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Directed momentum current induced by the PT -symmetric driving
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We investigate the directed momentum current in the quantum kicked rotor model with PT -symmetric
deriving potential. For the quantum nonresonance case, the values of quasienergy become complex when the
strength of the imaginary part of the kicking potential exceeds a threshold value, which demonstrates the
appearance of the spontaneous PT symmetry breaking. In the vicinity of the transition point, the momentum
current exhibits a staircase growth with time. Each platform of the momentum current corresponds to the
mean momentum of some eigenstates of the Floquet operator whose imaginary parts of the quasienergy are
significantly large. Above the transition point, the momentum current increases linearly with time. Interestingly,
its acceleration rate exhibits a kind of “quantized” increment with the kicking strength. We propose a modified
classical acceleration mode of the kicked rotor model to explain such an intriguing phenomenon. Our theoretical
prediction is in good agreement with numerical results.
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I. INTRODUCTION

The directed transport of macroscopic particles has at-
tracted intensive attentions in the past few decades [1–5]. The
phenomenon implies the flow of energy or the transmission
of information. Therefore, its mechanism is important for the
design of quantum heat engines and quantum information. It
has also wide applications in the construction of nanoscale
devices, such as particle separation and electron pumps, and
for the understanding of biological molecular motors [6–8].
Formation of directed current is closely related to the breaking
of spatiotemporal symmetry or the topological property of
system. These two kinds of features are controllable in the
Floquet-driven system by manipulating the external potential.
For example, the spatially nonsymmetric driving potential
leads to the directed motion of cold atoms in optical lattice
[9–12]. A double-kicking extension of a quantum kicked
rotor (QKR) model exhibits topological momentum current
[13]. More recently, the atom-optics experiments of the QKR
model has reported the directed acceleration in momentum
space [14]. Indeed, the system of cold atoms driven by time-
periodical optical lattice is an ideal platform for investigating
the directed transport phenomenon [15–17].

On the other hand, the quantum dynamics with PT sym-
metry is fundamentally important [18–21]. This field has
been regarded as a significant extension of traditional Her-
mitian systems [22]. A unique property of PT -symmetric
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quantum systems is a spontaneous transition, that is, the real
energy eigenvalues become complex when the strength of the
imaginary part of the complex potential exceeds a threshold
value. Interestingly, experimental progress has realized the
ultracold atoms in complex optics lattices [23–29], which
opens the opportunity for investigating transport behavior in
the PT -symmetric potential. Previous studies on wave-packet
dynamics of these system show that, with the PT symmetry
being broken, the energy band merging leads to peculiar
transport behavior of optic wave and matter wave, such as
double refraction, nonreciprocal diffraction, bifurcation, and
many others [30,31].

The extension of a Floquet-driven system to a PT sym-
metric regime induces exotic physics [32]. A recent study on
a QKR model with PT symmetry shows that the spontaneous
PT transition occurs in the dynamical localization regime,
while the PT symmetry is always broken in the quantum
resonance case [33]. Moreover, they discovered that the mo-
mentum current is unboundedly accelerated in quantum reso-
nance and that it is suppressed by dynamical localization in
condition that the PT symmetry is preserved. It is known
that the Talbot effect of a quantum resonance case causes the
periodical revival of the QKR wave packets, and therefore
the system experiences a constant force which facilitates the
directed current. On the other hand, the transport behavior of
matter wave in the quantum nonresonance situation is still an
open topic, which needs urgent investigation.

Motivated by these studies, we investigate the directed ac-
celeration of wave packets in the quantum nonresonance case
via a QKR model with PT symmetry. We find that the break-
ing of the PT symmetry can induce rich transport behavior
in momentum space. Specifically, in the vicinity of transition
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points, the mean momentum exhibits the staircase growth
with time. Detailed investigation reveals that the platform of
the momentum current is determined by mean momentum of
some eigenstates of the Floquet operator with large imaginary
parts of quasienergy. Moreover, it is found that the momentum
of those eigenstates concentrates on several separate values
which are in one-to-one correspondence to the momentum of
each platform. Above the transition points, the mean momen-
tum increases linearly with time. More interesting is that the
acceleration rate shows a “quantized” increment with the kick
strength. The underlying physics behind such an interesting
phenomenon is the modification of the classical acceleration
mode of kicked rotor model by the gain-or-loss mechanism of
the complex kicking potential. Our theoretical prediction of
the acceleration rate of such “quantized” momentum current
is in perfect consistence with numerical results.

