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The Duffing oscillator is a paradigm of bistable oscillatory motion in physics, engineering, and biology. Time
series of such oscillations are often observed experimentally in a nonlinear system excited by a spontaneously
fluctuating force. One is then interested in estimating effective parameter values of the stochastic Duffing model
from these observations—a task that has not yielded to simple means of analysis. To this end we derive theoretical
formulas for the statistics of the Duffing oscillator’s time series. Expanding on our analytical results, we introduce
methods of statistical inference for the parameter values of the stochastic Duffing model. By applying our method
to time series from stochastic simulations, we accurately reconstruct the underlying Duffing oscillator. This
approach is quite straightforward—similar techniques are used with linear Langevin models—and can be applied
to time series of bistable oscillations that are frequently observed in experiments.
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I. INTRODUCTION

Some of the most interesting and complex behaviors in
nature emerge from coupled systems with nonlinearities em-
bedded in an environment. Depending on the relevant time
and length scales, influences from the environment can be de-
scribed effectively as fluctuating forces driving such systems.
A fundamental example of such a system is the stochastic
Duffing oscillator, which, together with its generalizations,
has various applications in engineering and biophysics [1–8].
The Duffing equation offers the simplest nonlinear model
that describes bistable oscillatory motion [9, Sec. 7.6]. Under
certain physical conditions the equation represents a power-
series approximation for a general class of Lienard systems
[9, Sec. 7.4].

The Duffing model extends the harmonic oscillator by
adding a cubic nonlinear term:

ẍ + aẋ + bx + cx3 = f (1)

for an unknown function of time x(t ) and an external force
f (t ). The constants a, b, and c are the damping coefficient,
the linear stiffness, and the cubic Duffing parameter, respec-
tively. Because the above equation is of second order in time,
the phase of this system is specified by two degrees of freedom
(x, ẋ).

In various situations the form of the relevant driving force
is f (t ) = Aẇ(t ), in which A > 0 is a constant and ẇ(t )
is Gaussian white noise of zero mean and unit intensity.
Equation (1) describes a stable dynamical system when the
coefficients a > 0 and c > 0 are strictly positive. Unlike
the harmonic oscillator, for which c = 0, the Duffing model
admits a negative linear stiffness b.

The Duffing oscillator is bistable when b < 0. Its phase
space is symmetric about the origin (x, ẋ) = (0, 0), which
represents an unstable fixed point in absence of external force.
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Two stable equilibria occur at (ξ, 0) and (−ξ, 0), in which
x = ±ξ = ±√−b/c correspond to the minima of the Duffing
double-well potential U (x) = const +bx2/2 + cx4/4. In the
monostable regime, for which b � 0, the origin is the only
fixed point.

A problem that arises often in quantitative studies of
bistable nonlinear systems is the determination of a model’s
parameter values. In experiments one usually observes time
series of noisy oscillations. The model parameters may then
be adjusted empirically to reproduce the measurements as
closely as possible. This method is rather arbitrary and im-
precise, whereas other available approaches require additional
experimental data [2,10–13].

Although a time series of oscillations may in principle con-
tain enough information to infer the parameter values of the
Duffing oscillator, this approach has not been duly pursued.
In the present paper we derive statistical formulas for the
time series x(t ) in the regime of bistable oscillations. These
expressions rely on the Volterra expansion of functionals [14,
Chaps. 1–3], which provide the mathematical framework of
nonlinear response theory [15]. Expanding on our analytical
results, we then develop statistical methods to estimate the
parameter values of the stochastic Duffing Eq. (1) from the
time series x(t ).

II. GENERAL THEORY

The functional series of Volterra generalize the Taylor-
Maclaurin expansion of functions in calculus [14, Sec. 1.5].
In particular, we can represent the solution of Eq. (1) as a
functional of the force f (t ):

x(t | f ) = x0(t ) +
∫ t

0
dt1 g1(t − t1) f (t1)

+
∫∫ t

0
dt1dt2 g2(t − t1, t − t2) f (t1) f (t2) + · · ·

= x0(t ) + γ1(t ) + γ2(t ) + · · · . (2)
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Here g1 and g2 are the Volterra kernels of the linear and
quadratic terms in f , γ1(t ), and γ2(t ), respectively.

