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Consequences of residual-entropy hierarchy violation for behavior of the specific heat capacity in
frustrated magnetic systems: An exact theoretical analysis
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We investigate in detail the influence of the violation of the strict residual-entropy hierarchy among the
neighboring ground states of different orders on the low-temperature behavior of the specific heat capacity
in the magnetic frustrated systems in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising
model with the multisite interaction in the presence of the external magnetic field on the zigzag ladder. The
exact expressions for the residual entropies of all ground states of the model are found, and it is shown that
when the strength of the multisite interaction is strong enough then the model exhibits a quite interesting specific
situation, namely, that there exist neighboring plateau ground states together with the single-point ground state
that separates them, such that the magnetization properties of all of them are different but their entropy per site
is the same and equal to zero. It is shown that this fact of the violation of the strict residual-entropy hierarchy
between neighboring ground states of different orders leads to the reduction of the possible number of peaks that
can appear in the low-temperature behavior of the specific heat capacity in the corresponding regions of the model
parametric space. In addition, it is also shown that the absence of the strict residual-entropy hierarchy among
neighboring ground states of different orders changes qualitatively the behavior of the specific heat capacity as
a function of the external magnetic field, namely, that the typical field-induced sharp double-peak structure in
the low-temperature behavior of the specific heat capacity, which is directly related to the very existence of the
highly macroscopically degenerated single-point ground states, disappears already for relatively large values of
the temperature.
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I. INTRODUCTION

The existence of various low-temperature anomalies of
the specific heat capacity, such as the formation of the
two-peak structure (known as the Schottky-type anomaly)
as well as multipeak structures in its temperature behavior,
belongs among the most interesting features of frustrated
magnetic systems intensively studied in the literature from
the experimental as well as theoretical points of view (see,
e.g., Refs. [1–30] and many others). The reason for this
interest is at least twofold. On one hand, the very existence
of these anomalies attracts attention because of the necessity
of understanding their nature from a fundamental point of
view and, on the other hand, the experimental interest is also
given by the fact that anomalies of the specific heat capacity
in frustrated magnetic systems are directly responsible for
the very existence of strong magnetocaloric effects at low
temperatures. Therefore, the corresponding materials are po-
tentially very promising candidates for the effective adiabatic
(de)magnetization cooling (see, e.g., Refs. [31–37] as well as
references cited therein).

From the fundamental theoretical point of view, with-
out doubt, the most valuable models of frustrated magnetic
systems are those that can be exactly solved even in the
presence of the external magnetic field because they can shed
light on the fundamental physical nature of various specific
properties of magnetic systems related to frustration, such as
the formation of nontrivial systems of highly macroscopically

degenerated ground states or strong magnetocaloric effects,
which reveal themselves only in nonzero external magnetic
fields.

In this respect, quite recently, the direct re-
lation between the maximal number of peaks
in the low-temperature behavior of the specific heat capacity
and the dimensionality of the parametric space of a frustrated
model was revealed in the framework of an exactly solvable
antiferromagnetic Ising model in the external magnetic
field on the kagome-like Husimi lattice [30]. Moreover, it
was also shown there that the maximal possible number of
peaks in the temperature dependence of the specific heat
capacity in the corresponding regions of the model parametric
space is directly related to the existence of strict hierarchies
among the residual entropies of the neighboring ground
states of all orders. Besides, in Ref. [38], the direct relation
between the existence of highly macroscopically degenerated
single-point ground states in frustrated models and the
formation of the field-induced sharp double-peak structure
in the low-temperature behavior of the specific heat capacity
as a function of the external magnetic field was identified
and studied in detail in the framework of the exactly solvable
antiferromagnetic Ising model in the external magnetic field
on the tetrahedron recursive lattice.

However, since all these results were obtained, on one
hand, in the framework of models on recursive lattices and,
on the other hand, in the framework of the models for which
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the strict residual-entropy hierarchies are always valid, the
following natural questions immediately arise here. The first
of them is related to the relevance of the obtained results
in Refs. [30,38] for the properties of frustrated systems on
real lattices, i.e., whether the general results and conclusions
obtained in Refs. [30,38] can also be considered as relevant
for frustrated magnetic systems on standard regular lattices.
The second nontrivial question is related to the behavior of
the specific heat capacity in the situations in which there do
not exist strict hierarchies between residual entropies of the
neighboring ground states of different orders. It is clear that
to be able to answer both these questions it is necessary,
on one hand, to find an exactly solvable frustrated magnetic
system on a regular lattice in the framework of which the
anomalous properties of the specific heat capacity could be
investigated and, on the other hand, to find a model with at
least one violated strict hierarchy between residual entropies
of neighboring ground states of different orders.

It is quite intriguing that there exists a model, namely, the
antiferromagnetic Ising model with the multisite interaction in
the external magnetic field on the so-called zigzag ladder [39],
in the framework of which both these questions can be studied
even simultaneously. This model has the same parametric
space as the model studied in Ref. [30] and, moreover, as
was shown in Ref. [39], it contains a single-point ground state
whose residual entropy is the same as the residual entropies
of two neighboring plateau-like ground states. In this respect,
in the present paper, using the aforementioned model on the
zigzag ladder, we shall show that all general conclusions about
the low-temperature properties of the specific heat capacity
obtained in the framework of the models on recursive lattices
seem to be also valid on regular geometrically frustrated
lattices. Besides, we shall also show that the absence of
the strict hierarchy among residual entropies of the neigh-
boring ground states of different orders, on one hand, leads
to the reduction of the maximal possible number of peaks
in the low-temperature behavior of the specific heat capacity
in the corresponding regions of the parametric space of the
model and, on the other hand, also leads to qualitatively
substantially different behavior of the specific heat capacity as
a function of the external magnetic field at low temperatures.

