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PT -symmetric periodic structures with the modulation of the Kerr nonlinearity
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We study the PT -symmetric periodic layered structure with the modulated Kerr nonlinearity. We demonstrate
that such systems can be transformed from the full to the broken PT symmetry or in the opposite direction.
These transitions in the periodic structure with a finite length may be observed indirectly with the help of
the dependence of the transmitted wave intensity on the incident wave intensity. Furthermore, the bistability
properties depend on a gain and loss value and the choice of an input surface. The reduction of a feedback
between counterpropagating waves is the main impact of the complex PT -symmetric refractive index variation
on a bistability curve.
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I. INTRODUCTION

The concept of PT symmetry was considered for the first
time during the investigation of quantum operator properties.
It was shown that a non-Hermitian Hamiltonian may possess
a real spectra, provided the Hamiltonian is symmetric with
the successive action of the parity operator P and the time
reversal operator T . In quantum mechanics these operators are
defined as Pψ (r, t ) = ψ (−r, t ) and T ψ (r, t ) = ψ∗(r,−t ),
where ψ (r, t ) is a wave function [1]. The symmetry imposes
the necessary condition on a complex potential V (r) in the
Schrödinger equation: V (r) = V ∗(−r).

The mathematical equivalence of the Schrödinger equation
and the wave equation in paraxial approximation is the basis to
propose optical PT -symmetric systems [2,3]. In optics the di-
electric permittivity is analogous to the complex potential and
has the following PT -symmetry condition: ε(r) = ε∗(−r).
The study of such optical systems is a rather attractive prob-
lem of modern photonics, since new features to be revealed
may be used to control optical signals [4–7].

As an example of an optical PT -symmetric system one
should note a layered periodic structure, which possesses
both the refractive index change and the balanced periodic
variation of a gain and a loss along the propagation distance.
Usually, the spatial distribution of the real part of the dielectric
permittivity is approximated by an even harmonic function,
while the imaginary part, by an odd one.

In the vicinity of the PT -symmetric periodic structure
band gap the interaction of forward and backward propagat-
ing waves has several peculiarities. Plane-wave transmittance
through such active medium is nonreciprocal: the reflection
from the opposite input surfaces is accompanied by either
the backward wave absorption or its amplification [8]. When
the gain and the loss exceeds some threshold value the PT -
symmetric system manifests one more useful feature—the
possibility of lasing. For a semi-infinite periodic structure
this threshold is proportional to the ratio of the real and the
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imaginary parts of the dielectric permittivity [9]. The PT
symmetry is broken in this mode.

Nonlinearity presented in a periodic PT -symmetric sys-
tem complicates the interaction of an optical radiation with
the periodic medium. One can mention some papers where
the Kerr nonlinearity effect is considered [9–11]. In general,
the case of the unbroken PT symmetry is discussed. For
an example, the possibility of optical soliton formation and
propagation is shown theoretically in [9]. Besides that, optical
bistability can occur in the finite length active periodic struc-
tures [10,11]. The growth of switching intensity threshold
with the increase of the gain and loss is reported here. The
impact of the gain and loss saturation on bistability character-
istics is studied as well.

In discussing the effects observed in nonlinear PT -
symmetric systems, one should necessarily mention the tran-
sitions between the states of the PT symmetry under the
action of an intense light radiation. Such transitions have been
already examined for the system of optical lattices [12]. The
transitions between PT -symmetry states in layered periodic
structures have not been considered yet. This problem is
discussed in the present paper provided the Kerr nonlinearity
is varied periodically. The principal role of optical bistability
which emerges in the system, allowing one to indirectly
observe the transitions, is considered in detail.

To investigate the declared problems, we organize our
paper as follows: In Sec. II we describe the system of the
basic equations. The dispersion characteristics for different
PT -symmetric states and the lasing threshold for the finite
length active structure are shown in Sec. III. Then, in Sec. IV
bistability without and with a nonlinearity modulation is
explored, and in Sec. V we present the conclusions.