Provided that the series (2) converges, a truncated Volterra
expansion approximates the solutions of Eq. (1). We find the
unknown kernels gi=1,2,... by using the variational approach
[14, Sec. 3.4]: we replace the external force f (t ) by a constant
fc ≡ const and substitute Eq. (2) into (1). Then, by collecting
terms with coefficients of equal powers in fc, we obtain the
following system of equations:

0 = ẍ0 + aẋ0 + bx0 + cx3
0, (3)

f = γ̈1 + aγ̇1 + bγ1 + 3cx2
0γ1, (4)

0 = γ̈2 + aγ̇2 + bγ2 + 3c
(
x0γ

2
1 + x2

0γ2
)
,

· · · (5)

Equation (3), which defines x0(t ), is equivalent to the homo-
geneous Duffing problem (1) with f ≡ 0. The Volterra kernels
can be found in successively increasing orders from the linear
Eqs. (4), (5), etc.

The equilibrium solution x0(t ) ≡ 0 of Eq. (3) spawns a par-
ticularly convenient set of Eqs. (4) and (5) for the monostable
Duffing oscillator [1]. In the bistable case, the kernels of the
Volterra series at x0(t ) ≡ 0 diverge with t → ∞ (Appendices
A and B). In fact, this expansion may even fail to exist
[16]. Therefore, we develop the Volterra series at the stable
equilibria x0(t ) ≡ ±ξ .

As a generalization of the Taylor-Maclaurin series, the
Volterra expansion may be limited by a convergence region.
Moreover, the accuracy of the truncated expression deteri-
orates as f (t ) becomes progressively greater: the relevant
physical scales are introduced later. Due to the symmetry
of the Duffing oscillator, x0(t ) ≡ ξ and x0(t ) ≡ −ξ lead to
identical odd-order terms in Eq. (2), whereas the even-order
terms differ by a factor of −1 (Appendix B). As we show
shortly, these two series are accurate in the neighborhood of
the expansion points as long as the system’s trajectory x(t )
does not cross the special point x = 0.

If the amplitude A of the external force f (t ) is small, the
Duffing oscillator remains in one of the two potential wells
at x = ±ξ . The truncated Volterra expansions then describe
the solutions of Eq. (1) accurately around the respective
equilibrium points. The linear response of x(t ) is harmonic
in the first order of the parameter A,

γ̈1 + aγ1 − 2bγ1 = f , (6)

which can also be obtained by linearization of Eq. (1) at the
minima of the Duffing potential.

When A is sufficiently large, the Duffing oscillator under-
goes stochastic transitions between the two potential wells.
The statistical average 〈x〉 = 0 vanishes due to the symmetry
of the problem. Although truncated Volterra expansions of
x(t ) are inaccurate in this case, Eq. (2) may still be ap-
plied to describe pieces of the oscillator’s trajectory in an
ε neighborhood of each potential well |x(t ) ± ξ | � ε < ξ .
This approximation relies on a physical assumption that the
external force does not perturb the system’s energy much
while the oscillator remains in one of the wells. In this sense
the argument f of the functional Eq. (2) is small. Statistically

the selected pieces of the oscillator’s trajectory belong to two
ensembles of conditional probability distributions p(xξ ) =
p(x| |x − ξ | � ε) and p(x−ξ ) = p(x| |x + ξ | � ε) [17].

The energy barrier that separates the two wells of the
Duffing potential becomes negligible for external forces of
extreme amplitudes A. The oscillations then resemble those
of a monostable regime.

