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Synchronization of chaotic systems and their machine-learning models
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Recent advances have demonstrated the effectiveness of a machine-learning approach known as “reservoir
computing” for model-free prediction of chaotic systems. We find that a well-trained reservoir computer can
synchronize with its learned chaotic systems by linking them with a common signal. A necessary condition for
achieving this synchronization is the negative values of the sub-Lyapunov exponents. Remarkably, we show that
by sending just a scalar signal, one can achieve synchronism in trained reservoir computers and a cascading
synchronization among chaotic systems and their fitted reservoir computers. Moreover, we demonstrate that this
synchronization is maintained even in the presence of a parameter mismatch. Our findings possibly provide a
path for accurate production of all expected signals in unknown chaotic systems using just one observational
measure.
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Synchronization of chaotic systems is a fundamental prob-
lem of nonlinear science which has attracted continuous inter-
est over several decades [1–4]. This activity can be traced back
to Pecora and Carroll’s seminal work in which they found
that synchronization can be realized by linking two chaotic
systems with a common signal [1]. Subsequent works have de-
scribed several types of synchronization features ranging from
complete synchronization [5], phase synchronization [6], and
lag synchronization [7] to generalized synchronization [8].
Meanwhile, intensive studies have demonstrated the potential
applications of chaos synchronization in communication [9]
and biological systems [3].

In general, previous studies of chaos synchronization rely
on the fact that the equations of chaotic systems are known
beforehand. This restriction is in practice impossible for deal-
ing with real chaotic systems for which only one or some ob-
servational signals are usually available [10]. Recently, great
progress has been achieved in model-free prediction of chaotic
systems from data using a reservoir computing approach
[11–14]. A growing number of studies have demonstrated
that this effective technique can predict well low-dimensional
chaotic systems [11], extract Lyapunov exponents from real
data [12,13], and even capture the evolutionary rule of large
spatiotemporally chaotic systems [14]. Here we take advan-
tage of this machine-learning approach for modeling chaotic
systems whose equations of motion are unknown. We find
that by transmitting just one scalar signal, the well-trained
reservoir computer will synchronize with the learned chaotic
system. Meanwhile, we show that, following the same man-
ner, synchronization of trained reservoir computers and a
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cascading synchronization can also be achieved. Results on
two benchmark chaotic systems (i.e., the Rössler and Lorenz
systems) confirm our findings, which suggests a new way
of accurately constructing all signals in real chaotic systems
using limited observational measures.

We start by introducing the reservoir computering ap-
proach for modeling chaotic systems. The basic architecture
of a reservoir computer comprises an input layer, a reservoir
network having N dynamical reservoir nodes, and a linear
output layer. Here we follow Jaeger’s design [11] and define
the update equation of the state vector r of the reservoir
network as follows:

r(t + 1) = (1 − α)r(t ) + αtanh

(
Ar(t) + Win

[
bin

u(t )

])
,

(1)

where A is the adjacency matrix of the reservoir network and
u is the input vector fed into the reservoir network via the
input weighted matrix Win. The parameter α is a “leakage”
rate lying in the range (0,1) and bin = 1. In addition to
the input vector u, the reservoir dynamics mainly depend
on the matrices Win and A. Empirically, the elements in
matrix Win are drawn from a uniform distribution [−σ, σ ],
while A is built from a sparse random Erdös-Rényi matrix
whose nonzero entries are drawn randomly from a uniform
distribution [−1, 1]. Consequently, the output vector y of the
reservoir system is taken to be a linear function of the reservoir
state and the input vector such that

y(t ) = Wout

⎡
⎣bout

u(t )
r(t )

⎤
⎦, (2)

where Wout is the solely adjusted matrix in the training
stage and bout = 1. During the training process, the reservoir
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computer first evolves based on Eq. (1) for τ time steps to
eliminate transient states of the reservoir network. Suppose
that {s(t )|t = −τ,−τ + 1, . . . , T } is the training data for
which we use s(t ) to predict next forward s(t + 1). Previous
studies have shown that the output weights Wout can be
analytically given by [15,16]

Wout = YX�(XX� + λI)−1. (3)

Here I is an identity matrix, λ is the ridge regresion parameter
for avoiding overfitting, and X (respectively, Y) is the matrix
whose kth column is [bout; s(k); r(k)] [respectively, s(k + 1)].
After training, the reservoir system can run autonomously
based on Eqs. (1) and (2), where y(t ) is adopted to approx-
imate u(t ).