II. BASIC EQUATIONS

Let us consider the propagation of an optical radiation
in the finite length layered periodic dielectric structure with
the following dependence of the refractive index n on the
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FIG. 1. (a) The spatial distribution of the real (1) and imagi-
nary (2) parts of the refractive index in the PT -symmetric peri-
odic structures with �nR > �nI , n2 = �n2 = 0. The distributions
of the forward (dash-dotted), backward (dashed), and total optical
field (solid) along coordinate z when light wave incidents on the
right (b) and on the left (c) input surfaces. The carrier frequency
of the light waves is in the vicinity of the first band gap. The
arrows indicates the direction of the light propagation and the
coordinate z.

coordinate z:

n(z) = n0 + �nR cos

(
2π

d
z

)
± i�nI sin

(
2π

d
z

)

+ n2|E |2 + �n2 cos

(
2π

d
z

)
|E |2. (1)

The first term in this expression corresponds to the average
value of the refractive index of the medium n0 while the
following terms are small perturbations. The second one
describes the refractive index variation along the medium with
the period d [see Fig. 1(a), line 1]. The third term defines
the periodic change of a gain and a loss [see Fig. 1(a), line
2]. The sign before �nI depends on the choice of an input
surface. The incidence of a light radiation on the nominal left
surface corresponds to the positive sign (z axis is directed to
the right), and the negative sign is responsible for the nominal
right incidence (z axis is directed to the left). The fourth
and the fifth terms take into account the dependence of the
refractive index on the intensity of the incident light radiation:
n2 denotes the average value of a nonlinear index, and �n2

refers to the value of a nonlinear index modulation along the
periodic structure.

The variation of the refractive index (1) allows one to seek
the solution of the appropriate wave equation as the superpo-
sition of the forward and backward propagating waves:

E (z, t ) = A f (z, t ) exp [i(k0z − ω0t )]

+ Ab(z, t ) exp [−i(k0z + ω0t )]. (2)

Here ω0 is the carrier frequency, and k0 = π/d is the propa-
gation constant. The values A f (z, t ), Ab(z, t ) are the slowly
varying complex amplitudes of the forward and backward
waves that satisfy the following system of equations:

+ i

(
∂A f

∂z
+ 1

ν

∂A f

∂t

)
+ (κ ± g)Ab + γ (|A f |2 + 2|Ab|2)A f

+ ξ (|Ab|2 + 2|A f |2)Ab + ξA2
f A∗

b = 0, (3a)

− i
(∂Ab

∂z
− 1

ν

∂Ab

∂t

)
+ (κ ∓ g)A f + γ (|Ab|2 + 2|A f |2)Ab

+ ξ (|A f |2 + 2|Ab|2)A f + ξA2
bA∗

f = 0, (3b)

where ν = c/n0 is the phase velocity of the incident optical
wave, κ = �nRω0/c denotes the Bragg coupling parameter,
g = �nIω0/c is the coupling coefficient arising from the
imaginary part of the refractive index and is responsible for
the PT -symmetry state, and γ = n2ω0/c and ξ = �n2ω0/c
are the parameters that are responsible for self-phase modula-
tion. The upper sign before the parameter g, that is responsible
for the gain and loss, corresponds to the left incidence while
the lower one coincides with the right incidence. This system
of equations is derived as the expansion of the equations
obtained in the paper [13] for a layered periodic structure
with the modulated Kerr nonlinearity but without the PT -
symmetric term.

The first nonlinear term in the equations (3) determines
the nonlinear shift of a band gap depending on the inten-
sities of the forward and backward propagating waves. The
meaning of the second nonlinear term becomes clear if one
introduces an effective coupling parameter in the form κ =
κ + ξ (|A f ,b|2 + 2|Ab, f |2). In fact, it means the change of the
dielectric contrast and, consequently, the width of the band
gap. It is caused by the nonuniform distribution by the optical
field inside the nonlinear periodic medium. The growth of the
radiation intensity leads to an increase or decrease of the band
gap width in accordance with the nonlinearity type. The last
term in (3) is responsible for the small change of the Bragg
coupling, which depends on the phase difference between the
counterpropagating waves.

III. DISPERSION RELATIONS AND LASING THRESHOLD

To consider the effect of the modulated nonlinear index
on the dispersion characteristics, let us remember the key
findings of the linear theory of periodic structures with the
PT -symmetric variation of the refractive index.

The nature of nonreciprocity lies in the mutual arrange-
ment of the optical field maxima and the regions with gain
and loss in the structure. The spatial distribution of the optical
field formed by the superposition of the counterpropagating
waves depends on which of the input surfaces light wave
incidents. The Fig. 1(b) shows the spatial structure of the
optical radiation that occurs when the light wave falls on
the nominal right input surface of the periodic structure with
g < κ , while Fig. 1(c) presents the incidence on the left input
surface. The carrier frequency of the light waves is in the
vicinity of the first band gap. For the right input surface the
maxima of the total light field are located in regions with gain
(�nI < 0) and, hence, both transmitted and reflected waves
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are amplified. On the contrary, for the nominal left incidence
the optical field maxima are in layers with loss (�nI > 0).
Therefore, the amplitude of the reflected radiation declines,
resulting in a suppression of the interaction between the for-
ward and backward waves. This, in turn, causes the growth of
the transmitted wave amplitude. Such particular nonreciprocal
propagation of the optical radiation in the medium strongly
affects the dispersion of the periodic structure.