III. STATISTICAL ANALYSIS

The time-invariant probability density of a bistable Duffing
oscillator driven by white noise is generally bimodal. Two
Gaussian-like peaks correspond to the minima of the double-
well potential U (x), for which the harmonic oscillator Eq. (6)
describes the local dynamics of x(t ). We can construct the
time-invariant probability density of x by using an exponential
form:

p(x) ≈ Z−1 exp[−P(x) + O(x5)], (7)

in which Z is a normalization constant and P(x) � 0 is a
polynomial of fourth order in x [17,18]. At the two global
minima of Eq. (7) the following conditions must be satisfied:

P(±ξ ) = 0,
∂2P

∂x2
(±ξ ) = −4ab/A2.

The last equality ensures that the Laplace approximation of
p(x) at x = ±ξ [19] obeys the statistics of Eq. (6) [20]. Owing
to the symmetry of the bistable Duffing system p(x) = p(−x),
the general form of P(x) is given by

P(x) = ac(x2 − ξ 2)2

2A2
,

which leads to

p(x) ≈ Z−1 exp

[
−ac(x2 − ξ 2)2

2A2

]
∝ exp

[
−2aU (x)

A2

]
. (8)

The normalization constant Z can be found by integration of
the exponential factor in the above equation:

Z = πξ

2
exp(−z)[I−1/4(z) + I1/4(z)],

in which z = acξ 4/(4A2) and Ii(·) is the ith-order modified
Bessel function of the first kind.

In addition the autocorrelation function χ (t ) can be ap-
proximately calculated for x±ξ (t ) from Eq. (6) [21]:

χ (t ) ≈ χ1(t ) = 〈γ1(0)γ1(t )〉
〈γ 2

1 〉

= exp

(
−a |t |

2

)[
cos(� |t |) + a

2�
sin(� |t |)

]
, (9)

in which1

� =
√

−2b − a2/4. (10)

1If �2 < 0 one should use its absolute value instead and replace
the trigonometric functions of cosine and sine in Eq. (9) by the
hyperbolic ones [20,21].
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FIG. 1. Steady-state probability density p(x) for the time series
simulated with A = 1.3. The theoretical expression is given by
Eq. (8), whereas the computational results are represented by a
smooth histogram [25].

IV. DIMENSIONAL ANALYSIS

Equations (1), (8), and (9) characterize physical scales of
the Duffing oscillator. First we adopt the constants a−1 and
a/

√
c as the units of t and x, respectively. The energy scales

are then determined by the height of the barrier between the
wells of the Duffing potential ε = b2/(4c) (per unit mass). It
suffices therefore to consider b = −2

√
εc as a typical value

for a unit energy barrier ε. Note that the parameter A is
measured in units of a5/2/

√
c, because the units of white noise

are
√

a.
The Boltzmann-like factor exp[−2aU (x)/A2] in Eq. (8)

relates the level of energy fluctuations A2/(2a) in the system
to the Duffing potential U (x). This helps us identify the ampli-
tudes of the external force A �

√
2aε, for which the truncated

Volterra series might be useful to describe the trajectories
x±ξ (t ).

Because Eq. (9) was derived from the linear-response
approximation, it is independent of A. Although this formula
is very convenient, its accuracy is limited to small time and
energy scales, as shown below. The autocorrelation function
Eq. (9) decays exponentially with a relaxation time τ ≈ a−1

[22]. In general, we may expect the formula (9) to hold for
0 � t � τ .

V. PARAMETRIC INFERENCE

To test our theoretical results we simulated Eq. (1) (Ap-
pendix D) by using an operator-splitting algorithm [23,24,
Appendix C]. The results are reported in the system of units
reduced by the time, length, and energy constants a−1, a/

√
c,

and ε, respectively. As justified earlier, the constant b =
−2 is fixed. Our simulations differ only by values of the
parameter A.

