, τ )φ∗e−iθn , (9)

where A is an amplitude term that only depends on the slow
scale variables (s, τ ), φ = {φu

φv
} is a modal vector, and (·)∗

denotes the complex conjugate of a variable. Imposing Bloch
conditions on the fast scale variable θn between neighboring
cells, we obtain

un±1 = A(s, τ )φ eiθn e±iξ + A∗(s, τ )φ∗e−iθn e∓iξ . (10)

Substituting Eq. (9) and Eq. (10) into Eq. (4), the linear dis-
persion relation is obtained by solving the eigenvalue problem

(−ω2M + K(ξ ))φ = 0, (11)

where K(ξ ) = [2K2(1 − cos ξ ) + J2 −J2
−J2 J2 + G2

]. Two branches,
denoted as “L” for the lower branch and “U” for the upper
branch, are obtained analytically as

ωL/U =
√

b ∓ 
(ξ )

2a
, (12)

where 
(ξ ) = √
b2 − 4ac, with a = m1m2, b = (m1 +

m2)J2 + 2m2K2(1 − cos ξ ) + m1G2, and c = 2K2(J2 +
G2)(1 − cos ξ ) + J2G2. The amplitude ratio for each mode is
given by

φL/U =
{−ω2

L/H m2+J2+G2

J2

1

}
. (13)
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FIG. 2. Linear dispersion relation for the chain with elastic
foundation.

Figure 2 depicts the dispersion relation of the linearized
model obtained for an arbitrary choice of parameters: m1 =
1, m2 = 0.5, and K2 = J2 = G2 = 1 (standard SI units are
adopted throughout the paper and omitted for simplicity).
Visual inspection of the plot reveals a few peculiar dispersive
characteristics of the chain. (1) The system is fully gapped
at low frequencies, between zero and the cut-on frequency
for the first branch ω1

cut-on, as expected for a chain on an
elastic foundation. (2) A locally resonant band gap is opened
in the interval between ω1

cut-off and ω2
cut-on. The positive group

velocity exhibited by the upper branch at ξ = 0 is another
clear signature of a locally resonant mechanism.

B. Nonlinear correction of the dispersion relation

We now proceed to solve the equations at O(ε1). Following
standard modal decomposition [38], we introduce the modal
coordinates zn, such that u1

n = �zn, where � is the modal
matrix (featuring the modal vectors φ on the columns). Pre-
multiplying Eq. (5) by φH , where (·)H denotes conjugate
transpose, yields

ω2m̄
∂2zn

∂θ2
n

+ k̄zn = φH f1, (14)

where m̄ = φH Mφ and k̄ = φH Kφ are the modal mass and
stiffness matrices. To prevent unbounded solution, the secular
terms in φH f1 need to be eliminated [39], which, upon some
algebraic steps, leads to the required condition

∂A

∂τ
+ λ

∂A

∂s
+ iμ|A|2A = 0, (15)

where λ = K2|φu|2 sin ξ

ωm̄ and μ = 3G4|φv |4
2ωm̄ . Note that Eq. (15) is a

first-order PDE that controls the evolution of A with respect to
the slow space and time variables. In other words, eliminating
secularity from the solution results in a constraint on the
amplitude of the fundamental harmonic. The amplitude A can
be written in polar form as

A(s, τ ) = α(s, τ )e−iβ(s,τ ). (16)
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Substituting it into Eq. (15) yields a complex-variable alge-
braic equation, the solution of which requires that real and
imaginary parts vanish individually, yielding the two condi-
tions:

∂α

∂τ
+ λ

∂α

∂s
= 0,

∂β

∂τ
+ λ

∂β

∂s
= μα2.

(17)

The general solutions for α and β are

α = α0(s − λτ ),

β = β0(s − λτ ) + β∗.
(18)

The full expression for β contains a particular solution β∗,
which can be expressed either in terms of variable τ as β∗ =
μα2τ or in terms of variable s as β∗ = μα2s/λ. Accordingly,
in order to determine β∗, either initial conditions or boundary
conditions must be supplied, based on the problem of interest.
For example, by imposing the initial harmonic amplitude
profile un = A0φ sin ξn at t = 0, it follows that α = A0, β0 =
0, and β∗ = μα2τ . Thus the fundamental solution at O(1) is

u0
n = A0φ ei[ξn−(ω+ε1μA2

0 )t] + c.c., (19)

where c.c. denotes the complex conjugate of all preceding
terms. Equation (19) can be seen as a harmonic wave with
wave number ξ and frequency shifted by the correction term
ε1μA2

0. In contrast, if the harmonic displacement time history
un = A0φ sin ωt is imposed at one end of the chain (e.g., at
n = 0), it follows that α = A0, β0 = 0, and β∗ = μα2s/λ.
With this, the fundamental solution reads

u0
n = A0φ ei[(ξ−ε1μA2

0/λ)n−ωt] + c.c., (20)

in which the term ε1μA2
0/λ is a correction shift for the wave

number.
From Eq. (19) and Eq. (20), it is clear that a shift can

be induced either in the frequency domain or in the wave
number domain, depending on whether initial conditions or
boundary conditions are imposed. Moreover, the shifts are
proportional to A2