Conventionally, it is believed that in the quantum nonres-
onance case, the mechanism of dynamical localization sup-
presses directed motion of microscopic particles. Our finding
of the directed momentum current in the dynamical localiza-
tion regime which is induced by breaking of PT symmetry
may shine a new light on this fundamental problem. The
experimental advances in atom optics have made it possible to
realize the complex optical lattice. We therefore hope our the-
oretical results will stimulate future experiments in this field.

The paper is organized as follows. In Sec. II, we describe
the system and show the directed momentum current. In
Sec. III, we study the “quantized” acceleration mode. A
summary is presented in Sec. IV.

II. DIRECTED MOMENTUM CURRENT

We consider the QKR model with the PT symmetry for
which the Schrödinger equation takes the form

ih̄
∂ψ

∂t
=

{
P̂2

2I
+ V0[cos(θ ) + iλ sin(θ )]δT

}
ψ, (1)

where P̂ is the angular-momentum operator, θ is the angle
coordinate, I is the moment of inertia, V0 is strength of the
kicking potential with λ being the strength of its imaginary
component, and δT = ∑

n δ(t − nT ) with T being the kick
period. The time evolution of quantum states during one
period is governed by the Floquet operator,

U = exp

[
−i

V0(θ )

h̄

]
exp

(−i

h̄

P̂2T

2I

)
, (2)

where V0(θ ) = V0[cos(θ ) + iλ sin(θ )] [33].
In the angular-momentum representation, i.e., P̂|ϕn〉 =

nh̄|ϕn〉 with 〈θ |ϕn〉 = einθ /
√

2π , the free evolution operator,
namely the second term on the right-hand side of Eq. (2), can
be written as

Uf = exp

(
−i

n2h̄T

2I

)
. (3)

It is evident that the Uf is determined by a dimensionless fac-
tor h̄T/I . Hence, for the convenience of investigation, we de-
fine it as an effective Planck constant h̄eff = h̄T/I , for which
the dimensionless angular momentum is pn = nh̄eff. Accord-
ingly, we have made the scaling for the angular-momentum

operator as p̂ = P̂T/I , for which the eigenequation is p̂|ϕn〉 =
pn|ϕn〉. Then the free evolution operator can be expressed as

Uf = exp

(
− i

h̄eff

p̂2

2

)
. (4)

With the effective Planck constant, the kicking evolution
operator, namely the first term on the right-hand side of
Eq. (2), is rewritten as

UK = exp

[
−i

V0(θ )

h̄

]
= exp

[
−i

TV0(θ )

h̄effI

]
,

= exp

[
−i

VK (θ )

h̄eff

]
, (5)

where VK (θ ) = K[cos(θ ) + iλ sin(θ )] with the dimensionless
kicking strength K = V0T/I . The reason for introducing this
dimensionless kick strength K is that it is the only pa-
rameter controlling the classical dynamics governed by the
well-known mapping equation [34]. Traditional investigations
on the quantum-classical correspondence of such a chaotic
system mainly concentrate on the case where K is a constant
for which the classical limit is fixed. With the decrease of h̄eff,
i.e., K/h̄eff → ∞, the quantum dynamics will be consistent
with its classical counterpart for a long-enough time [35]. In
the present work, we indeed find that the spreading of wave
packets of the non-Hermitian kicked rotor follows the classi-
cal acceleration modes in the condition where K/h̄eff � 1.