Histograms of the time series x(t ) agree with Eq. (8) for
all values of the parameter A that we explored (Fig. 1). When
a simulation does not last long enough to observe sufficiently
many transitions over the energy barrier ε, the sample of x
may be biased toward the Duffing potential well in which
the oscillator spends more time. The symmetry p(−x) = p(x)

FIG. 2. Time autocorrelation function χ (t ) for time series x(t )
driven by a weak external force (A = 0.1) and for the time series
xε (t ) (A = 1.1). Error bars, which are comparable in size to the plot
markers, are omitted. The theoretical curve corresponds to Eq. (9).
The inset magnifies the exponential decay for t � a−1.

may therefore appear imperfect in histograms of x. Another
issue may emerge if the time resolution of the sample x(t )
is not sufficient to observe the trajectory of fast transitions
between the two wells (−ξ < x < ξ ). In this case the his-
togram’s peaks overestimate the probability density at x ≈ ±ξ

and underestimate it at x ≈ 0 with respect to Eq. (8).
By using the maximum-likelihood fitting of Eq. (8) to the

time series, we can determine the values of the parameters ξ

and σ = A/
√

ac. The density p(x) estimated in this way is
graphically indistinguishable from the theoretical prediction
plotted in Fig. 1. Because Eq. (8) is not sensitive to the sample
biases that are discussed above, the curve fitting of p(x) yields
very reliable results.

The trajectories x±ξ (t ) were selected from the time series
x(t ) with ε = 3σ/(2ξ ).2 Profiting from the symmetry of
Eq. (1), we combined these two samples: {xε(t )} = {xξ (t )} ∪
{|x−ξ (t )|}. As expected, the local time autocorrelation func-
tion of xε(t ) agrees well with Eq. (9) in the interval 0 �
t � a−1 (Fig. 2). When the external force is too weak to
drive transitions between the potential wells of the Duffing
oscillator, the same theoretical expression matches perfectly
the autocorrelation function of x(t ).

The local time autocorrelation function of xε(t ) has an
undulatory shape. Note that Eq. (9) predicts quite accurately
the frequency of these undulations even when t � a−1; the
discrepancy is due to their amplitude. This observation can be
explained by considering higher-order contributions γi=2,3,...

(Appendix C).
Good estimates of the frequency � can be obtained by

fitting Eq. (9) to the time-series autocorrelations at small t �
a−1. The parameter a that controls the decay of the amplitude
of χ (t ), however, is very sensitive to small errors introduced
by the approximate expression χ1(t ). Because the second-
order correction from Eq. (2) already leads to an unwieldy

2We set ε to three standard deviations of the Gaussian approxima-
tion for Eq. (8) at the most likely values x = ±ξ .
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TABLE I. Statistical inference of parameter values for the Duff-
ing oscillator Eq. (1), which was simulated with fixed values a = 1,

b = −2, and c = 1; A varied in the range [0.6,1.3]. The estimated
parameter values are denoted by â, b̂, ĉ, and Â, respectively. The
uncertainties are given by one standard deviation calculated as de-
scribed in Appendix C.

A â b̂ ĉ Â

0.6 1.06 ± 0.13 −2.02 ± 0.59 1.01 ± 0.30 0.62 ± 0.16
0.7 1.13 ± 0.12 −1.99 ± 0.59 1.00 ± 0.30 0.75 ± 0.17
0.8 1.17 ± 0.12 −2.10 ± 0.56 1.06 ± 0.28 0.91 ± 0.16
0.9 1.13 ± 0.15 −2.06 ± 0.59 1.04 ± 0.30 0.99 ± 0.17
1.0 1.13 ± 0.17 −2.19 ± 0.53 1.10 ± 0.27 1.12 ± 0.16
1.1 1.15 ± 0.19 −2.14 ± 0.55 1.07 ± 0.28 1.22 ± 0.17
1.2 1.14 ± 0.27 −2.28 ± 0.53 1.14 ± 0.27 1.37 ± 0.19
1.3 1.07 ± 0.42 −2.33 ± 0.50 1.16 ± 0.25 1.44 ± 0.25

expression for χ (t ), we propose instead a phenomenologi-
cal equation motivated by the general form of higher-order
Volterra kernels (Appendix C):

χ (t ) ≈ χ̂ (t ) = (1 − α) exp(−a |t |) + exp(−a |t |/2)

× [α cos(� |t |) + β sin(� |t |)], (11)

in which α and β are unknown parameters, whereas the
explicit expression can be substituted for � =

√
−2b − a2/4.