0, which means that the dispersion relations
are amplitude dependent. While the two formulations appear
interchangeable, the manifestations of the two shifts and
their effects on the dispersion relation tuning are profoundly
different. In Fig. 3, we plot the corrected dispersion branches
predicted by our analysis with the following parameters: m1 =
1, m2 = 0.5, K2 = J2 = G2 = G4 = 1, ε1 = 0.1, and A0 = 1.
The curves calculated from Eq. (19) and Eq. (20) coincide
over a large range of wave numbers, but significant deviations
are observed when ξ approaches zero or π . In the latter limit,
the dispersion relation predicted by Eq. (20) diverges and
loses physical meaning (a similar issue is reported in [40]
where perturbation expansion is applied for the wave number),
while Eq. (19) shows a robust estimation on the frequency
shift over the whole Brillouin zone.

To resolve this discrepancy, we have to realize that the
Bloch condition [Eq. (10)], which is written in terms of
wave number, needs to be updated once a wave number shift
is determined, which means that the original wave number
ξ should be replaced by the modified one ξ − ε1β/s [this
expression can be obtained by plugging Eq. (16) in Eq. (9)

and combining the phase terms]. The updated Bloch condition
leads to a new equation [replacing Eq. (15)] for the elimina-
tion of the secular terms at O(ε1):

∂A

∂τ
+ λ0 sin

(
ξ − ε1

β

s

)
∂A

∂s
+ iμ|A|2A = 0, (21)

where λ0 = K2|φu|2
ωm̄ . Substituting Eq. (16) in Eq. (21) leads to

the following equations for α and β:

∂α

∂τ
+ λ0 sin

(
ξ − ε1

β

s

)
∂α

∂s
= 0,

∂β

∂τ
+ λ0 sin

(
ξ − ε1

β

s

)
∂β

∂s
= μα2.

(22)

If the wave number shift ε1β/s is small when compared to
ξ , the above system of equations can be reduced to Eq. (17)
to the first order approximation. In all other cases, we need to
solve Eq. (22) to find the solution of β. The particular solution
of β can be assumed as β∗ = C1s = C1ε1n if plane wave
solution is allowed, where C1 is a constant. Substituting it into
Eq. (22) and noticing that α = A0 under boundary excitation
with constant amplitude A0 yields the transcendental equation
for C1,

λ0C1 sin ξ̃ = μA2
0, (23)

where ξ̃ = ξ − ε1C1. Once the root of Eq. (23) has been
numerically determined, the corrected dispersion relation can
be computed using the updated wave number ξ̃ , resulting
in the curves of Fig. 4. It can be noticed that the spurious
dispersive behavior observed in Fig. 3(d) for large values of
ξ is successfully removed.

This result leads to a few interesting observations. When
a correction in ξ is enforced (as a result of an imposed
boundary condition), the corrected dispersion branches (i.e.,
the dash-dotted red curves in Fig. 4) are not defined over
the entire reduced Brillouin zone. This is in contrast with the
frequency correction [7], which is defined for every ξ . This
implies that, at certain wave numbers (especially, approaching
the zero and π limits), wave propagation is forbidden in the
nonlinear system if a boundary condition is imposed. The
reasonableness and physical implications of this result will
be substantiated via numerical simulations in the following
sections. In conclusion, regardless of whether boundary con-
ditions or initial conditions are considered, cubic nonlinearity
results in a tangible modification of the dispersion relation.
Since imposing boundary conditions is vastly more practical
than prescribing initial conditions in most problems of engi-
neering relevance, we focus on this case in the remainder of
the paper. Then, the fundamental solution with the updated
wave number shift ξ̃ can be expressed compactly as

u0
n = A0φ ei(ξ̃n−ωt ) + c.c. (24)

C. Second harmonic generation and its correction shift

It has been shown that, in the presence of quadratic
nonlinearity, the complete solution at O(ε2) encompasses a
nonoscillatory term and an oscillatory contribution, the latter
comprising the solution of the corresponding homogeneous
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FIG. 3. Comparison of dispersion relation shifts estimated by Eq. (19) and Eq. (20). (a) Corrections of branches. Panels (b), (c), and (d) are
zoomed details on the low-, middle-, and high-wave-number ranges for the first branch.

problem and the particular (forced) solution due to the forc-
ing term f2 [19]. The question we address here is whether
the presence of cubic nonlinear springs in the foundation
introduces additional tuning effects that are appreciated at the
level of these second harmonic contributions. To this end, in
the following we derive a general expression for the second
harmonic solution that explicitly incorporates any spectral
modulation due to such nonlinear interplay.