By combining Eqs. (4) and (5), the Floquet operator in
dimensionless units reads

U = exp

[
−i

VK (θ )

h̄eff

]
exp

(
− i

h̄eff

p̂2

2

)
. (6)

The eigenequation of the Floquet operator reads

U |ψε〉 = e−iε|ψε〉, (7)

where ε indicates the quasienergy. Quantum nonresonance
corresponds to irrational values of h̄eff/4π . To numerically
investigate the quasienergy and quasieigenstate, we should
use the finite truncation to approximate the Um,n matrix of
infinite dimension [33]. Such an approximated method is
effective, since the matrix Um,n has the band structure [34].

The broken of PT symmetry is quantified by the appear-
ance of the complex quasienergy, i.e., ε = εr + iεi. To identify
such spontaneous symmetry breaking, we numerically calcu-
late the average value of the imaginary part of the quasienergy

|ε̄i| = 1

N

N∑
j=1

∣∣ε j
i

∣∣,
where N is the dimension of the Floquet matrix and ε

j
i denotes

the imaginary part of the jth the quasienergy [33]. Our
numerical results show that the average value ε̄i is virtually
zero for small λ, and it abruptly increases once the λ exceeds
a certain critical threshold, i.e., λ > λc (see Fig. 1). This is
clear evidence of the spontaneous PT -symmetry breaking
controlled by the parameter λ. In numerical simulations, the
truncation of the Um,n matrix is N = 2048. In fact, such PT -
symmetry breaking for the dynamical localization case has
been reported in Ref. [33].
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FIG. 1. The average value of the imaginary part of the
quasienergy, i.e., |ε̄i| versus the strength of the complex potential λ

for h̄eff = 1.0 (squares) and 1.5 (circles). The kick strength is K = 5.

After studying the properties of eigenvalues of the Floquet
operator, we are then to discuss the dynamical behavior of
the system, and we focus on the momentum current here.
In the basis of |ϕn〉, an arbitrary state can be expressed as
ψ (θ, t ) = ∑+∞

n=−∞ ψn(t )〈θ |ϕn〉, with ψn(t ) being the wave
function in the momentum representation. The momentum
current is quantified by the mean momentum

〈p(t )〉 =
∑

n pn|ψn(t )|2
N ,

where N = ∑
n |ψn(t )|2 is the norm of the quantum state [33].

For λ > λc, the appearance of the complex quasienergies will
lead to the exponentially fast increase of norm with time. The
above definition of momentum current drops the contribution
from the growth of the norm to the current behavior. We
numerically investigate the momentum current for the irra-
tional values of h̄eff/4π with different λ. In our numerical
simulations, the initial state is taken as the ground state of
the angular-momentum operator, i.e., ψ (θ, 0) = 1/

√
2π . Our

numerical results show that, below the transition point, i.e.,
λ < λc (see Fig. 2 for λ = 0.06), the momentum current sat-
urates to a small asymptotic value after the growth during the
initially short time interval. In fact, in the limit of λ → 0, the
wave packets spread symmetrically in momentum space, and

〈p
〉

FIG. 2. Time dependence of the momentum current 〈p〉 with
h̄eff = 1 and K = 5.0. From bottom to top λ = 0.06 (black), 0.09
(red), 0.2 (green), 0.6 (blue), and 0.9 (cyan).

thus the average momentum is virtually zero. Interestingly,
around the threshold value of spontaneous PT -symmetry
breaking, i.e., λ ∼ λc (e.g., λ = 0.09 in Fig. 2), there is
the staircase growth of the momentum current. Moreover, the
jump of the momentum current from the lower stair to the
upper one is very sharp, which implies that the system changes
to different quantum states with time evolution. Above the
transition point, i.e., λ > λc (e.g., λ = 0.2 in Fig. 2), the
momentum current linearly increases with time, i.e., 〈p(t )〉 =
Dt , for which the growth rate D is independent on λ if
λ � λc (e.g., λ = 0.6 and 0.9 in Fig. 2). Our investigation
on momentum current in dynamical localization regime may
sight a new light on the understanding of the unidirectional
transport phenomenon.