In a linear mode (γ = 0, ξ = 0) the solution in the form
A f , Ab ∼ A f 0, Ab0 exp (i(qz − �t )) is substituted in the sys-
tem (3). Thus the following dispersion relation is obtained [9]:

q =
√

δ2 − (κ2 − g2), (4)

where δ = �/ν denotes the detuning from the Bragg reso-
nance, and � = ω0 − ωB, ωB = πc/(n0d ) is the Bragg fre-
quency. When g < κ the band gap width reduces but the band
structure has essentially the shape of a passive periodic struc-
ture. The point when g = κ is an exception (PT -symmetry-
breaking threshold). In this case the band gap vanishes and
the dispersion curves for the forward and backward waves are
identical to the dispersion curves expected for a homogeneous
medium. Above the PT -symmetric breaking threshold (g >

κ) the area of real values of q appear; the latter corresponds to
the complex values of δ. In this mode an absolute instability
can develop and the unbounded growth of an initial distur-
bance takes place.

The finite length of a real periodic structure length should
be taken into account to determine the threshold of the
PT symmetry breaking. The self-excitation threshold in dis-
tributed feedback lasers can be found when the reflection and
transmission coefficients go to infinity. The amplification of
a light wave in such structures is uniform, and an excitation
occurs at a frequency that differs from ωB [14]. For the system
in consideration, on the contrary, a lasing takes place when
δ = 0. In this case, the reflection coefficient of the structure
with length L can be written as follows:

r = i
κ + g

κ − g
tanh2

√
κ2 − g2L. (5)

The argument of the hyperbolic function becomes imaginary
when g > κ , and the lasing condition comes down to equality
cos

√
κ2 − g2L = 0. Hence, the threshold value of the param-

eter g can be defined as

gth =
√

κ2 +
( π

2L

)2
. (6)

Here the first term characterizes losses connected to reflection,
and the second one determines losses arising from transmis-
sion. Thereby, there is a range of values κ � g < gth with
the convective unstable system. When g > gth, the system
is absolutely unstable and the lasing occurs at the Bragg
frequency.

Let us illustrate now the effect of the superimposed mod-
ulated nonlinearity on the dispersion characteristics of the
PT -symmetric periodic structure. We search the solution of
the system of equations (3) in the stationary mode (∂/∂t =
0) in the form A f (z, t ) = u f exp [i(qz − �t )], Ab(z, t ) =
ub exp [i(qz − �t )]. The parameter f = ub/u f is introduced

FIG. 2. The dispersion characteristics of the nonlinear
PT -symmetric periodic structure (n0 = 3.6, κ = 1000 m−1, g =
980 m−1, n2 = 2 × 10−17 m2/W, �n2 = 2 × 10−18 m2/W) depen-
ding on the incident radiation power: (a) P0 = 25 MW/cm2, (b) 9P0,
(c) 11P0, and (d) 20P0.

at the next step. It indicates how the total power P0 = u2
f + u2

b
is divided between the forward and backward waves. The
constants u f and ub can be written in the form u f = [P0/(1 +
f 2)]1/2 and ub = f [P0/(1 + f 2)]1/2 [15]. As a result, we
obtain the following nonlinear dispersion relations:

δ =−κ (1+ f 2)

2 f
− g(1− f 2)

2 f
− 3γ P0

2
− ξP0(6 f 2+ f 4+1)

2 f (1+ f 2)
,

(7a)

q = − (κ + ξP0)(1 − f 2)

2 f
− g(1 + f 2)

2 f
− γ P0(1 − f 2)

2(1 + f 2)
.

(7b)

In the case of the nonlinearity without modulation (γ �=
0, ξ = 0), the relations (7) degraded to the expressions de-
rived in [10]. It is noticed that such nonlinearity results in
a shift of the band gap and the formation of a loop on the
branch of the dispersion characteristics. The shift direction
and the branch where the loop forms are determined by the
Kerr nonlinearity type.

Figure 2 shows the dispersion curves for the lay-
ered structures with the modulated defocusing nonlinear-
ity (γ �= 0, ξ �= 0) for the various input intensities. We
took the parameters from the paper [11] as the basis
for our calculation. The specific values of the parameters
are as follows: n0 = 3.6, κ = 1000 m−1, g = 980 m−1, n2 =
2 × 10−17 m2/W, �n2 = 2 × 10−18 m2/W.