If we substitute the associated fundamental solution [i.e.,
Eq. (24)] in Eq. (5), the expression for the forcing function
(note that only the first component f 2

u of f2 is nonzero) can
be determined as (details about the derivation are given in the
Appendix)

f 2
u = −8iK3A2

0φ
2
u sin ξ̃ sin2 ξ̃

2
e2iθ̃n + c.c., (25)

where θ̃n = ξ̃n − ωt and ξ̃ is the corrected wave number
introduced above and, by working with ξ̃ , we implicitly as-
sume that the excitation is prescribed as a boundary condition.

Since the coefficient in front of e2iθ̃n is purely imaginary, this
expression suggests a phase shift in the second harmonic.

1. Forced solution and its correction

Following the standard procedure for heterogeneous PDEs,
the forced solution can be found as

u2 f
n = B1ϕ e2iθ̃n + c.c., (26)

where the coefficient can be obtained by plugging Eq. (26) in
Eq. (5), yielding

B1ϕ = [−4ω2M + K(ξ̃ )]−1f̄2, (27)

where f̄2 = {−8iK3A2
0φ

2
u sin ξ̃ sin2 ξ̃

2
0

} and ϕ is subjected to the same

normalization followed for the fundamental modal vector
φ. The phase 2iθ̃n indicates that u2 f

n represents a harmonic
wave traveling with 2ξ̃ and 2ω, i.e., twice the frequency
and twice the (corrected) wave number of the fundamental
harmonic u0

n. While the doubling of frequency and wave
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FIG. 4. Dispersion shift predicted by Eq. (24).

number is an expected feature of the forced response in
systems with quadratic nonlinearity [19,20], the dependence
on ξ̃ introduces a new spectral control that is germane to
the problem with additional cubic nonlinearity. In essence,
cubic nonlinearity introduces an additional wave number shift
in the signature of the quadratically generated forced second
harmonic. We conclude that the interplay between the two
types of nonlinearity results in a new amplitude-dependent
correction mechanism that endows traveling waves with an
additional self-manipulation capability. We now proceed to
check whether a similar effect is observed in the homogeneous
part of the SHG.

2. Homogeneous solution and its correction

The homogeneous solution can be expressed as

u2h
n = iB2χ eiψn + c.c. (28)

In contrast with the forced response, here the phase ψ =
ξ (2ω)n − 2ωt involves the frequency–wave number pair pre-
dicted by the branch of the band diagram available at 2ω, thus
conforming to the dispersion relation of the corresponding
linear problem. Accordingly, χ = {χu

χv
} is the modal vector at

(ξ (2ω), 2ω), and the imaginary constant i is assumed a priori
in Eq. (28) to simplify the analysis.

In the spirit of multiple scale analysis, the amplitude term
B2 is, in general, taken to be dependent upon the slow vari-
ables s and τ , and can be expressed as

B2(s, τ ) = a(s, τ )e−ib(s,τ ). (29)

The full characterization of the homogeneous response relies
on the nontrivial task of determining B2(s, τ ). To this end, we
introduce a manipulation step aimed at virtually extending to
the second harmonic the treatment, classically reserved for
fundamental harmonic, that we followed in Sec. II B for the
determination of A(s, τ ). Specifically, we formally combine
the homogeneous second harmonic and the fundamental har-
monic into a new baseline expression, which we will treat as

the “new fundamental solution” at O(1):

û0
n = Aφ eiθn + A∗φ∗e−iθn + iε2B2χ eiψn − iε2B∗

2χ
∗e−iψn .

(30)

Accordingly, the equation at O(ε1) is also updated, and the
cubic nonlinear term in f1 becomes

f 1
cubic = −G4

(
v0

n

)3 = −G4(Aφveiθn + A∗φ∗
v e−iθn

+ iε2B2χveiψn − iε2B∗
2χ

∗
v e−iψn )3

= −3G4
(|A|2|φv|2Aφv + 2ε2

2 |B2|2|χv|2Aφv

)
eiθn

− 3iε2G4
(
2|A|2|φv|2B2χv + ε2

2 |B2|2|χv|2B2χv

)
eiψn

+ c.c., (31)

where higher order terms have been omitted. Following the
same logic described in Sec. II B, the removal of the secular
terms for the wave modes associated with eiθn and eiψn requires
that

∂A

∂τ
+ λ0 sin

(
ξ − ε1

β

s

)
∂A

∂s
+ i

(
μ|A|2 + ε2

2η|B2|2
)
A = 0

(32)

and

∂B2

∂τ
+ λ′

0 sin

(
ξ (2ω) − ε1

b

s

)
∂B2

∂s

+ i
(
μ′|A|2 + ε2

2η
′|B2|2

)
B2 = 0, (33)

where η = 3G4|χv |2|φv |2
ωm̄ , λ′

0 = K2|χu|2
2ωm̄ , μ′ = 3G4|φv |2|χv |2

2ωm̄ , and

η′ = 3G4|χv |4
4ωm̄ . Ignoring the high order term O(ε2

2 ), Eq. (32)
reduces back to Eq. (21), whose solution yields the dispersion
shift in the fundamental harmonic, as discussed before. Simi-
larly, neglecting the high order term in Eq. (33), the equation
becomes