In the end, although the aim of the present paper is
to describe and understand general properties of the spe-
cific heat capacity of frustrated magnetic systems but not
to describe a concrete magnetic material, nevertheless let
us note that results obtained in the framework of various
classical and quantum models on the ladder-like lattices
(see, e.g., Refs. [40–58] and references cited therein) are
also important phenomenologically and can be used for
theoretical description of properties of real physical sys-
tems such as SrCuO2 [59,60], SrCu2O3 [61], La6Ca8Cu24O41

[62,63], Cu2(C5H12N2)2Cl4 [64], KCuCl3 and TlCuCl3 [65],
NH4CuCl3 [66], Li2CuO2 and CuGeO3 [63], NaCu2O2 [67],
La8Cu7O19 [68], Cu(CF3COO)2 [69], Sr2Co3S2O3 [70], and
many others.

The paper is organized as follows. In Sec. II, the system
of all ground states of the model is summarized and their
convenient classification is introduced. In Sec. III, the exact
expressions for the residual entropies of all model ground
states are found. In Sec. IV, the properties of the specific heat
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FIG. 1. The structure of the zigzag ladder.

capacity of the model are investigated in detail. Finally, the
main results of the paper are summarized and discussed in
Sec. V.

II. THE MODEL AND ITS GROUND STATES

As was already mentioned in the Introduction, the main
aim of this paper is to perform a detailed analysis of the
influence of the violation of the strict residual-entropy hier-
archy among neighboring ground states of different orders
on the behavior of the specific heat capacity in frustrated
magnetic systems. We shall investigate this problem in the
framework of the exactly solvable geometrically frustrated
antiferromagnetic spin-1/2 Ising model with the presence of
the multisite interaction in the external magnetic field on the
so-called zigzag ladder shown explicitly in Fig. 1.

The Hamiltonian of the model has the following form,

H = −J
∑
〈i j〉

sis j − J ′ ∑
〈i j k〉

sis jsk − H
∑

i

si, (1)

where each variable si acquires one of two possible values ±1,
J represents the antiferromagnetic (J < 0) nearest-neighbor
interaction parameter, J ′ is the multisite interaction within
each single triangle, and H is the external magnetic field.
Besides, the first sum in Eq. (1) runs over all nearest-neighbor
spin pairs, the second sum runs over all triangles, and the third
sum runs over all spin sites.

The model is exactly solvable [39] and, using the transfer
matrix method, the partition function of the model can be
written as follows,

ZN = TrV N/2, (2)

where N is the even number of all sites of the lattice with
the standard periodic boundary condition sN+i = si and the
transfer matrix V has the form

V =

⎛
⎜⎜⎝

a4bc2 ac (ab)−1c a−2

(ab)−1c 1 a−2b ac−1

ac a−2b−1 1 b(ac)−1

a−2 b(ac)−1 ac−1 a4b−1c−2

⎞
⎟⎟⎠, (3)

and

a = eK , b = e2K ′
, c = eh, (4)

where K = βJ , K ′ = βJ ′, h = βH , β = 1/(kBT ), T is the
temperature, and kB is the Boltzmann constant.

In the thermodynamical limit N → ∞, the properties of
the model are driven by the largest eigenvalue λ1 of the
transfer matrix (3), the explicit form of which is given as
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follows:

λ1 = 1

4

[
k1 + 2

√
z1 + w1 +

√
4(2z1 − w1) + z2√

z1 + w1

]
,

(5)

where

k1 = 2 + a4

(
bc2 + 1

bc2

)
,

w1 = 1

3

[(
w2

2

)1/3

+ z3

(
2

w2

)1/3
]
,

z1 = k2
1

4
− 2k4

3
,

z2 = k3
1 − 4k1k4 − 8k3,

and

w2 = z4 +
√

z2
4 − 4z3

3,

z3 = k2
4 + 12k2 + 3k1k3,

z4 = 2k3
4 + 9

[
3
(
k2

1k2 + k2
3

) + k4(k1k3 − 8k2)
]
,

k2 = [b2(1 + a8) − a4(1 + b4)]2/(a8b4),

k3 = −{b2(b2 − a4)2 + 2a4bc2[b2(1 + a8) − a4(1 + b4)]

+ c4(a4b2 − 1)2}/(a4b3c2),

k4 = {2a4[a4 − b2 + c4(a4b2 − 1)]

+ bc2(a12 + a4 − 2)}/(a4bc2),

with a, b, and c defined in Eq. (4). Note that the existence of
the unique largest real eigenvalue of the transfer matrix (3)
follows from the well-known Perron-Frobenius theorem.

Thus, in the limit N → ∞, the partition function of the
model obtains the following form,

Z = λ
N/2
1 , N → ∞, (6)

and, finally, the free energy per site is given as follows:

f ≡ − lim
N→∞

ln ZN

βN
= − ln λ1

2β
. (7)

The exact solution of the model was discussed recently,
e.g., in Ref. [39], where a complete analysis of the magnetiza-
tion properties of the model was performed, the system of all
ground states was identified, and the existence of the so-called
single-point ground states with well-defined thermodynamic
properties was shown. In Ref. [39], the exact expressions for
the magnetization of all ground states were found and a brief
discussion of numerical values of their residual entropies was
performed. Because, in what follows, we shall intensively use
the results obtained in Ref. [39], it is therefore appropriate to
summarize them briefly and, at the same time, to introduce
a convenient notation and classification of the system of the
ground states of the model.