Figure 2(a) illustrates the absence of any distortions and
shifts for the input intensity P0 = 25 MW/cm2. The increase
of the incident power up to 9P0 results in a shift of the band
gap and reduction of its width [see Fig. 2(b)]. Then when
the input power exceeds some certain critical value, the PT
symmetry breaking takes place [see Fig. 2(c)]. It was found
from the numerical calculations that the critical power can
be approximated by linear dependence: ξP0 = κ − g. Further
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growth of the input power up to 20P0 is accompanied by an
increase of the distance between the dispersion curves [see
Fig. 2(d)].

In the structure with the modulated focusing nonlinearity
(γ > 0, ξ > 0) a high intensive optical wave, on the contrary,
allows one to put the system out of the initially broken PT
symmetry and shift the band gap to a low-frequency area.

The transitions between the PT -symmetric states are re-
lated to the Kerr nonlinearity modulation in a periodic struc-
ture. It changes the refractive index under intense optical
radiation and, consequently, the effective coupling between
the counterpropagating waves.

IV. BISTABILITY

To examine optical bistability, let us return to the finite
length PT -symmetric periodic structure. To proceed, we in-
tegrate the system (3) in the stationary mode with the help of
the Runge-Kutta method. The following boundary conditions
are set: A f (L) = A0, Ab(L) = 0, where A0 is the amplitude
of the transmitted wave. In these numerical calculations the
parameters chosen in the previous section are used as well.
The length of the structure is L ≈ 7 mm.

The basic peculiarities of bistability depend on the input
surfaces and the different ratios between parameters g and
κ . These peculiarities can be explained rather properly with
the transfer characteristics of the structure without the nonlin-
earity modulation. In this mode the coupling of the counter-
propagating waves is fully determined by the ratio between g
and κ [see Eqs. (3)]. At the first stage of the calculation the
frequency of the incident light wave coincides with the Bragg
frequency (δ = 0). It is obvious that bistability patterns in this
case are similar for the focusing and defocusing nonlinearity
types. Therefore one may limit the consideration with one
type only. Figures 3 and 4 illustrate the case of defocusing
nonlinearity (γ < 0, ξ = 0).

Figure 3 shows the dependence of the intensity of the
transmitted radiation (Itr) on the intensity of the incident ra-
diation (Iinc). When g < κ , the transfer characteristics possess
the multistability inherent for passive periodic structures. The
PT -symmetric variation of the refractive index influences the
optical bistability by the suppression of the feedback between
the counterpropagating waves. This effect is illustrated by
curves 1 and 2, which clearly show the reduction of the
hysteresis loops.

The feedback in a passive periodic structure depends on the
coupling parameter κ only. Taking into account the amplifica-
tion and absorption properties of the PT -symmetric structure,
with the help of the parameter g it leads to the decrease of
the feedback between the counterpropagating waves. As it has
been mentioned already, the total field in the PT -symmetric
structure has different distributions for the left and right
incidences. When light falls on the right input surface, the
amplification partially diminishes the coupling of the forward
wave with the backward one and, consequently, the feedback
between them. An opposite situation takes place when light
wave incidents on the left input surface. Here, the absorption
increases the coupling of the forward wave with the backward
wave. This fact induces the differences between the transfer
characteristics for these input surfaces. However, due to the

FIG. 3. The transfer characteristics when light wave incidents on
the left (a) and right (b) input surfaces of the PT -symmetric periodic
structure without nonlinearity modulation (γ < 0, ξ = 0, δ/κ =
0): (1) g/κ = 0.8, (2) 0.98, (3) 1, (4) 1.02, and (5) 0.

backward wave absorption for the left incidence, the hystere-
sis loop reduces as well.

The transfer characteristics for the periodic structure with
g = κ (the exceptional point) are linear functions (Itr = Iinc)
regardless of the choice of input surfaces. When a light wave
incidents on the right input surface, the amplification of the
forward wave fully compensates the process of energy loss.
Thus, the feedback between the counterpropagating waves is
absent. In the case of the left incidence, the backward wave
is absorbed completely and feedback also does not form.
Consequently, in both cases the transmission of the forward

FIG. 4. The dependence of the reflected wave intensity on the
incident wave intensity when light waves fall on the right (1) and left
(2) input surfaces of the PT -symmetric periodic structure without
nonlinearity modulation (γ < 0, ξ = 0, δ/κ = 0, g/κ = 1).
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FIG. 5. The transfer characteristics when light wave incidents on
the left input surfaces of the PT -symmetric periodic structure with
nonlinearity modulation (1) γ > 0, ξ > 0, δ/κ = 0, g/κ = 1.02;
(2) reference line; and (3) γ < 0, ξ < 0, δ/κ = 0, g/κ = 0.98.

wave is similar to the transmission through a homogeneous
medium. Henceforth, the line Itr = Iinc [see Figs. 3(a) and
3(b), line 3] is used as a reference to divide the areas with
g > κ and g < κ .