Curve fitting of Eq. (11) on the interval 0 � t � a−1 with
four unknown parameters—a, b, α, and β—yields quite ac-
curate values for a and b. Technical details of this procedure
are available in Appendix C. The numerical values of c and A
can be found from the estimates of a, b, ξ , and σ (Table I).

As shown above, the values of all four parameters of
Eq. (1)—a, b, c, and A—can be inferred from the bistable
time series x(t ). Our approach is limited to moderate noise
intensities A ∼ √

aε, for which the first term of the Volterra
expansion provides a tenable approximation (Table I). In a
sense this method extends the statistical techniques that were
developed for the harmonic oscillator driven by white noise
[21,24].

A precise quantitative description of stochastic nonlinear
systems is necessary to advance our understanding of complex
behaviors observed in physics, engineering, and biology. The
Volterra expansion offers important insights into the statisti-
cal theory of such systems. In a future communication we
will present analysis of another classical model—the Van
der Pol oscillator. Unlike approaches that explore ensemble
and phase-space properties of a dynamical system, e.g., the
Fokker-Planck equation, the perspective of the Volterra series
is closer to the original Langevin picture, which regards
realizations of trajectories and their local dynamics.

The convergence issues of Eq. (2) may also stimulate in-
terest in the Wiener theory of orthogonal functional series [26,
Chap. 9]. This development might even lead to more advanced
theoretical results for the time autocorrelation function of a
nonlinear oscillator. As we demonstrated above, the analysis
of autocorrelations may provide a reliable estimation of a
model’s parameter values from experimental measurements.
The Wiener approach can also be related to the Fokker-Planck
and path-integral formalism, e.g., [27].
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APPENDIX A: MONOSTABLE DUFFING OSCILLATOR

In this section we review the Volterra-series representation
of solutions for the Duffing Eq. (1) in the monostable regime
of oscillations (b � 0) [1]. Because we study a stationary
problem endowed with a time-invariant probability density,
Eq. (2) can be recast as

x(t | f ) = x0 +
∫ ∞

−∞
dt1 g1(t − t1) f (t1)

+
∫∫ ∞

−∞
dt1dt2 g2(t − t1, t − t2) f (t1) f (t2) + · · ·

= x0(t ) + γ1(t ) + γ2(t ) + · · · , (A1)

in which the integration limits are extended to infinities by
invoking the causality of the kernels gi(. . . , t j, . . .) = 0 when
t j � 0, and by assuming the initial condition x(−∞) = x0 ≡
const. We will omit indication of the infinite integration limits
in the following.

The trivial equilibrium of Eq. (3) is the most convenient
expansion point x0 ≡ 0 for Eq. (A1). Equations (4), (5), etc.
then become

γ̈1 + aγ̇1 + bγ1 = f , (A2)

γ̈2 + aγ̇2 + bγ2 = 0, (A3)

γ̈3 + aγ̇3 + bγ3 = −cγ 3
1 ,

· · · (A4)

The above equations describe essentially the same harmonic
oscillator

γ̈i + aγ̇i + bγi = fi (A5)

subject to different forcing terms fi = f , 0,−cγ 3
1 . . . The left-

hand side of Eq. (A5) corresponds to the linearized Duffing
system that can be obtained by neglecting the nonlinear cubic
term in Eq. (1).

By definition the Green function of Eq. (A5) is the linear
Volterra kernel g1:

γ1(t ) =
∫

ds g1(t − s) f (s), (A6)

g1(t ) = 2H (t )√
4b − a2

exp

(
−at

2

)
sin

(√
4b − a2t

2

)
, (A7)

in which H (t ) is the Heaviside step function. We immediately
see that γ2(t ) ≡ 0, which implies that the quadratic Volterra
kernel vanishes identically. The cubic term γ3(t ) is given by

γ3(t ) = −c
∫

ds g1(t − s)γ1(s)3.