As was shown in Ref. [39], in the limit T → 0, the model
described by the Hamiltonian (1) on the zigzag ladder ex-
hibits the existence of three qualitatively different plateau-like
ground states with absolute values of magnetization |m| =
0, 1/3, and 1. In addition, the model also exhibits the exis-
tence of six qualitatively different single-point ground states,

FIG. 2. The system of all ground states of the model in the
plane H/|J| versus α = J ′/|J| (see the text for used notation). Their
magnetization properties are summarized in Table I.

which are realized on the corresponding lines that form bor-
ders between various neighboring plateau-like ground states
and at four separated points at which three different plateaus
(or the corresponding border lines) meet (see Fig. 2). The
magnetization properties of all ground states of the model are
summarized in Table I.

Using a convenient general classification of the ground
states of frustrated systems introduced in Ref. [30], the studied
model, in fact, exhibits the existence of three different types
of the ground states, which are realized in the corresponding
regions of the ground-state parametric space with different
spatial dimensions. In accordance with this general terminol-
ogy and classification, the studied model has two-dimensional
ground-state parametric space G2, which is characterized by
two independent dimensionless parameters H/|J| and α ≡
J ′/|J|, in which the set of all possible ground states G2 of
the model is realized. At the same time, the set of all ground
states of the model G2 can be naturally divided into three
disjunct subsets G2,i, i = 0, 1, 2 (G2 = ⋃2

i=0 G2,i ), such that,
for given value of i, the subset G2,i contains the ground
states of the ith order that are realized on the corresponding
i-dimensional segments of the parametric space G2. Thus,
as follows from Fig. 2, the subset G2,0 = {g(1)

2,0, . . . , g(4)
2,0}

contains the zeroth-order ground states that are realized at
the four separate points (the zero-dimensional objects) in
the parametric space G2, the subset G2,1 = {g(1)

2,1, . . . , g(8)
2,1}

contains the first-order ground states that are realized on the
eight different line segments (the one-dimensional objects),
and, finally, the subset G2,2 = {g(1)

2,2, . . . , g(5)
2,2} contains all

ground states of the second order that are realized in the
two-dimensional regions of the parametric space. Moreover,
as is also evident from Fig. 2, the corresponding i-dimensional
object g

( j)
2,i in the whole parametric space can be uniquely

associated with the ground state g( j)
2,i; i.e., the ground state

g( j)
2,i , for given values i and j, is realized for all values of
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TABLE I. Survey of the magnetization properties of all ground sates of the model together with their residual entropies.

G2,0 g(1)
2,0 g(2)

2,0 g(3)
2,0 g(4)

2,0

m 0.222984 0.447214 −0.222984 −0.447214
s/kB 0.382245 0.481212 0.382245 0.481212

G2,1 g(1)
2,1 g(2)

2,1 g(3)
2,1 g(4)

2,1 g(5)
2,1 g(6)

2,1 g(7)
2,1 g(8)

2,1

m 0.159320 1/3 0.396651 0.611492 −0.159320 −1/3 −0.396651 −0.611492
s/kB 0.199461 0 0.322285 0.382245 0.199461 0 0.322285 0.382245

G2,2 g(1)
2,2 g(2)

2,2 g(3)
2,0 g(4)

2,2 g(5)
2,2

m −1/3 1 0 1/3 −1
s/kB 0 0 0 0 0

the model parameters from the ground-state parametric space
segment g( j)

2,i . Thus, in our case, the whole parametric space

G2 can also be uniquely written in the form G2 = ⋃2
i=0 G2,i,

where G2,i represents the union of all regions g( j)
2,i in which the

corresponding ith-order ground states g( j)
2,i are realized.

Here it is necessary to stress that the exact one-to-one
correspondence between disjunct segments g

( j)
2,i ⊂ G2 and el-

ements g( j)
2,i ∈ G2 is a direct consequence of the nonexistence

of first-order phase transitions in the studied model, i.e., of the
fact that the model exhibits the single solution for arbitrary
model parameter values. In general, of course, such kind of
one-to-one correspondence is not always obvious.

Note also that, in what follows, the concept of the neigh-
boring ground states of different orders will play the central
role; therefore it is instructive to define its exact meaning.
Thus, in the sense of the above given classification of the sys-
tem of the ground states of the model, two ground states g(k)

2,i

and g(l )
2, j of different orders i < j are the neighboring ground

states if the corresponding region g
(k)
2,i of the parametric space

of the model, in which the ground state g(k)
2,i is realized, is a

part of the border of the region g
(l )
2, j , in which the higher-order

ground state g(l )
2, j is formed.

As we shall see, namely the hierarchical ordering of neigh-
boring ground states of the model discussed above, together
with the existence of nontrivial residual-entropy hierarchies
among neighboring ground states of different orders, is cru-
cial for the fundamental understanding of its thermodynamic
behavior, especially for low-temperature properties of various
phenomenologically interesting anomalies of the specific heat
capacity. In this respect, the terminology and classification
given above will be used intensively in what follows.

However, before we investigate in detail the properties of
the specific heat capacity of the model it is necessary first
to analyze systematically the entropy properties of the model
together with the exact determination of the residual entropies
of all ground states. This analysis is performed in detail in the
next sections.

III. EXACT EXPRESSIONS FOR RESIDUAL ENTROPIES
OF ALL GROUND STATES

As was mentioned above, the properties of the entropy per
site of the model play the central role in the fundamental

understanding of the behavior of the specific heat capacity,
especially as for its anomalous behavior at low temperatures.
Therefore, it is desirable to analyze them in detail.

However, for our purposes, it is more convenient to inves-
tigate the behavior of the entropy of the model as a function
of the temperature as well as of the external magnetic field
simultaneously with the corresponding investigation of the
properties of the specific heat capacity, which will be given
in the next section. Therefore, in the present section, we shall
restrict our attention to the determination of the exact values
for the residual entropies of all ground states of the model,
which will be important in what follows.