We now address the reservoir computing approach for
modeling a chaotic Rössler system,

dx/dt = −y − z, (4)

dy/dt = x + ay, (5)

dz/dt = b + z(x − c), (6)

where a = 0.2, b = 0.2, and c = 9.0. We calculate a numeri-
cal solution for this system via the fourth-order Runge-Kutta
technique and record 7200 time points with time step �t =
0.1 after discarding the leading 4000 observations (to elimi-
nate transient states). We use the first 2600 points with input
vector u = (x, y, z) for training the reservoir computer with
α = 0.5, N = 500, τ = 100, σ = 1, and λ = 1 × 10−8. The

FIG. 1. (a) Prediction output of the trained reservoir computer overlaid with actual data from the Rössler system. (b) Complete
synchronization of the Rössler system and the trained reservoir computer; the solid line (dashed line) represents x (x′) in function of time.
(c) Complete synchronization of the Rössler system and the trained reservoir computer in terms of the z variable. (d) The differences �x and
�z between the response variables of the trained reservoir computer and their drive counterparts for the Rössler system.
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trained reservoir system can infer the trajectory of the chaotic
Rössler system accurately, where we show the x variable as
an example, see Fig. 1(a). Then we use the y component
of the Rössler system as the driving signal for which the
input vector fed into the training reservoir computer becomes
u = (x′, y, z′), where the initial values of x′

0 and z′
0 are chosen

randomly. Based on Eqs. (1) and (2), we can generate the
subsequent values x′ and z′ autonomously for which the output
vector y(t ) = (x′

t , y′
t , z′

t ) of the reservoir computer is used as
the next input vector u(t + 1) = (x′

t , yt , z′
t ) with y′

t replacing
by the driving signal yt . Interestingly, we find that a response
system given by the trained reservoir system will synchronize
with a driving system given by the Rössler system. Specifi-
cally, we show the rapid convergence of the response to the
drive for x and z components in Figs. 1(b) and 1(c). This is
further supported by observing the differences �x = |x′ − x|
and �z = |z′ − z|, which converge toward zeros, as described
in Fig. 1(d). Note that x′ and z′ are generated from the response
system (i.e., the trained reservoir system). Results show that
synchronization of the trained reservoir computer and the
chaotic system can be achieved by sending a common signal.

We further investigate the above phenomena in the Lorenz
system, which is given by

dx/dt = σ (y − z), (7)

dy/dt = −xz + rx − y, (8)

dz/dt = xy − bz. (9)

We choose the parameters (σ, b, r) = (10, 8/3, 60) to be in
the chaotic regime and generate 1 × 104 data points via the
fourth-order Runge-Kutta technique with step size �t = 0.02.
We use the first 2600 points with input vector u = (x, y, z) for
training the reservoir computer with α = 0.2, N = 500, τ =
100, and λ = 1 × 10−8. Following the same procedure as
before, we build a drive-response configuration using the x
component as the driving signal. Clearly, it is shown that
the variables of the response given by the trained reservoir
computer rapidly approach that of the drive system, as de-
scribed in Figs. 2(a) and 2(b). Moreover, we can see that
although the response reservoir computer starts far from the

FIG. 2. Synchronization of the Lorenz system and the trained reservoir computer with the x-driven configuration: (a) Solid line (dashed
line) represents y (y′) in function of time. (b) Solid line (dashed line) represents z (z′) in function of time. Trajectories of the x-driven (y, z)
subsystems from (c) the drive and (d) the response. The initial transient states are shown by the blue line (c) and the green line (d), respectively.
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TABLE I. A listing of the various subsystems and driving com-
ponents of the Lorenz and Rössler systems and their sub-Lyapunov
exponents reported in Refs. [1,4].

System Drive Response Sub-Lyapunov exponents

Rössler x (y, z) (−8.89,0.20)
a = 0.2, b = 0.2 y (x, z) (−8.81, −0.056)
c = 9.0 z (x, y) (0.10,0.10)
Lorenz x (y, z) (−1.86, −1.81)
ρ = 10, b = 8/3 y (x, z) (−9.99, −2.67)
r = 60 z (x, y) (−11.0,0.01)

drive values it soon spirals into the same type of the Lorenz
(y, z) subsystem attractor [see Figs. 2(c) and 2(d)]. These
findings further confirm that by transmitting a common signal,

a trained reservoir computer can synchronize with its learned
chaotic system. Note that in this case, synchronization will
occur for either x or y driving, but z driving did not work.
This can be referred to the sub-Lyapunov exponents as shown
in Table I, where there is one positive conditional Lyapunov
exponent for z driving. So this subsystem (x, y) is unstable
which results in desynchrony [1,3]. It is a similar situation for
the Rössler system, but only the y-driven configuration will
synchronize, as shown in Fig. 1.

Moreover, we show that it is possible to maintain excellent
synchronization between chaotic systems and their trained
reservoir computers even when there is a parameter mis-
match between them. Here, by parameter mismatch, we mean
that the original dynamical system for training the reservoir
computer is not the same dynamical system as the driving
system. To address this, we take the previous Lorenz sys-
tem in the presence of significant parameter mismatch as an

FIG. 3. The (x, z) subsystem attractors of (a) the original dynamical system for training the reservoir computer and (b) the drive system.
(c) Complete synchronization of the Lorenz system and the trained reservoir computer in terms of the x variable in the case of the parameter
mismatch. (d) The (x′, z′) subsystem attractor of the response system.
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FIG. 4. (a) Schematic illustrations of our strategy to synchronize trained reservoir computers to the y′ drive. Synchronization of the trained
reservoir computers; the solid line (dashed line) represents x′ (x′′) in function of time for (b) the Rössler system and (c) the Lorenz system.