The mechanism of the staircase growth of the momentum
current can be understood as follows. An arbitrary state can be
expanded in the basis of the Floquet eigenstates. At the initial
time, the expansion of the quantum state takes the form

|ψ (t0)〉 =
∑

ε

Cε|ψε〉, (8)

where |ψε〉 indicates the eigenstate of the Floquet operator and
Cε is components of the quantum state. After the nth kicks, the
quantum state has the expression

|ψ (tn)〉 =
∑

ε

Cεe−inε|ψε〉. (9)

When the PT symmetry is broken, the quasienergy is com-
plex, i.e., ε = εr + iεi. Therefore, the expansion of |ψ (tn)〉 can
be rewritten as

|ψ (tn)〉 =
∑

ε

Cεenεi e−inεr |ψε〉. (10)

It is apparent that the components with εi > 0 will exponen-
tially grow. Then the mean momentum 〈p〉 corresponding
to these eigenstates contributes mainly to the momentum
current. Interestingly, we find that most of the eigenstates with
positive εi are localized in momentum space [see Fig. 3(a)].
Moreover, the mean momentum of those eigenstates concen-
trates on several separate values pm [see Fig. 3(b)]. Detailed
observations show that each pm is in one-to-one correspon-
dence to the platform of the momentum current in Fig. 2.
It is evident that, during the appearance of the platform of
the momentum current, the quantum state is the eigentate of
the largest εi with the same 〈p〉. The transition between the
eigenstates of different mean momentum leads to the staircase
growth of the momentum current.

The underlying physics of the linear growth of the momen-
tum current for λ > λc is due to the gain or loss mechanism
induced by the imaginary part of the kicking potential. Such
mechanism happens when the Floquet operator of the non-
Hermitian term U i

K (θ ) = exp[Kλ sin(θ )/h̄eff] operates on the
quantum state, i.e., U i

Kψ (θ ). The action can dramatically
cause the annihilation of the quantum state in the region of θ ∈
(−π, 0), since in this region the value of sin(θ ) is negative.
In contrast, the probability of the particle in the region of
(0, π ) will be enhanced as sin(θ ) takes a positive value in this
region. For Kλ/h̄eff � 1, the value of the U i

K (θ ) is extremely
large in the position of θ = π/2. Therefore, the action of
the Floquet operator U i

K on a quantum state can effectively
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〈p〉

FIG. 3. (a) The Floquet eigenstates (in semilog scale) in momen-
tum space with εi = 0.00393 (red) and 0.008 (black) which corre-
sponds to the two peaks of εi in (b). The main plot and the inset show
the same data in the lin-log and linear scales, respectively. Dashed
lines (in blue) mark the center of each Floquet eigenstates. (b) The
imaginary part of the quasienergy εi versus the mean momentum 〈p〉
of the corresponding eigenstate. The parameters are K = 5, h̄eff = 1,
and λ = 0.09.

generate a quantum particle in θ = π/2 if the center of the
quantum state is not very far from this position. Indeed, our
theoretical analysis proves that the wave function after each
kick can be well described by a Gaussion wave packet with the
center θ0 = π/2 [36]. In this position, the quantum particle
experiences the kicking force of strength K . Therefore, the
time growth of the mean momentum is roughly in the form of
〈p(t )〉 ∝ Kt .

III. “QUANTIZED” ACCELERATION MODE

Further, we numerically investigate the acceleration rate of
the momentum current, i.e., D = limt→t f 〈p2(t )〉/t f for λ �
λc, where t f is the total time one can track the time evolution.
Due to the linear growth of 〈p(t )〉, the t f of a scale of hundreds
of kicking periods can ensure the precise acceleration rate.
Interestingly, we find that the acceleration rate exhibits the
“quantized” increment with increasing K (see Fig. 4), namely

FIG. 4. The acceleration rate D versus K for h̄eff = 0.1. Dashed-
dotted line (in red) indicates the function of the form D(K ) = K .
Dashed lines (in blue) mark the transition points.

D = 2nπ for K ∈ [2nπ − 
0, 2nπ + 
0] with 
0 ≈ π and
n � 1. The mechanism of such an intriguing phenomenon
is due to the coexistence of the classical acceleration mode
and the “gain-or-loss” effects of the non-Hermitian potential.
Remember that for Kλ/h̄eff � 1 the action of the Floquet
operator Uλ on a quantum state can effectively generate a
particle in the position of θ = π/2. Indeed, our analytic
analysis proves that, after the action of Uλ, the wave packets
can be well described by a Gaussian function with minimum
uncertainty δθδp = h̄eff/2, centered at (θ̄ = π/2, p̄ = 2nπ )
[36]. Then, we can regard it as a classical particle and analyze
the acceleration mode of its classical trajectory.