Thus, using the explicit expression for the free energy per
site given in Eq. (7) (see also Ref. [39]), the entropy per site
of the model can be written as follows:

s ≡ − ∂ f

∂T
= kB

2

(
ln λ1 + T

λ1

∂λ1

∂T

)
, (8)

where λ1 is given in Eq. (5).
First of all, as expected, the residual entropy of all plateau-

like ground states with values of magnetization m = 0,±1/3,

and ±1, i.e., of all ground states of the second order G2,2, is
zero.

On the other hand, the exact expressions for residual en-
tropies of the first-order ground states G2,1 are the following:
The explicit form of the residual entropy of the ground states
g(1)

2,1 and g(5)
2,1, i.e., of the ground states that are realized on

the corresponding lines g(1)
2,1 and g

(5)
2,1 in the limit T → 0 with

absolute value of magnetization |m| ≈ 0.159320 (the dash-
dotted lines in Fig. 2), is

s = kB

2
ln

[
1

2
√

6
(
√

y1 +
√

y2 + 12
√

6/y1)

]
, (9)

where

y1 = 8 + 32(2/z1)1/3 + (4z1)1/3, (10)

y2 = 16 − 32(2/z1)1/3 − (4z1)1/3, (11)

and

z1 = 155 + 3
√

849. (12)

Its approximate numerical value is s ≈ 0.199461kB.
The residual entropy of the ground states g(3)

2,1 and g(7)
2,1, i.e.,

of the ground states that are realized on lines g
(3)
2,1 and g

(7)
2,1
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with the absolute value of magnetization |m| ≈ 0.396651 (the
dashed lines in Fig. 2), has the following form:

s = kB

2
ln

{
1

2

[
1

2
+ √

y3 +
√

y4 + 9/(4
√

y3)

]}
, (13)

where

y3 = [19/4 + 16(2/z1)1/3 + (z1/2)1/3]/3, (14)

y4 = [19/2 − 16(2/z1)1/3 − (z1/2)1/3]/3, (15)

and z1 is again given in Eq. (12). Its approximate value is s ≈
0.322285kB.

Further, the residual entropy of the ground states g(4)
2,1 and

g(8)
2,1, i.e., of the ground states that are realized on lines g(4)

2,1 and

g
(8)
2,1 with the absolute value of magnetization |m| ≈ 0.611492

(the solid lines in Fig. 2), is given as follows:

s = kB

2
ln

{
1

12

[
3 +

√
3y5 +

√
6(y6 + 51

√
3/y5)

]}
, (16)

where

y5 = 19 + 4(2/z2)1/3 + 2(4z2)1/3, (17)

y6 = 19 − 2(2/z2)1/3 − (4z2)1/3, (18)

and

z2 = 29 + 3
√

93. (19)

Its approximate value is s ≈ 0.382245kB.
The last kind of the first-order ground states are g(2)

2,1 and

g(6)
2,1. They are realized on the corresponding lines g

(2)
2,1 and

g
(6)
2,1 with the absolute value of magnetization |m| = 1/3 (the

dotted lines in Fig. 2) and they have the same residual entropy
as the corresponding neighboring plateau-like ground states;
i.e., their entropy is equal to zero. This means that, in this case,
one is faced with a nontrivial and rather specific situation in
which the neighboring ground states of different orders do not
exhibit residual-entropy difference; i.e., the residual-entropy
hierarchy among neighboring different-order ground states is
violated. As we shall see, this fact has nontrivial consequences
for behavior of the specific heat capacity in the vicinity of
these first-order ground states.

Finally, let us find the residual entropies of the zeroth-
order ground states belonging to G2,0. It is quite interesting
that the zeroth-order ground states g(1)

2,0 and g(3)
2,0, which are

realized at two points g(1)
2,0 and g

(3)
2,0 in the parametric space (the

filled squares in Fig. 2), have the same value of the residual
entropy s ≈ 0.382245kB as the first-order ground states g(4)

2,1

and g(8)
2,1 [i.e., the exact expression for this residual entropy is

also given by Eq. (16)], although their absolute value of the
magnetization |m| ≈ 0.222984 is completely different. This
means that the macroscopic degeneracy of these ground states
of different orders is also the same. However, in this case, as
we shall see, this fact has no impact on the behavior of the
specific heat capacity in their vicinity because they are not
neighboring ground states of different orders.

The last type of the zeroth-order ground states is repre-
sented by the ground states g(2)

2,0 and g(4)
2,0, which are again real-

FIG. 3. The system of the ground states with different residual
entropies. The values of all residual entropies are summarized in
Table I (see Fig. 2 for notation).

ized at two discrete points g(2)
2,0 and g

(4)
2,0 in the parametric space

denoted as the filled circles in Fig. 2, with the absolute value
of magnetization |m| ≈ 0.447214. Their residual entropy is
given as follows:

s = kB

2
ln

[
3 + √

5

2

]
, (20)

with the approximate numerical value s ≈ 0.481212kB.
For clarity and completeness, the residual entropies of all

ground states of the model together with their magnetization
properties are summarized in Table I.

One of the most important conclusions that follows from
the investigation of the residual entropies of the model is the
fact that the entropy picture of the ground states in the model
parametric space is different than the corresponding picture
from the magnetization point of view. While the system of the
ground states from the magnetization point of view is given
in Fig. 2, the system of all different residual entropies of the
neighboring ground states is shown explicitly in Fig. 3. The
absence of lines g

(2)
2,1 and g

(6)
2,1 in Fig. 3 (the dotted lines in

Fig. 2) demonstrates the violation of the strict residual-entropy
hierarchy among the corresponding neighboring ground states
of different orders (see also Table I). More precisely, one says
that the residual-entropy hierarchy between the neighboring
ground states g(k)

2,i and g(l )
2,i+1 is strict if the residual entropy of

the ith-order ground state is greater than the residual entropy
of the ground state of the order i + 1. On the other hand, the
strict residual-entropy hierarchy between these neighboring
ground states is violated if their residual entropies are equal.