∂B2

∂τ
+ λ′

0 sin

(
ξ (2ω) − ε1

b

s

)
∂B2

∂s
+ iμ′|A|2B2 = 0, (34)

which is a partial differential equation in s and τ controlling
the slow spatiotemporal evolution of B2. Substituting Eq. (29)
in Eq. (34) and assuming b = C2s = ε1C2n (an a priori as-
sumption which leads to a traveling wave solution if C2 can
be solved as a real number) yields a transcendental equation
formally similar to Eq. (23), which can be solved numerically
for C2. With C2, the homogeneous solution can be rewritten as

u2h
n = iaχ eiψ̂n + c.c., (35)

where ψ̂n = ξ̂n − 2ωt and ξ̂ = ξ (2ω) − ε1C2. This result
shows that the QC interplay leads to a new dispersion shift
that is germane to the homogeneous second harmonic.

3. Phase matching conditions

A careful inspection on Eq. (27) suggests that the above
procedures for finding the solutions at O(ε2) work only when
−4ω2M + K ≡ Q is invertible. It is possible, however, that
Q is singular [det(Q) = 0]. If that is the case, the term
containing the variable 2θ̃ in the forcing function f2 satisfies
the linear eigenvalue problem of Eq. (11). In other words,
the forcing function resonates with the homogeneous solution
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FIG. 5. (a) Dispersion shifts in the fundamental and second harmonics. (b),(c) Zoomed details of the (b) lower branch and (c) upper branch,
with amplitude A0 = 1.

(i.e., 2θ̃n = ψn) and the solution becomes secular. Such a
scenario is referred to as phase matching condition (PMC)
and in general has been shown to be conducive to stronger
nonlinear response signatures [24,25]. The solution, which
is assumed to grow in direct proportion to the propagation
distance, is expressed as

u2
n = Dχn e2iθ̃n + c.c. (36)

Substituting it in Eq. (5) yields

D(−4ω2M + K(ξ̃ ))χn + Dp = f̄2, (37)

where p = −K2{2iχu sin 2ξ̃

0 }. The first term in the left-hand side
(LHS) of Eq. (37) automatically vanishes since it satisfies
the eigenvalue problem Eq. (11), as stated above. Then, the

coefficient D can be determined as D = 4K3A2
0φ

2
u sin ξ̃ sin2 ξ̃

2

K2χu sin 2ξ̃
.

As we mentioned earlier in the manuscript, this type of
nonlinear system also supports a nonoscillatory solution—a
general nonlinear effect in anharmonic lattices [20]. For com-
pleteness, let us briefly reexamine the forcing term at O(ε2)
(see the Appendix), in which we notice that a constant force
can be induced in each quadratic spring by the underlined
terms in Eq. (A1):

Fs = 2ε2K3A2
0|φu|2(1 − e−iξ̃ )(1 − eiξ̃ )

= 4ε2K3A2
0|φu|2(1 − cos ξ̃ ). (38)

This constant force results in a stationary displacement u2s
n in

the system, and such static problem can be easily solved once
the size (i.e., the total number of degrees of freedom) of the
system is specified. As a side note, it is worth noticing that the
magnitude of the force term in Eq. (38) contains the corrected
wave number ξ̃ . As a result, we can expect that the strength
of the stationary displacement u2s

n will also be moderately
affected by the presence of cubic springs in the foundation. In
conclusion, the complete solution at O(ε2) can be expressed
as follows.

If 2θ̃n �= ψn (non-PMC),

u2
n = u2s

n + B1ϕ e2iθ̃n + iaχ eiψ̂n + c.c. (39)

If 2θ̃n = ψn (PMC),

u2
n = u2s

n + Dχn e2iθ̃n + c.c. (40)

Imposing the absence of the second harmonic and of nonoscil-
latory terms at the boundary (n = 0), it yields b0 = 0 and a =
iB1ϕv/χv , and the unknowns in u2s

n can be fully determined.
Equations (39) and (40) shed light over some unique

characteristics of the nonlinearly generated second harmonics,
which are summarized below.

(1) The shift in wave number introduced by the cubic
nonlinearity at O(ε1) is also observed in the forced solution
at the second harmonic. However, the shift at the second
harmonic is magnified by a factor of 2 [i.e., 2
ξ = 2(ξ̃ − ξ )],
which implies that the spectral signatures of the forced second
harmonic can be modified to a larger extent than the funda-
mental harmonic by playing with the amplitude of excitation.