Another important peculiarity of the PT -symmetric state
with g/κ = 1 is a nonreciprocal reflection of the radiation
from the different inputs of the periodic medium. The right
incidence is accompanied by the reflected wave amplification
(see Fig. 4, curve 1). There is no reflected wave when light
falls on the left input surface (see Fig. 4, line 2).

The lasing does not allow consideration of the transfer
characteristics when the PT symmetry is broken. Therefore,
the bistability is analyzed below the threshold with parameter
g assigned in the range κ < g < gth. In this range, for both
input surfaces the gain of an optical radiation prevails over the
losses related to the reflection and partially over the transmis-
sion losses. As a result, the transfer characteristics are above
the reference line [see Figs. 3(a) and 3(b), curve 4] and the
feedback between waves reappears. The PT -symmetric peri-
odic structures with the focusing nonlinearity (γ > 0, ξ = 0)
have the analogous peculiarities of the transfer characteristics.

At the next step, let us consider the bistability of the
periodic structures with the modulated nonlinearity. As it
has been noticed earlier, the transitions between the PT -
symmetric states induced by an intense optical radiation are
characteristic for such structures. The adiabatic increase of a
radiation intensity allows one to observe indirectly the change
of the PT -symmetry states.

The transfer characteristics for the focusing and defocusing
nonlinearity at the left incidence are depicted in Fig. 5. Curve
1 corresponds to the focusing nonlinearity (γ > 0, ξ > 0)
and below-threshold mode (g/κ = 1.02). It lies above the
reference line provided there are small values of Itr . With the
growth of the power, this curve crosses the reference line and
further locates in the area where g < κ , which indicates the
transition between the states of the system. There is an oppo-
site situation when nonlinearity is defocusing (γ < 0, ξ < 0):
we observe the transition from the area with g < κ to the area
with g > κ which is induced by intense light radiation (see
Fig. 5, curve 3).

In the latter case the lasing at δ = 0 is not supported due
to the band gap shift [see Figs. 2(c) and 2(d)]. There is only a

FIG. 6. The transfer characteristics when light wave incidents on
the left input surfaces of the PT -symmetric periodic structure with
modulated defocusing nonlinearity (γ < 0, ξ < 0, g/κ = 0.98): (1)
δ/κ = 0.2, (2) 0.3, (3) 0.4, and (4) reference line.

convective instability. To reveal the change in the band struc-
ture, detuning from the Bragg resonance should be applied.
The transfer characteristics of Fig. 6 show the amplification
growth of the transmitted optical signal with the increase of δ.
Such behavior is expected when one approaches the absolute
instability area. Thus, it confirms the PT -symmetry breaking
illustrated by Fig. 2.

The transitions between the PT -symmetry states induced
by nonlinearity also take place when a light wave falls on the
right input surface. These transitions are faint in comparison
with the left incidence because of the strong suppression of
the feedback.

V. CONCLUSION

In the present paper we considered the propagation of an
optical light wave in the PT -symmetric structure with the ad-
ditional periodic modulation of the Kerr nonlinearity. In such
structures the change of a refractive index by an intense opti-
cal radiation causes the change of the PT -symmetry-breaking
threshold while the gain and loss value is constant. As a result,
the system can move from the full PT -symmetry state to the
broken PT -symmetry state or vice versa. The direction of the
transitions is determined by the Kerr nonlinearity type. When
the increase of an incident power is adiabatic, the dependence
of transmitted radiation intensity on the incident one allows
indirectly observes these transitions and the changes of the
band structure. The transfer characteristics were studied in
detail with the help of numerical methods. It was shown
that the bistability properties depend on the gain and loss
value and the input surface. When the PT symmetry is
unbroken, the main effect of the superimposed PT -symmetric
refractive index variation on the bistability is the reduction
of the feedback between the counterpropagating waves. The
feedback forms again if the gain and loss value exceeds the
exceptional point. Furthermore, one should note that the PT -
symmetry breaking for the periodic structure with finite length
takes place when the gain is enough to compensate radiation
losses.

The use of the PT -symmetric structure with the modulated
Kerr nonlinearity allows one to control the states of PT
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symmetry and other related effects: absorption of a reflected
signal and lasing. The results of our studies can be used for a
fast optical switching.
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