The system of all residual-entropy hierarchies among
neighboring ground states of different orders is schematically
shown in Fig. 4. In this figure, various ground states are
denoted by the corresponding filled blue (the zeroth-order
ground states g(i)

2,0), red (the first-order ground states g(i)
2,1), and

green (the second-order ground states g(i)
2,2) circles. Besides,
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FIG. 4. The symbolic demonstration of all residual-entropy hi-
erarchies among the neighboring ground states of different orders.
The neighboring ground states of different orders [represented by
the blue (g(i)

2,0), red (g(i)
2,1), and green (g(i)

2,2) filled circles] with strict
residual-entropy hierarchy are connected by the solid lines (the red
lines between g(i)

2,0 and g( j)
2,1 and the green lines between g(i)

2,1 and

g( j)
2,2). The neighboring ground states of different orders with violated

residual-entropy hierarchy are connected by the dashed (green) lines.
The upper black filled circle represents the entropy per site kB ln 2
of the fully disordered state obtained for T → ∞, and the blue
solid lines (the lines between the upper black filled circle and all
blue filled circles that correspond to g(i)

2,0) represent strict entropy
hierarchies between this maximal entropy and the residual entropies
of all zeroth-order ground states g(i)

2,0. Namely, the existence of these
last hierarchies is responsible for the very existence of the standard
peak in the temperature dependence of the specific heat capacity.

the upper black filled circle represents the fully disordered
state of the system with entropy kB ln 2. Each connection be-
tween various ground states of different orders, i.e., each green
(the lines between g(i)

2,1 and g( j)
2,2) and red (the lines between

g(i)
2,0 and g( j)

2,1) line, means that the corresponding ground states
are neighboring ground states in the ground-state parametric
space. At the same time, the neighboring ground states of
different orders with strict residual-entropy hierarchies (i.e.,
for which the ground state of lower order has larger residual
entropy than the corresponding neighboring ground state of
higher order) are connected by the solid lines and, on the other
hand, the neighboring ground states of different orders with
violated residual-entropy hierarchy (i.e., their residual entropy
is the same) are connected by the dashed lines. In addition,
the solid blue lines (the lines between g(i)

2,0 and the upper black
filled circle) represent the strict entropy hierarchies between
all zeroth-order ground states g(i)

2,0 and the maximal possible
entropy of any two-state statistical system. As we shall see,
namely, the existence of these last hierarchies is responsible
for the very existence of the standard peak in the behavior of
the specific heat capacity as a function of the temperature.

Thus, the present model exhibits two qualitatively dif-
ferent situations that are directly related to the strength of
the multisite interaction. When the multisite interaction is
weaker or equal to the nearest-neighbor antiferromagnetic
interaction, i.e., when |α| � 1, then all neighboring ground
states of different orders exhibit strict hierarchies of their

residual entropies; i.e., the residual entropy of a lower-order
ground state is always greater than the residual entropies of
all neighboring ground states of higher orders. On the other
hand, when |α| > 1, there exist the neighboring ground states
of different orders for which the residual-entropy hierarchy is
absent. In what follows, our aim is to investigate the influence
of this residual entropy hierarchy violation on the properties
of the behavior of the specific heat capacity for the parameters
of the model from the vicinity of these single-point ground
states and to compare it to the standard situation when the
corresponding hierarchies are strict, as was discussed in detail
in Ref. [30].

IV. RELATION BETWEEN FORMATION OF RESIDUAL
ENTROPY HIERARCHIES AND PROPERTIES OF

LOW-TEMPERATURE ANOMALIES OF SPECIFIC HEAT
CAPACITY

In Ref. [30], the direct relation between the very existence
of residual-entropy hierarchies among neighboring ground
states of various orders and low-temperature anomalies of
the specific heat capacity was identified and demonstrated
in the framework of a model in which all residual-entropy
hierarchies are strict. There, it was shown that if one studies
a model, in general, with n-dimensional ground-state para-
metric space, then the specific heat capacity as a function
of the temperature can exhibit at most i + 1 peaks when the
parameters of the model are taken from regions that form
Gn,i. Thus, the maximal possible number of peaks in the
temperature behavior of the specific heat capacity, which
can be observed in a frustrated model with n-dimensional
ground-state parametric space, is equal to n + 1 and can be
observed only for model parameters from regions that form
Gn,n but only in the case when, at least, one strict residual-
entropy hierarchy exists among neighboring ground states of
all orders. Moreover, when, in a model with n-dimensional
ground-state parametric space, all residual-entropy hierar-
chies among neighboring ground states of all orders are strict,
then each region from Gn,i is divided into subregions in which
the specific heat capacity exhibits all number of peaks up
to i + 1. At the same time, in this case, the subregion of a
region from Gn,i, where the specific heat capacity exhibits
j-peak structure, is always bordering with subregions of the
corresponding regions from Gn,i+1, where the temperature
behavior of the specific heat capacity exhibits j + 1 peaks. All
these facts were demonstrated in Ref. [30] in the framework
of an exactly solvable frustrated model with two-dimensional
ground-state parametric space, where all subregions of the
model parametric space, for which the specific heat capacity
exhibits one-, two-, and three-peak structure, were identified
(see Figs. 15 and 16 in Ref. [30]).