(2) We have shown that the interaction between the
quadratic and cubic nonlinearities produces a new dispersion
shift in the second harmonics, which is conceptually distinct
from the shift in the fundamental harmonic. In other words, at
a given frequency, two shifts are defined: the one experienced
by a fundamental harmonic excited directly at that frequency
and the one experienced by the second harmonic generated
by an excitation with half frequency content. We note that the
dispersion shift in the homogeneous second harmonic (dashed
magenta curves) is significantly larger (precisely twice larger)
when compared to the shift in the fundamental solution (dash-
dotted red curves) at that frequency. A visual comparison of
these shifts is provided in Fig. 5 for different frequencies
and strengths of nonlinearity. This unique feature enables an
additional array of wave manipulation opportunities, as will
be discussed in the application section below.

(3) When PMC is achieved, the amplitude of the second
harmonic grows with the propagation distance, and the full
nonlinear response conforms to the linear dispersion relation.
As discussed in [24,25], this unique property has impor-
tant practical implications. The energy tunneling induced by
the SHG from the fundamental to second harmonic can be
boosted by enabling PMC.
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FIG. 6. Numerical estimation of the dispersion shift in the lower (a) and upper (b) branches of the band diagram, compared with the
analytical model based on perturbation analysis.

(4) In the presented multiple scales analysis, the selection
of the scale variables is deliberately chosen to capture the
main effects of quadratic and cubic nonlinearities in the
system. A more general choice, up to O(ε2), would include
θn = ξn − ωt , s1 = ε1n, τ1 = ε1t , s2 = ε2n, and τ2 = ε2t .
However, the two additional variables s2 and τ2 will not add
any new information to the existing solutions in our context.
This can be explained by recalling that the main purpose of
introducing the slow variables s and τ is to capture the shift
in the dispersion relation. To the first order approximation
[i.e., at O(ε1)], this is brought about exclusively by the cubic
nonlinearity, while the shift due to quadratic nonlinearity is
negligible [18]. Another consequence of this argument is that
the presented perturbation analysis also works when ε2 is
comparable to ε1, i.e., ε1 ≈ ε2. Under these circumstances,
Eqs. (5) and (6) can be combined into one equation with the
two forcing functions f1 and f2, and the rest of the procedure
remains the same.

III. FULL-SCALE SIMULATIONS

In this section, we perform full-scale numerical simula-
tions to validate our analytical model and support the findings
detailed in Sec. II. The wave response of a finite chain is
obtained by integrating the system of nonlinear equations
[Eq. (2)] using the Verlet Algorithm [41]. In order to obtain
clean signatures of the desired harmonics, it is imperative to
work with traveling waves that are as monochromatic as pos-
sible. This can be achieved by prescribing sustained harmonic
excitations at the boundary. However, this route is impractical
with finite-size systems as reflections from the boundaries
would soon result in standing waves (i.e., vibration states).

To prescribe purely harmonic traveling waves while avoid-
ing boundary reflections, we implement an absorbing layer
of 30 unit cells endowed with viscous damping at the end of
the main chain which consists of 40 undamped unit cells. The
coefficient profile for the nth unit cell in the absorbing layer is

given by

Cn = C0

(
n

NPML

)γ

I, (41)

where C0 = 3 is the maximum damping coefficient, NPML =
30 denotes the number of unit cells in the layer, γ is set to 3 in
the simulation, and I is the 2 × 2 identity matrix. A continuous
harmonic displacement excitation is applied to mass m2 in
the first unit cell of the chain. The spatiotemporal response
computed at each cell site over the considered time interval
is transformed to the Fourier domain via two-dimensional
discrete Fourier transform (2D-DFT). The spectral compo-
nents (ξ, ω) of the response, to be compared against the band
diagrams from unit cell analysis, are extracted by tracking the
maximum values of the 2D-DFT data in different frequency
intervals.

A. Numerical estimation of dispersion shifts
in the fundamental harmonic

The system parameters are m1 = 1, m2 = 0.5, K2 = J2 =
G2 = 1, and ε1 = 0.1. The cubic nonlinearity can be posi-
tive (G4 = 1) or negative (G4 = −1), which corresponds to
a hardening or softening nonlinear foundation, respectively.
The amplitude of the excitation A0 is set to 1 for the lower
branch correction [Fig. 6(a)] and to 0.6 for the upper branch
correction [Fig. 6(b)].

Figure 6 shows that the numerical results match the mul-
tiple scales analysis predictions. The branches are shifted
upward or downward depending on whether hardening or
softening is considered. An interesting observation can be
made about the regime close to the cutoff frequencies, where
the result obtained by Eq. (20) (Fig. 3) diverged spuriously.
In these regimes, the responses from simulations tend to be
unstable and monochromatic conditions cannot be established
effectively. This can be qualitatively explained by invoking
the fact that the dispersion curves become flat around the
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FIG. 7. Numerical estimation of dispersion shift in the second harmonics (a) in frequency range where homogeneous and forced solutions
coexist (A0 = 0.6), and (b) in frequency range where only the forced solution exists (A0 = 1).

cutoff frequencies, resulting in large wave number shifts (if
boundary conditions are imposed) that violate the weak non-
linearity assumption. As a result, the dispersion shift predicted
by Eq. (20) can be used as a guideline to check validity of
the assumptions underpinning our perturbation analysis for a
given system and excitation conditions.