Owing to our choice of x0 = 0, all the Volterra kernels of
even order (gi, i = 2, 4, . . .) vanish. This result reflects the
symmetry of the Duffing Eq. (1). The even-order kernels give
rise to the statistical moments 〈x j〉, j = 2, 4, . . . , which must
also vanish in the symmetric system with a time-invariant
probability density p(x) = p(−x). The monostable Duffing
oscillator may therefore be described quite accurately by
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linear-response theory. Indeed, the error of such a represen-
tation is of the order f 3:

x(t ) = γ1(t ) + O( f 3). (A8)

The stationary solutions of Eq. (A5) are described by a
bounded Green function [

∫
dt |g1(t )| < ∞] when a > 0 and

b > 0. Because the higher-order kernels have the same prop-
erty, the series Eq. (A1) converge with x0 = 0 [16]. One may
then estimate statistical properties of the stationary solutions
from Eq. (A8).

APPENDIX B: BISTABLE DUFFING OSCILLATOR

The Volterra kernels found from Eqs. (A2), (A3), etc.
diverge for t → ∞ when a < 0 or b < 0. The latter case
corresponds to the bistable regime of the Duffing oscillator.
Equation (A5) then describes an unstable system and the
statistical properties of the stationary solution x(t ) can no
longer be calculated from Eq. (A8). Because the ensuing
Volterra kernels are unbounded, even the existence of the
expansion Eq. (A1) cannot be ascertained.

Equation (A2) fails when b < 0, because it represents a lin-
earization of Eq. (1) around an unstable equilibrium point—
the local maximum of the Duffing potential at x = 0. One may
however construct a convergent series Eq. (A1) at the minima
of the potential wells x0 = ±ξ . Instead of Eqs. (A2)–(A4) we
then obtain [cf. Eq. (6)]

γ̈1 + aγ1 − 2bγ1 = f , (B1)

γ̈2 + aγ̇2 − 2bγ2 = ∓3cξγ 2
1 , (B2)

γ̈3 + aγ̇3 − 2bγ3 = −c
(
γ 3

1 ± 6ξγ1γ2
)
. (B3)

The linear Volterra kernel is given by the Green function of
Eq. (B1) Sec. A:

γ1(t ) =
∫

ds g1(t − s) f (s), (B4)

g1(t ) =H (t )

�
exp

(
−at

2

)
sin (�t ), (B5)

in which � is given by Eq. (10). From Eqs. (B2) and (B3) we
also find the quadratic and cubic response terms in the form

γ2(t ) = ∓ 3cξ
∫

ds g1(t − s)γ 2
1 = ∓3cξ

∫
ds g1(t − s)

×
∫∫

ds1 ds2 g1(s − s1)g1(s − s2) f (s1) f (s2),

(B6)

γ3(t ) = − c
∫

ds g1(t − s)[γ1(s)3 ± 6ξγ1(s)γ2(s)]

=
∫

ds g1(t − s)
∫∫∫

ds1 ds2 ds3 g1(s − s1)

× [g1(s − s2)g1(s − s3) ± 6ξg2(s − s2, s − s3)]

× f (s1) f (s2) f (s3). (B7)

To extract the quadratic and cubic kernels gi=2,3 from the
above equations we rely on a simplified growing-exponential

approach [14, Sec. 3.5]. We use a substitution rule for the
product of the forcing terms in the form

f (s1) f (s2) · · · → exp(−iω1s1 − iω2s2 − · · · ). (B8)

The results that are obtained for arbitrary ω1 and ω2 hold
also in the special case ω1 = ω2. Like the sum of growing
exponentials [14, Sec. 3.5], our approach also renders the
symmetric form of the Volterra kernels [gi(. . . s j, sk . . .) =
gi(. . . sk, s j . . .)]. In general, we have

γi(t ) =
∫

· · ·
∫

ds1 · · · dsi gi(t − s1, . . . , t − si )

× exp(−iω1s1 · · · − iωisi )

= Gi(ω1, . . . , ωi ) exp[it (ω1 + · · · + ωi )], (B9)

in which Gi is the Fourier transform of the kernel gi.
By substituting Eq. (B8) into (B6) we obtain