The open question, however, is what will change in this
picture when, at least, one residual-entropy hierarchy among
neighboring ground states of all orders is not strict, i.e., when,
at least, one residual entropy of a ground state of the ith order
is equal to the residual entropy of the neighboring ground state
of the order i + 1. Namely, such a situation is observed in the
model given by Hamiltonian (1) on the zigzag ladder studied
in this paper. Here, as was shown in the previous section, the
residual entropy of the ground states g(2)

2,1 and g(6)
2,1, which are
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FIG. 5. The regions of the parameters of the model for which the
specific heat capacity exhibits one-peak (the blue filled circle, the
blue dash-dotted lines, and the two-dimensional regions denoted by
blue Roman numeral I), two-peak (the dashed red lines and the two-
dimensional regions denoted by red Roman numeral II), and three-
peak (not denoted explicitly in this figure) behavior as a function of
the temperature. The regions where three peaks are formed in the
temperature behavior of the specific heat capacity can be also seen
here although are not denoted. They are shown and denoted explicitly
in detailed Figs. 7 and 8 of the regions in the vicinity of the zeroth-
order ground states g(2)

2,0 and g(1)
2,0, respectively, where they are denoted

by green Roman numeral III.

realized on the line segments g
(2)
2,1 and g

(6)
2,1 (see Fig. 2), is

equal to the residual entropy of the corresponding neighboring
ground states g(1)

2,2 and g(2)
2,2 and g(4)

2,2 and g(5)
2,2, respectively (see

Figs. 2–4 as well as Table I). This fact has nontrivial impact
on the behavior of the specific heat capacity for the model
parameters from the vicinity of these line segments.

In this respect, in Figs. 5–8, the regions of the ground-state
parametric space of the model, in which various ground states
are realized, are divided into subregions in which one-, two-,
and three-peak structure in the behavior of the specific heat
capacity as a function of the temperature is observed. As was
already discussed, for values of model parameters for which
the ith-order ground states are formed in the limit T → 0,
one can observe at most i + 1-peak structure in the temper-
ature behavior of the specific heat capacity. As follows from
Figs. 5–8, the one-peak structure in the behavior of the specific
heat capacity is observed at all points where the zeroth-order
ground states are formed, i.e., for all model parameters that
correspond to the set G2,0 (filled blue circles in Figs. 5–8). On
the other hand, on the geometric objects in the ground-state
parametric space of the model, where the ground states of the
first order are formed in the zero-temperature limit, i.e., on all
line segments belonging to G2,1, at most two-peak structure
in the temperature behavior of the specific heat capacity
can be observed. Due to the fact that the residual-entropy
hierarchies between all ground states of the first order and the
corresponding neighboring ground states of the zeroth order

FIG. 6. Detailed illustration of the regions of the model param-
eters in the vicinity of the zeroth-order ground states g(1)

2,0 and g(2)
2,0

(blue filled circles) for which the specific heat capacity exhibits one-
peak (the blue filled circle, the blue dash-dotted lines, and the two-
dimensional regions denoted by blue Roman numeral I), two-peak
(the dashed red lines and the two-dimensional regions denoted by
red Roman numeral II), and three-peak (not denoted explicitly in this
figure) behavior as a function of the temperature. The regions where
three peaks are formed in the temperature behavior of the specific
heat capacity can be also seen here although they are not denoted.
They are shown and denoted explicitly in detailed Figs. 7 and 8,
respectively, where they are denoted by green Roman numeral III.

are strict, each line segment g
(i)
2,1, i = 1, . . . , 8, is uniquely

divided into subregions with the one-peak [the dash-dotted
(blue) lines in Figs. 5–8] and the two-peak [the dashed (red)
lines in Figs. 5–8] structure in the behavior of the specific heat
capacity. At the same time, the subregions with the two-peak
structure in the behavior of the specific heat capacity are
adjoining to the corresponding point from G2,0. To be more
concrete, the coordinates of the points that separate subregions
of the corresponding line segments from the set G2,1, where
the one- and two-peak structures in the behavior of the specific
heat capacity are realized, are the following: the coordi-
nates of these points are {H/|J|, α} ≈ {±2,±1.467} for lines
g

(2)
2,1 and g

(6)
2,1; {H/|J|, α} ≈ {±2.749,±0.417} for lines g

(4)
2,1

and g
(8)
2,1; {H/|J|, α} ≈ {±2.071,±0.929} and {H/|J|, α} ≈

{±2.377,±0.623} for lines g(3)
2,1 and g

(7)
2,1; and the coordinates

of two separating points are {H/|J|, α} ≈ {±1.823,±0.941}
and {H/|J|, α} ≈ {∓2.302,∓0.434} for lines g(1)

2,1 and g
(5)
2,1.

Finally, the maximal possible number of peaks in the
temperature behavior of the specific heat capacity for the
parameters of the model from regions that form G2,2, i.e.,
where the second-order ground states are formed in the zero-
temperature limit, is three. At the same time, the three-
peak structure of the specific heat capacity is maximally
possible in the framework of the studied model with the
two-dimensional ground-state parametric space. As was dis-
cussed in detail in Ref. [30], the three-peak structure in
the behavior of the specific heat capacity emerges only
in restricted areas adjoining the line segments of g

(i)
2,1, i =
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FIG. 7. Detailed illustration of the regions of the model param-
eters in the vicinity of the zeroth-order ground state g(2)

2,0 (blue filled
circle) for which the specific heat capacity exhibits one-peak (the
blue filled circle, the blue dash-dotted lines, and the two-dimensional
regions denoted by blue Roman numeral I), two-peak (the dashed
red lines and the two-dimensional regions denoted by red Roman
numeral II), and three-peak (the two-dimensional regions denoted
by the green Roman numeral III) behavior as a function of the
temperature.