B. Numerical estimation of dispersion shift in SHG

So far, we have numerically matched only the shifts de-
scribed by Eq. (24), which only affect the fundamental har-
monic. Now, we incorporate quadratic nonlinearity (K3 = 1
and ε2 = 0.05) in the springs of the main chain to elicit sec-
ond harmonic generation and estimate its spectral shift. The
spectral content of the forced second harmonic is determined
by the (ξ̃ , 2ω) pair, and the homogeneous one is dictated by
the ξ̂ − 2ω curve. Both wave numbers ξ̃ and ξ̂ are subjected
to (different) correction shifts and depend on the excitation
amplitude A0. Figure 7 shows the numerical results of the
dispersion shift in the second harmonics. Two scenarios can
be identified. In a certain frequency range, the forced and
homogeneous solutions coexist, as shown in Fig. 7(a). In the
frequency range where no modes are available, only the forced
solutions are observed, as shown in Fig. 7(b). In both cases,
the agreement between the analytical and numerical results
is remarkable. Comparing Fig. 6(a) against Fig. 7(b), and
Fig. 6(b) against Fig. 7(a), we can easily conclude that the
wave number shifts in the homogeneous and forced second
harmonics are significantly larger than those exhibited by
the fundamental harmonics under the same amplitudes of the
excitation, consistent with the prediction of the multiple scales
analysis.

IV. APPLICATION TO WAVEGUIDES WITH
SELF-SWITCHING CAPABILITIES

In this section we demonstrate that the extreme tunability
of the second harmonic enabled by the cubic nonlinearity
allows controlling the spectral characteristics of the nonlinear
wave response due to the quadratic nonlinearity, and activate
new modal functionalities at the second harmonic. One inter-
esting application is to design a family of self-adaptive modal
switches that can turn on and off some desired functionalities
by simply adjusting the amplitude of excitation. Here we
illustrate the richness of opportunities resulting from this idea
through two illustrative examples.

A. Application 1: Optical mode switch via homogeneous
solution self-tuning

The first example exploits the possibility to control the
manifestation of the homogeneous second harmonic (due to
quadratic nonlinearity) through the cubic term. This allows
activating (or deactivating) or tuning certain modal character-
istics typical of the higher-frequency optical regime that are
nonlinearly activated in the response via SHG.

This application is based on the notion that, when a wave
mode (dispersion branch) is available at the second harmonic,
the homogeneous solution will display the spectral modal
characteristics of that mode [24]. If the second harmonic is
subjected to a dispersion shift, e.g., through cubic nonlinear
correction, the modal characteristics of the activated harmonic
can be further manipulated with respect to the default case
with only quadratic nonlinearity. This concept is illustrated in
Fig. 8 and supported by numerical simulations performed with
the same parameters used in Sec. II. The excitation frequency
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FIG. 8. Schematic of a self-adaptive switch which can turn on or off homogeneous second harmonic. (a) Entire band diagram and
(b) zoomed details at the second harmonic frequency.

ω0 [red dot in Fig. 8(a)] is carefully chosen such that the
second harmonic 2ω0 is above, but sufficiently close to, the
cut-on frequency ω2

cut-on of the upper branch. Thus, at low
amplitude (or without cubic nonlinearity), the homogeneous
second harmonic is located at the onset of the upper branch
[around the blue dot in Fig. 8(b)], whose response involves
large motion of mass m2 (a typical feature of locally resonant
band gaps). The forced solution is marked by the green circle
located on the dash-dotted green curve, which represents the
locus of the 2ξ − 2ω pairs. At high amplitude (A0 = 1), the
dispersion relation is corrected. As a result, the forced second

harmonic is shifted from the location of the green circle to the
location of the yellow dotted circle, while the homogeneous
second harmonic is in the band gap extension produced by the
upshifted upper branch (magenta dashed curve).

In simulations, the prescribed excitation frequency is cho-
sen to be ω0 = 1.07 rad/s such that the second harmonic
is around 2ω0 = 2.14 rad/s, which is close to the cut-on
frequency ω2

cut-on, as desired. A band-pass filter is used to
extract the second harmonics from the nonlinear response.
Figure 9 depicts the spatial profiles and the normalized DFT
of the filtered second harmonics for mass m1 and mass m2.
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FIG. 10. Schematic of tunable PMCs with hardening or softening cubic nonlinearity at amplitude A0 = 1.