We consider the classical acceleration mode of kicked ro-
tor, which is governed by the classical mapping equation [37]

p(t j+1) = p(t j ) + K sin[θ (t j )]

θ (t j+1) = θ (t j ) + p(t j+1),
(11)

where θ (t j ) and p(t j ) denote the angle coordinate and the
angular momentum after the jth kick. It is easy to see that
a classical trajectory with [θ (t0) = π/2, p(t0) = 2mπ ]
will be accelerated linearly as time evolves, i.e.,
[θ (t j ) = π/2, p(t j ) = p0 + jK] if K = 2nπ , where m and n
are all integers. In our model, we should also consider the
effects of the imaginary part of the kicking potential on the
time evolution of a classical trajectory.

Without loss of generality, we assume that at the time t =
t j the position of a classical trajectory is (θ = π/2, p = 0).
We consider the case that the kick strength has some devia-
tion from the ideal value, i.e., K = 2nπ + 
 with |
| < π .
According to Eq. (11), after one kick period, the trajectory
changes to

p(t−
j+1) = 2nπ + 
 (12)

and

θ (t−
j+1) = π

2
+ 2nπ + 
, (13)

where the superscript “–” indicates the time immediately
before the action of imaginary part of the kicking potential,
i.e., the U i

K operator. Equation (13) reveals that the value
of 
 can be regarded as the distance between the center of
the wave packets and the position of θ = π/2 + 2nπ which
is essentially equal to π/2 due to the periodical boundary
condition. Since the action of the U i

K operator on the wave
packets greatly enhances the probability of a particle in θ =
π/2 + 2nπ if the value of 
 is smaller than a threshold value,
i.e., 
0, it is reasonable to believe that, after the action of
U i

K , the particle moves to the position of θ (t j+1) = π/2 +
2nπ . Accordingly, its momentum becomes p(tn+1) = 2nπ for
which the actual increment of the momentum during one-
period evolution is D = 2nπ . A rough estimation of 
0 is
a half of the width of the region [2(n − 1)π + π/2, 2nπ +
π/2], i.e., 
0 ≈ π , which is confirmed by our numerical
results in Fig. 4.

IV. SUMMARY

In this work, we investigate the directed current of the
quantum kicked rotor model whose kicking potential satisfies
the PT -symmetric condition. We find that in the vicinity of
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transition point, i.e., λ ≈ λc, the eigenstates is well localized
in momentum space. Moreover, the mean momentum eigen-
states with positive real imaginary parts of the quasienergy
concentrates on several separate values. Such property leads
to the staircase growth of the momentum current 〈p(t )〉 with
time. When the parameter λ is larger than the transition
point, i.e., λ > λc, the momentum current linearly increases
with time, i.e., 〈p(t )〉 = Dt . We make extensive investiga-
tions on the acceleration rate D for λ � λc. Interestingly, we
find that, for Kλ/h̄eff � 1, the acceleration rate exhibits the
“quantized” increment with the increase of K , i.e., D = 2nπ

for K ∈ [2nπ − 
0, 2nπ + 
0] with 
0 ≈ π and n � 1. For
Kλ/h̄eff � 1, our analytic analysis proves that, at any time
t = tn, the wave packets can be well described by the Gaussian
function with a center (θ̄ = π/2, p̄ = 2nπ ). The motion of the
wave packet in phase space follows the classical acceleration
mode of the trajectory of the kicked rotor model. The theory
of the modified acceleration mode of the classical particle by
the gain-or-loss mechanism of the complex kicking potential
can successfully explain such “quantized” phenomenon of
momentum current. It is known that cold atoms driven by
time-periodical optical lattice, with rich and complex physics,
such as the Butterfly spectrum [38], the exponentially fast dif-
fusion [39], is an ideal platform for investigating the directed
transport phenomenon. Our results may also be useful in the
quantum control of the directed transport of matter waves.
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APPENDIX: THE ACCELERATION
OF MOMENTUM CURRENT