1, . . . , 8, where the specific heat capacity exhibits two-peak
structure in its temperature behavior, but only in the case
in which there is a strict residual-entropy hierarchy among
the corresponding neighboring ground states of all orders.
In our model, as was already mentioned, the strict residual-
entropy hierarchies are valid in all cases when |α| � 1.
As a consequence, the regions with the three-peak structure
in the temperature behavior of the specific heat capacity exist
in the vicinity of each line segment of g(i)

2,1, i = 1, 3, 4, 5, 7, 8,
where the two-peak structure in the behavior of the specific
heat capacity is observed (see the corresponding regions in
Figs. 5–8 denoted by green Roman numeral III in Figs. 7
and 8). At the same time, the two-peak structure in the
temperature behavior of the specific heat capacity is observed
in the subregions of all regions that form G2,2 adjoining
the corresponding line segments of g

(i)
2,1, i = 1, 3, 4, 5, 7, 8,

where the one-peak structure in the behavior of the specific
heat capacity is observed as well as adjoining to the regions
where the three-peak structure in the specific heat capacity is
observed (see the corresponding regions in Figs. 5–8 denoted
by red Roman numeral II). In remaining subregions of the
regions that form G2,2 (denoted by blue Roman numeral I
in Figs. 5–8), the specific heat capacity exhibits standard
one-peak behavior.

However, when |α| > 1, the strict residual-entropy hierar-
chies between the first-order ground states g(2)

2,1 and g(6)
2,1 and

the corresponding neighboring second-order ground states
g(1)

2,2 and g(2)
2,2 and g(4)

2,2 and g(5)
2,2, respectively, are violated (see

Figs. 3 and 4 and the corresponding discussion in the previous
section) because all these ground states have the same value

FIG. 8. Detailed illustration of the regions of the model param-
eters in the vicinity of the zeroth-order ground state g(1)

2,0 (blue filled
circle) for which the specific heat capacity exhibits one-peak (the
blue filled circle, the blue dash-dotted lines, and the two-dimensional
regions denoted by blue Roman numeral I), two-peak (the dashed
red lines and the two-dimensional regions denoted by red Roman
numeral II), and three-peak (the two-dimensional regions denoted
by the green Roman numeral III) behavior as a function of the
temperature.

of the entropy per site equal to zero. This fact has substantial
consequences on the behavior of the specific heat capacity
for the model parameters from the vicinity of line segments
g

(2)
2,1 and g

(6)
2,1, where the first-order ground states g(2)

2,1 and

g(6)
2,1 are formed. This can be seen immediately in Figs. 5,

6, and 8. In this case, there exist no subregions of regions
g

(1)
2,2, g(2)

2,2, g(4)
2,2, and g

(5)
2,2 that, on one hand, would be adjoining

g
(2)
2,1 and g

(6)
2,1, respectively, and, on the other hand, at the

same, the specific heat capacity would exhibit the three-peak
structure as a function of the temperature. Thus, in this case,
the maximal number of peaks in the temperature behavior
of the specific heat capacity is reduced by one, i.e., by the
number of residual-entropy hierarchy violations.

As will be shown in what follows, the nonexistence of the
strict residual-entropy hierarchy between some neighboring
ground states of different orders has nontrivial impact not only
on the number of peaks in the temperature behavior of the
specific heat capacity but also on the qualitative as well as
quantitative behavior of the specific heat capacity as a function
of the external magnetic field.

First of all, let us analyze typical behavior of the specific
heat capacity as a function of the temperature in the vicinity
of the zeroth-order ground states of the model in situations
when strict residual-entropy hierarchies among neighboring
ground states of different orders are valid. In this respect, in
Figs. 9–11, the typical temperature behavior of the specific
heat capacity for parameters from the vicinity of points g

(1)
2,0

and g
(2)
2,0 of the parametric space, where the zeroth-order

ground states g(1)
2,0 and g(2)

2,0 are formed, is demonstrated. The
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FIG. 9. The behavior of the specific heat capacity as a function of
the reduced temperature for parameter α = 0.48 and for six represen-
tative values of the external magnetic field chosen from six different
regions of the parametric space where two and three peaks are
formed, namely, for H/|J| = 2.44 and 2.56 (the red dashed curves)
for which two-peak structure is formed and for H/|J| = 2.438 and
2.442 (the green short-dashed curves) and H/|J| = 2.558 and 2.562
(the green dash-dotted curves) from the corresponding two adjoining
regions where three-peak structure in the behavior of the specific heat
capacity is observed (see Fig. 7). In addition, the one-peak behavior
of the specific heat capacity for parameters H/|J| = 2.5 and α = 0.5
(the solid blue curve), where the neighboring zeroth-order ground
state g(2)

2,0 is formed, is included for comparison.

solid (blue) curves in Figs. 9–11 correspond to the one-peak
behavior of the specific heat capacity directly at points, where
the zeroth-order ground states g(1)

2,0 and g(2)
2,0, respectively,

are realized. The existence of the two-peak behavior of the
specific heat capacity on the corresponding segments of lines
g

(1)
2,1, g(3)

2,1, g(4)
2,1, and g

(5)
2,1 (see Fig. 5–8), where the first-order

ground states g(1)
2,1, g(3)

2,1, g(4)
2,1, and g(5)

2,1 are realized in the limit
T → 0, is demonstrated in Figs. 9–11 by the dashed (red)
curves for given values of the external magnetic field. Finally,
the dash-dotted as well as the short-dashed (green) curves in
these figures demonstrate the typical three-peak structure in
the temperature behavior of the specific heat capacity from
the corresponding regions denoted by green Roman numeral
III in Figs. 7 and 8.