γ2(t ) = ∓3cξ G1(ω1)G1(ω2)G1(ω1 + ω2)

× exp[it (ω1 + ω2)], (B10)

and by comparing the above equation with Eq. (B9) we
identify the Fourier image of the quadratic kernel

G2(ω1, ω2) = ∓3cξ G1(ω1)G1(ω2)G1(ω1 + ω2). (B11)

We likewise find the Fourier transform of the cubic kernel

G3(ω1, ω2, ω3)

= −cG1(ω1 + ω2 + ω3)G1(ω1)G1(ω2)G1(ω3)

×[1 − 18bG1(ω2 + ω3)]. (B12)

Because the expressions for g2 and g3 are unwieldy, further
calculations are more convenient in Fourier space.

The terms of even orders do not vanish in the Volterra
series about x0 = ±ξ , because the potential wells surrounding
these points are asymmetric. The global symmetry of the
Duffing potential U (x) = U (−x) ensures, however, that the
even-order Volterra kernels for x0 = ±ξ have opposite signs,
whereas the odd-order kernels coincide [cf. Eqs. (B11) and
(B12)].

APPENDIX C: LOCAL AUTOCORRELATIONS
OF THE BISTABLE DUFFING OSCILLATOR

Equation (9), which approximates the autocorrelation func-
tion χ (t ), has been derived from the Volterra expansion
truncated at the linear term γ1(t ) given by Eq. (B4). To
find a second-order correction, one may include a quadratic
contribution in x(t ) ≈ γ1(t ) + γ2(t ):

χ (t ) ≈ χ2(t ) = θ1(t ) + θ2(t )

θ1(0) + θ2(0)
, (C1)

in which

θ1(t ) = − A2

4ab
χ1(t ), (C2)

θ2(t ) =〈γ2(0)γ2(t )〉 − 〈γ2〉2. (C3)
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FIG. 3. Local time autocorrelation function χ (t ) of the time
series xε (t ): comparison of theoretical predictions χ1(t ) and χ2(t )
[Eqs. (9) and (C1)] with the simulation results for A = 1.1. The
corrections that are introduced in χ2(t ) by including the second-order
response term in Eq. (A1) provide a subtle improvement over χ1(t ).

From [26, Eq. (11.3-14)] one can find the Fourier transform
of θ2

�2(ω) = A4

π

∫
dλ |G2(λ, ω − λ)|2

= −9bcA4

π
|G1(ω)|2

∫
dλ |G1(ω)|2 |G1(ω − λ)|2.

(C4)

Note that

θ1(t ) =
∫

dω

2πA2
|G1(ω)|2 exp(iωt ).

By virtue of the convolution theorem, the inverse Fourier
transform of Eq. (C4) then yields

θ2(t ) ∝
∫

ds χ1(t − s)χ1(s)2

= const0 exp(−a |t |) + exp(−a |t |/2) [const1 sin(� |t |)
+ const2 cos(� |t |)] + exp(−a |t |/2) [const3 sin(2� |t |)
+ const4 cos(2� |t |)], (C5)

in which the unwieldy constants consti=0,1,2,3,4 are not spelled
out for clarity. These coefficients, which can be readily found
with the help of a symbolic computational software [25],
depend in a complicated manner on all four parameters of the
Duffing oscillator.

The complete expression of χ2(t ) reveals higher-order
harmonics j�, j = 2, 3, . . . in the autocorrelation function.
Additional oscillations at these frequencies are commensurate
with the undulations of χ1(t ). For this reason, as noted in
the main text, Eq. (11) predicts correctly the undulatory
component of χ (t ).

Due to the complexity of the explicit expression for χ2(t ),
using Eq. (C1) in calculations and curve fitting is problematic.
The improvement that is achieved over Eq. (9) is also modest
(Fig. 3). Higher-order expressions that take into account more
terms from Eq. (A1) might be formidably long. In curve fitting

FIG. 4. Curve fitting of χ̂ (t ) to the time autocorrelation function
of xε (t ) observed in simulations with A = 1.1. The expression opti-
mized in the interval 0 � t � a−1 extrapolates well up to t � 2a−1.

we therefore use a phenomenological Eq. (11) as justified
below.