The Floquet operator of the non-Hermitian QKR reads

U = Uf U
r
KU i

K , (A1)

with the free evolution operator Uf = exp(−ip2/2h̄eff ), the
evolution operator of the real part of the kicking potential

U r
K = exp

[
−i

K

h̄eff
cos(θ )

]
, (A2)

and that of the imaginary part

U i
K = exp

[
λK

h̄eff
sin(θ )

]
. (A3)

The maximum value of U i
K corresponds to θ0 = π/2. In

condition that h̄eff → 0 (with λK/h̄eff � 1 and K/h̄eff � 1),
the expansions of first order for U i

K and U r
K around θ0 take the

form

U i
K ≈ exp

[
−λK (θ − θ0)2

2h̄eff

]
exp

(
λK

h̄eff

)
(A4)

and

U r
K ≈ exp

[
iK (θ − θ0)

h̄eff

]
. (A5)

As a further step, we consider the time evolution of a quantum
state under the action of above operators.

Without loss of generality, we assume that the initial state
is a Gaussian wave packet

ψ (θ, t0) = 1

(σ 2π )4
exp

(
− θ2

2σ 2
+ ip0θ

h̄eff

)
, (A6)

for which the uncertainty relation is such that δθδp = h̄eff/2.
The evolution of quantum states from t0 to t1 = t0 + 1 is
governed by |ψ (t1)〉 = U |ψ (t0)〉. The action of U i

K on ψ (θ, t0)
yields that

ψ̃(θ, t0) ∝ exp

[
−λK (θ − θ0)2

2h̄eff
− θ2

2σ 2
+ ip0θ

h̄eff

]
. (A7)

In condition that λK/h̄eff � 1/σ 2, we can neglect the con-
tribution of the second term in right-hand side of the above
equation. Then, the quantum state can be approximated as

ψ̃(θ, t0) ∝ exp

[
−λK (θ − θ0)2

2h̄eff
+ ip0θ

h̄eff

]
. (A8)

For the convenience of analysis, hereafter, we use this state
as the initial state for the time evolution. That is, the Floquet
operator is redefined as

U = U i
KUf U

r
K . (A9)

By comparison Eq. (A9) with Eq. (A1), one can see that the
sequence of the action of U i

K and Uf in time evolution is
rearranged, which actually has no effect on physical results.

Consider the action of U r
K in Eq. (A5) on ψ̃ (θ, t0),

ψ (θ, t+
0 ) = U r

K ψ̃(θ, t0)

∝ exp

[
− λK

2h̄eff
(θ − θ0)2 + iK

h̄eff
(θ − θ0)

]
× exp

(
i

h̄eff
p0θ

)
, (A10)

where the superscript “+” indicates the time immediately
after the action of the real part of the kicking potential. Next
step is the action of the free evolution operator Uf on the
quantum state. Before that we should transform the state to
momentum space,

ψ (p, t+
0 ) =

∫ π

−π

ψ(θ, t+
0 ) exp(−ipθ/h̄eff )dθ

∝ exp

[
− (p − pK )2

2h̄effλK
− ipθ0

h̄eff

]
, (A11)

where pK = p0 + K . Then the action of Uf on ψ (p, t+
0 ) yields

ψ (p, t−
1 ) = Uf ψ (p, t+

0 )

∝ exp

[
− (p − pK )2

2h̄effλK
− ip(p + 2θ0)

2h̄eff

]
, (A12)

where the superscript “–” indicates the time immediately
before the action of the kicking operator U i

K .
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The corresponding quantum state in real space is

ψ(θ, t−
1 ) ∝

∫ ∞

−∞
d pψ(p, t−

1 ) exp(ipθ/h̄eff )

∝ exp

[
− (θ − θ0 − pK )2

2h̄effλK

]

× exp

[
i
(
θ − θ0 + pK

λ2K2

)2

2h̄eff

]
. (A13)