With a low-amplitude excitation, as shown in Fig. 9(a), we
observe that there are two peaks in the spectral domain: the
one with lower wave number corresponds to the homogeneous
solution and the other to the forced solution. This is consistent
with the spatial profile, where the wave presents an amplitude
modulation—a typical feature of waves with two coexisting
spectral components. At high amplitude, the first peak is
eliminated and the wave field becomes monochromatic, as
depicted in Fig. 9(b). In comparison, in Fig. 9(c) we consider
a case where we retain a high amplitude of excitation but we
remove the cubic nonlinearity in the system. We see that all
the major wave signatures are qualitatively similar to case (a),
albeit with higher displacement amplitude. This indicates that
the SHG due to quadratic nonlinearity is triggered under large

amplitude excitations, but the additional correction (filtering
of the homogeneous component) due to the cubic term in
the foundation is lost. In essence, we have demonstrated
that, by playing with the amplitude of the excitation and
with cubic nonlinearity to exploit, we obtain a double tuning
effect on the wave: (1) we trigger and control the strength
of the second harmonic (this effect would be observed even
without cubic term); (2) we selectively determine whether the
homogeneous solution is observed in the second harmonic
in addition to the forced one (this effect is germane to the
case with double nonlinearity) and therefore we determine
whether two distinct wave numbers and modal characteristics
will coexist in the response. In summary, by controlling the
amplitude, not only do we control the strength of the second
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FIG. 11. Schematic of self-adaptive PMC switches. (a) Case 1: switching off PMC at high amplitude via hardening cubic nonlinearity;
(b) case 2: switching on PMC at high amplitude via softening cubic nonlinearity.
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FIG. 12. Spatial profile and DFT of the filtered second harmonics for the two cases of self-adaptive PMC switch. Case 1: (a) low amplitude
A0 = 0.1 with G4 = 1, ε1 = 0.1, and ε2 = 0.01; (b) high amplitude A0 = 1 with G4 = 1, ε1 = 0.1, andε2 = 0.01; (c) high amplitude A0 = 1
with ε2 = 0.01 (no cubic nonlinearity). Case 2: (d) low amplitude A0 = 0.1 with G4 = −1, ε1 = 0.1, and ε2 = 0.01; (e) high amplitude A0 = 1
with G4 = −1, ε1 = 0.1, and ε2 = 0.01; (f) high amplitude A0 = 1 with ε2 = 0.01 (no cubic nonlinearity).

harmonic; we also inherently dictate its spectral and modal
content.

B. Application 2: Adaptive optical mode switch via PMC tuning

The second example exploits the possibility to interfere
with the establishment of PMC in the second harmonic
through the cubic correction. Since the strength of the har-
monic generation under PMC is largely magnified, the entire
modal manifestation of the second harmonic can be dramati-
cally changed depending on whether PMC is enabled or not.

As discussed in the theory section, if PMC is achieved, the
amplitude of the solution at O(ε2) is proportional to the prop-
agation distance. This unique feature can be utilized to boost
SHG, overall emphasizing the nonlinear response. However,
for a given system with only quadratic nonlinearity, PMC is
strictly linked to specific frequencies, or even not available
at all, based on the fixed characteristics of the band diagram.
In contrast, by incorporating cubic nonlinearity in the system

and by exploiting its manifestation on the correction of the
dispersion branches, we can instead switch on or off PMC
in a certain frequency range, as shown in Fig. 10. Based on
its mathematical definition, the geometrical interpretation of
PMC is the existence of an intersection between the linear
dispersion curves and the curve encompassing all the forced
second harmonic pair (the 2ξ̃ − 2ω curve). In light of this,
in the system with ε1 = 0 (i.e., no cubic nonlinearity) and
ε2 = 0.05 depicted in Fig. 10 PMC is located at the blue dot
(zoomed details shown in the inset). If some hardening cubic
nonlinearity (ε1 = 0.1, G4 = 1) is added, PMC is shifted
to the yellow dotted circle. In contrast, if softening cubic
nonlinearity is added (G4 = −1), PMC are shifted to the solid
black circle. In essence, by resorting to different types of cubic
nonlinearity, PMC becomes highly tunable, providing another
way to manipulate nonlinear wave propagation at the second
harmonic.

To illustrate this capability, we consider two chains.
The parameters of chain 1 (with softening foundation) are
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m1 = m2 = 1, K2 = J2 = 1 = 1, G2 = 0.92, G4 = −1, ε1 =
0.1, and ε2 = 0.01. Chain 2 (with hardening foundation)
features G2 = 0.84 and G4 = 1, while all the other coeffi-
cients are kept identical. For amplitude A0 = 1, the corrected
dispersion relations for both systems are plotted in Fig. 11 and
superimposed to the linear ones. In the first case, the system
features one PMC [blue dot in the inset of Fig. 11(a)] close to
the upper cut-off frequency, when excited with low amplitude
or without cubic nonlinearity. By increasing the amplitude, the
PMC can be switched off due to the activated dispersion shift
(the yellow dashed curve). In the second case, there is no PMC
available at low amplitude, but a new one [i.e., the yellow
dotted circle in Fig. 11(b)] can be created as we increase
the amplitude to a certain degree and produce the correction
marked by the yellow dotted curve.