Contemplating the development of the Volterra terms in
Eqs. (B1)–(B12), one may expect that χ (t ) ≈ χn(t ), calcu-
lated from Eq. (A1) with n response terms, contains only con-
volution and power products of χ1(t ) [cf. Eq. (C5)]. The re-
sulting expression would be a composition of time-dependent
factors in the form ∝exp(iat/2), ∝sin( j�t ), and ∝cos(k�t )
with integers i � 2, j � 1, and k � 1. Whereas we retain
the fundamental harmonic terms ∝sin(�t ) and ∝cos(�t ), as
well as the slowly decaying exponential ∝exp(at ) in χ2(t ),
we introduce unknown coefficients α and β to account for
higher-order corrections. By imposing an additional constraint
χ (0) = 1, we arrive at Eq. (11).

Finally, we discuss briefly the procedure of curve fitting
for Eq. (11) (Fig. 4). By using the criterion of Lagarkov and
Sergeev [21,28], we select from the sample autocorrelation
data the observations in the interval 0 � t � t0, in which t0
is the instant when the autocorrelation function reaches the
value of zero for the first time [χ (t0) = 0]. This choice of t0
corresponds approximately to the relaxation time t0 ≈ τ , for
which Eq. (11) should give accurate results. As an initial guess
we recommend setting α = 0 and β = 0. Otherwise, the least-
square fitting of Eq. (11), which is a flexible expression with
four unknown parameters, may return suboptimal results.

A simple least-square fitting of the phenomenological
Eq. (11) underestimates standard errors of the parameter val-
ues. We report more realistic estimates, which are recalculated
by using the optimized parameter values and the uncertainty
of the time autocorrelation data [29]:

�χ ≈ 1 − χ2

√
n − 2

. (C6)

To use the above uncertainty in the weighted least-squares
fitting, we discarded the point χ (0), which equals 1 by defini-
tion. The parameter error bounds were then recalculated from
the Fisher information matrix.
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APPENDIX D: SIMULATION ALGORITHM

For computational experiments we convert Eq. (1) into an
equivalent two-dimensional dynamical system X = (x, y) =
(x, ẋ):

ẋ = y,

ẏ = −ay − bx − cx3 + f (t ). (D1)

We adopt a second-order operator-splitting approach for
stochastic systems [24, Appendix C] by decomposing the
time-evolution operator T as

Ẋ = T X = (Ty,x + Tx,y + Ty,y)X , (D2)

in which

Ty,x = y∂x, Ty,y = −ay∂y,

Tx,y = ( f − bx − cx3)∂y.

The formal solution of Eq. (D2) for a time step �t is

X (t + �t ) = exp(T �t )X (t ),

in which the time-evolution operator can be approximated by

exp[T �t + O(�t2)]

= exp

(Ty,x�t

2

)
exp

(Ty,y�t

2

)

× exp(Tx,y�t ) exp

(Ty,y�t

2

)
exp

(Ty,x�t

2

)
. (D3)

The action of an individual operator of the form exp(L�t ) can
be inferred by solving the simplified dynamics

Ẋ (t ) = LX (t ) ⇒ X (t + �t ) = exp(L�t )X (t ). (D4)

The composite operator (D3) then leads to the following
algorithm for the numerical integration of Eq. (D2):

x(t + �t/2) = x(t ) + y(t )�t/2, (D5)

y(t + �t )

= y(t ) exp(−a�t )

− exp(−a�t/2)[b + cx(t + �t/2)2]x(t + �t/2)�t

+ exp(−a�t/2)
∫ t+�t

t
dt f (t ), (D6)

x(t + �t ) = x(t + �t/2) + y(t + �t )�t/2. (D7)

The simulations reported in Sec. V lasted 5 × 105 time
steps of a size �t = 0.01 (in the reduced units) for each value
of the parameter A. Statistics were calculated from single
trajectories sampled at time intervals 0.05, which deliver 105

observations.
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