We assume that

pK = 2n0π + 
, (A14)

with −π < 
 < π . Then the quantum state in Eq. (A13) is
rewritten as

ψ(θ, t−
1 ) ∝ exp

{
− [θ − (θ0 + 2n0π ) − 
]2

2h̄effλK

}

× exp

[
i
(
θ − θ0 + pK

λ2K2

)2

2h̄eff

]
. (A15)

Apparently, Eq. (A15) indicates a Gaussian wave packets
with the center θ̄ = θ0 + 2nπ + 
. If the distance between
θ̄ and θ0 + 2nπ is smaller than a threshold value 
0, then the
action of U i

K [in Eq. (A4)] on the quantum state ψ(θ, t−
1 ) can

effectively enhance the probability of a particle in the position
of θ̄ = θ0 + 2nπ . Then, we get

ψ(θ, t+
1 ) = U i

Kψ(θ, t−
1 ) ∝ exp

{
− [θ − (θ0 + 2n0π )]2

2h̄effλK

}

× exp

[
i
(
θ − θ0 + pK

λ2K2

)2

2h̄eff

]
, (A16)

where the superscript “+” indicates the time immediately
after the action of U i

K . A rough estimation of 
0 is a half of the
width of the region [2(n − 1)π + θ0, 2nπ + θ0], i.e., 
0 ≈ π .
Now the time evolution of a quantum state during an entire
kicking period ends.

It is apparent that the center of this wave packet in real
space is

θ t1 = 2n0π + θ0 (A17)

with the second moment

δθ =
√

θ2 − (θ )2 =
√

h̄eff

2λK
. (A18)

To obtain the momentum center of the wave packet ψ(θ, t+
1 ),

we should transform it to momentum space,

ψ(p, t+
1 ) ∝

∫
dθe−ipθ/h̄ψ(θ, t+

1 )

∝ exp

[
(p − 2n0π )2

2h̄λK
+ if(p)

]
, (A19)

where f (p) is an unimportant function of momentum. The
function f (p) does not determine the mean momentum, and
hence there is no need to know the specific form of f (p). From
the above quantum state, we can get the mean momentum,

pt1 = 2n0π, (A20)
with the second moment

δp =
√

p2 − (p)2 =
√

h̄effλK

2
. (A21)

One can find that the quantum state |ψ (t1)〉 satisfies the
uncertainty relation

δθδp = h̄eff

2
, (A22)

which is same as that of the initial wave packet.
As a brief summary, the quantum state after the evolution

of first kicking period can be well described by a Gaussian
wave packet,

ψ(θ, t1) � exp

[
−λK (θ − θ̄t1 )2

2h̄eff
+ i p̄t1θ

h̄eff

]
, (A23)

where

θ̄t1 = 2n0π + θ0

p̄t1 = 2n0π,

with θ0 = π/2. The time evolution of quantum state for t > t1
just repeats the above procedure. Accordingly, the quantum
state at any time t = tn can be well approximated by a Gaus-
sian wave packet. Moreover, we can get the its center (θ̄tn , p̄tn )
by using the iterative method.

First, we can get the center (θ̄t2 , p̄t2 ) at the time t = t2.
Taking into account p̄t1 = 2n0π [see Eq. (A20)], for K =
2nπ + 
 (−π < 
 < π ), then we arrive at p̄t1 + K = 2(n0 +
n)π + 
. Note that the value of 
 is smaller than a threshold
value 
0. By repeating the procedure of the derivation for
(θ̄t1 , p̄t1 ), one obtains

θ̄t2 = 2(n0 + n)π + θ0

p̄t2 = 2(n0 + n)π.
(A24)

Using the same method, one can find

θ̄t j = 2[n0 + ( j − 1)n]π + θ0

p̄t j = 2[n0 + ( j − 1)n]π.
(A25)

It is evident that the acceleration rate is

D = p̄t j − p̄t j−1 = 2nπ (A26)

for K ∈ [2nπ − 
0, 2nπ + 
0] with 
0 ≈ π . Our analytic
analysis is confirmed by numerical results.
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