Next, we perform numerical simulations for both chains.
The filtered second harmonics in the spatial and spectral
domains for mass m1 and mass m2 are plotted in Fig. 12.
For chain 1, the excitation frequency is carefully chosen
such that the second harmonic is close to the blue dot. At
low excitation amplitude (A0 = 0.1), PMC is achieved as
designed, as confirmed by the fact that the spectrum only
contains one dominant wave number component, as shown in
Fig. 12(a). As a result, the response at the second harmonic
grows in space, as predicted from the analytical solution. Note
however that, in practice, the harmonic starts losing intensity
beyond a certain stage in the simulation. This reduction in
amplitude is not captured by our perturbation analysis, be-
cause it occurs when the second harmonic, under PMC, is
accumulated to an order other than O(ε2), which violates the
order assumption in Eq. (3). At high amplitude (A0 = 1), the
PMC is switched off, and the second harmonic splits into
two parts, one corresponding to the homogeneous response
and the other denoting the forced response, which globally
result in a modulation in amplitude, as shown in Fig. 12(b).
In comparison, the result obtained with high amplitude of
excitation but without additional cubic nonlinearity is given in
Fig. 12(c). We see that PMC is again enabled and the response
features wave characteristics similar to those observed for the
case of Fig. 12(a).

In the second case, the excitation frequency is chosen such
that the second harmonic is close to the yellow dotted circle,
and therefore PMC is not available at low amplitude. As a
result, the response at the second harmonic has two compo-
nents as shown in the DFT plot of Fig. 12(d). As we increase
the amplitude to 1, the dispersion shift leads to a nonlinearly
generated PMC, and the corresponding quasimonochromatic
numerical result is plotted in Fig. 12(e). However, if we
remove the cubic nonlinearity in the system, PMC is again
unavailable, as confirmed by the resulting modulated filtered
second harmonic shown in Fig. 12(f). Similar to the previous
example, the chain behaves like a self-adaptive switch, which
can turn on and off selected modal characteristics typical of
the optical mode via the interplay between cubic nonlinearity
and SHG. Unlike the other case, however, here the mechanism
is not the selective excitation and suppression of one compo-
nent (homogeneous) of the second harmonic, but rather the
selective activation of PMC and of its amplitude-reinforcing
effects.

V. CONCLUSION

In this paper, we have studied wave propagation in a
quadratic nonlinear spring-mass chain attached to a locally
resonant cubic nonlinear foundation, using a multiple scales
analysis and full-scale simulations. We have been able to link
the interplay between quadratic and cubic nonlinearity to a
number of new nonlinear phenomena, as well as to revisit
some more classical tuning and manipulation effects from a
different perspective.

First, we have revisited the amplitude-dependent disper-
sion shift of the fundamental harmonic, which has been known
to be the most tangible effect of cubic nonlinearity. Here, we
have shown that this effect has significantly different mani-
festations according to whether initial conditions or boundary
conditions are prescribed. We have analyzed with special care
the boundary conditions case, given its natural occurrence in
practical problems of engineering interest.

We have then considered the phenomenon of second
harmonic generation, which is the prominent signature of
quadratic nonlinearity. We have shown that, similar to the
fundamental harmonic, both homogeneous and forced second
harmonics also feature amplitude-dependent dispersion shifts
due to the QC nonlinearity interplay. We have presented two
examples of tunable chains with self-adaptive switching capa-
bilities. The first example involves activating or deactivating
new modal characteristics in the nonlinear response through
the dispersion shift induced in the homogeneous second har-
monic. The second example shows the capability of switch-
ing on and off phase matching conditions to activate and
deactivate strong nonlinear signatures at high frequencies. In
conclusion, the self-interacting effect of cubic and quadratic
nonlinearities provides a conceptual platform for the design of
nonlinear phononic crystals and metamaterials with superior
tunability characteristics.
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APPENDIX: DERIVATION OF f 2
u

The complete expression for the nonzero forcing term f 2
u

at O(ε2), due to the quadratic nonlinearity, is

f 2
u = −K3

[(
u0

n − u0
n−1

)2 − (
u0

n+1 − u0
n

)2]
= −K3

[
A2

0φ
2
u (1 − e−iξ̃ )2e2iθ̃n + c.c.

+ 2A2
0|φu|2(1 − e−iξ̃ )(1 − eiξ̃ )

]
+ K3

[
A2

0φu(eiξ̃ − 1)2e2iθ̃n + c.c.

+ 2A2
0|φu|2(e−iξ̃ − 1)(eiξ̃ − 1)

]
= −K3A2

0φ
2
u [(1 − e−iξ̃ )2 − (eiξ̃ − 1)2]e2iθ̃n + c.c.

= −8iK3A2
0φ

2
u sin ξ̃ sin2 ξ̃

2
e2iθ̃n + c.c. (A1)
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