example. Specifically, we choose the parameters (σ, b, r) =
(10, 8/3, 60) for training the reservoir computer, while the
parameters (σ, b, r) = (10, 8/3, 50) are used for the drive
system. In Figs. 3(a) and 3(b) we show the (x, z) subsystem
attractors of the training and drive systems at different param-
eter settings. Interestingly, we find that by sending the y signal
for driving, the x variable of the trained reservoir computer
quickly approaches that of the drive system, see Fig. 3(c).
Results show that synchronization between chaotic systems
and their learned reservoir computers can be achieved even
under a condition of substantially mismatched parameters.
This is further supported by observing the response (x′, z′)
subsystem, which successfully reproduces the drive subsys-
tem with little perceivable distortion [see Fig. 3(d)].

Besides synchronization of a trained reservoir computer
and its learned chaotic system, we further illustrate that these
trained reservoir computers can also be synchronized. This
is achieved by sharing a common variable of the trained
reservoir computer, as described in Fig. 4(a). In particular,
after training, the updated equation of the reservoir computer
can be described as

u(t + 1) = g[u(t )], (10)

where u = (x′, y′, z′) is the input vector. Now create another
reservoir computer identical to this one and substitute the
variable y′ for the corresponding y′′ in the function g with this
new reservoir system, giving

u′(t + 1) = g[u′(t )], (11)

where u′ = (x′′, y′, z′′) is the input vector for which the initial
values x′′

0 and z′′
0 are chosen randomly. The component y′

is used as the driving signal linking them. At each time
step, the output vector (x′′

t , y′′
t , z′′

t ) is used as the input vector
(x′′

t+1, y′
t+1, z′′

t+1) with y′′
t+1 replaced by the driving signal y′

t+1.
We test this idea on the previous selected chaotic systems
(i.e., the Rössler system and the Lorenz system). Results show
that although from different initial conditions, x′′ quickly
converges to x′ as time progresses [Figs. 4(b) and 4(c)].
These findings reveal that synchronization of trained reservoir
computers can be realized through linking with a common
signal.

Finally, a cascaded synchronization is an important branch
in the area of synchronization in chaotic systems [4,17]. We
show that a cascading synchronization among chaotic systems
and their trained reservoir computers can also be achieved.
Here we test the cascaded scheme using the previous selected
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FIG. 5. (a) Convergence of the cascaded reservoir computer’s x′′ variable to the drive Lorenz systems’s x variable. (b) Both the z′′ of the
second response and the z′ of the first rsponse synchronize with the z variable of the Lorenz system.

Lorenz system which has two stable subsystems [17]. Specif-
ically, we use the x component of the Lorenz system as a
common signal to link the Lorenz system and first trained
reservoir computer (named response 1), while from response
1 to the second reservoir computer (named response 2), y′
is the driving signal as described by Eqs. (10) and (11). It
is shown that the x′′ variable of the second response rapidly
approaches the x variable of the original Lorenz system as
time progresses [Fig. 5(a)]. This finding implies that we can
reproduce the incoming drive signal (i.e., x variable) since the
second reservoir computer in the cascade has the original drive
component as part of its response. Moreover, Fig. 5(b) shows
that the three signals of the z component generated from the
driving and response systems match exactly in the course of
time, as expected.

In summary, we adopt a machine-learning technique using
the reservoir computing approach for modeling chaotic sys-
tems. Besides the effectiveness of model-free prediction [14],
we find that the trained reservoir computers can synchronize
with their learned chaotic systems by sharing a common
signal. We show that this synchronization is robust even in the
case of a large parameter mismatch. Remarkably, we find that
synchronization of the trained reservoir computers can also be
achieved by sharing one common signal. Moreover, we further
extend our work to cascading synchronization among chaotic
systems and their fitted reservoir computers. Our findings
show that by taking advantage of the reservoir computing ap-
proach, synchronization of chaotic systems whose equations
of motion are unknown can be achieved. Our work opens
interesting opportunities for accurately producing all signals

of real dynamical systems for which limited data information
is available.

We note that there is a long tradition of inferring a
desired variable from known measurements in the control
theory literature, where it is known as the observer problem
[18–20]. However, most previous studies rely on the fact
that they have a sufficiently accurate mathematical model of
the chaotic system of interest. Here we investigate nonlinear
dynamical systems for which mathematical models of them
are unavailable by taking advantage of the reservoir computer
technique for modeling. On this point, the motivation for
our technique is similar to that of the “reservoir observer”
reported in Ref. [21] but from different angles and with
different channels. Specifically, the method in Ref. [21] treats
the available measurements as the input vector to predict the
desired variable directly for which the output of a trained
reservoir computer accurately agrees with the desired variable
for a long time and then gradually diverges. In contrast, we
explore this problem from the synchronization perspective,
where the prediction of a trained reservoir computer matches
the desired signal exactly as time progress.

Note that the Matlab code used in this paper for
Ref. [22].
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