As follows from Figs. 9–11, the peaks in the behavior of
the specific heat capacity for parameters for which the zeroth-
order ground states are realized (the solid blue curves) have
the same properties (the same positions as well as heights)
as the corresponding peaks in the behavior of the specific
heat capacity for parameters of the model for which the
neighboring ground states of higher orders are formed. At the
same time, the same is valid for the second (Schottky-type)
peaks in the behavior of the specific heat capacity described
by the red dashed curves in Figs. 9–11, which have the same
properties as the corresponding peaks in the behavior of the
specific heat capacity for parameter values from subregions

FIG. 10. The behavior of the specific heat capacity as a function
of the reduced temperature for parameter α = 0.52 and for three
representative values of the external magnetic field chosen from three
different neighboring regions of the parametric space where two and
three peaks are formed, namely, for H/|J| = 2.48 (the red dashed
curve) for which the specific heat capacity exhibits two-peak struc-
ture and for H/|J| = 2.478 and 2.482 (the green dash-dotted curves)
from the corresponding left and right adjoining regions where three-
peak structure in the behavior of the specific heat capacity is observed
(see Fig. 7). In addition, again, the one-peak behavior of the specific
heat capacity for parameters H/|J| = 2.5 and α = 0.5 (the solid
blue curve), where the neighboring zeroth-order ground state g(2)

2,0 is
formed, is included for comparison.

of G2,2, where the three-peak structure in the behavior of
the specific heat capacity exists (the green dash-dotted and
short-dashed curves).

This low-temperature behavior of the specific heat capac-
ity is directly related to the cascade formation of the strict
residual-entropy hierarchies of the neighboring ground states
of all orders, as is demonstrated explicitly in Figs. 12–14,
where the temperature behavior of the entropy is shown for
the same model parameters as in Figs. 9–11.

On the other hand, the specific heat capacity as a function
of the temperature demonstrates qualitatively different behav-
ior in the vicinity of neighboring ground states of different or-
ders, the strict residual-entropy hierarchy of which is violated.
Such behavior is demonstrated explicitly in Fig. 15, where the
temperature behavior of the specific heat capacity is shown
for α = 1.02 and for various values of the external magnetic
field from the left and right vicinity of H/|J| = 2, for which
the first-order ground state g(2)

2,1 is realized when α > 1. In
addition, again the curve of the specific heat capacity for
parameters for which the neighboring zeroth-order ground
state g(1)

2,0 is realized is shown for comparison (the blue solid
curve in Fig. 15). Here, regardless of the value of the external
magnetic field, the specific heat capacity exhibits at most the
two-peak structure in its temperature behavior [see the dashed
(red), short-dashed (green), and dash-dotted (dark yellow)
curves]. Note that the dashed (red) curve corresponds to the
parameters from line g

(2)
2,1 on which the first-order ground
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FIG. 11. The behavior of the specific heat capacity as a function
of the reduced temperature for parameter α = 0.98 and for six
representative values of the external magnetic field chosen from
six different regions of the parametric space where two and three
peaks are formed, namely, for H/|J| = 1.94 and 2.02 (the red dashed
curves) for which the specific heat capacity exhibits the two-peak
structure and for H/|J| = 1.938 and 1.942 (the green short-dashed
curves) and H/|J| = 2.018 and 2.022 (the green dash-dotted curves)
from the corresponding two adjoining regions where the three-peak
structure in the behavior of the specific heat capacity is observed
(see Fig. 8). In addition, the one-peak behavior of the specific heat
capacity for parameters H/|J| = 2 and α = 1 (the solid blue curve),
where the neighboring zeroth-order ground state g(1)

2,0 is formed, is
included for comparison.

state g(2)
2,1 is realized. On the other hand, the short-dashed

(green) and dash-dotted (dark yellow) curves correspond to
the parameters from adjoining regions g

(1)
2,2 and g

(2)
2,2 in which

the corresponding second-order ground states g(1)
2,2 and g(2)

2,2 are
formed in the limit T → 0. However, due to the fact that the
strict hierarchy between these neighboring ground states of
different orders is violated, the third peak in the behavior of
the specific heat capacity is not present here. Moreover, as
is also evident from Fig. 15, the positions as well as heights
of the Schottky-type peaks, i.e., the additional peak to the
standard peak of the specific heat capacity that is formed at
lower temperatures, are different for model parameters from
the left and right vicinity of the line g

(2)
2,1, where the first-order

ground state g(2)
2,1 is formed. However, these peaks become

very similar when the magnetic fields from the left and
right simultaneously tend to H/|J| = 2 (see the corresponding
couples of curves for H/|J| = 1.998 and 2.002 and H/|J| =
1.9998 and 2.0002). At the same time, they approach the curve
of the specific heat capacity for H/|J| = 2 [the dashed (red)
curve in Fig. 15].

This behavior of the specific heat capacity in the vicinity of
the line g

(2)
2,1, where the first-order ground state g(2)

2,1 is formed
in the zero-temperature limit, is directly related to the nonexis-
tence of the strict residual-entropy hierarchies among ground
states of all different orders (see Fig. 4). As is explicitly

FIG. 12. The demonstration of the cascade temperature behavior
of the entropy per site of the model for the same parameter values as
in Fig. 9.

evident from Fig. 16, the absence of the strict residual-entropy
hierarchy between the first-order ground state g(2)

2,1 and the

second-order ground states g(1)
2,2 and g(2)

2,2 leads to the reduction
of the three-level cascade temperature behavior of the entropy
(see Figs. 12–14), which must exist when the hierarchy is
strict, to the two-level one.

Thus, the presence of a strong enough (|α| > 1) multisite
interaction within elementary triangles in the framework of
the antiferromagnetic model on the zigzag ladder not only
reduces the number of different ground states of the model
but also leads to the violation of the strict residual-entropy

FIG. 13. The demonstration of the cascade temperature behavior
of the entropy per site of the model for the same parameter values as
in Fig. 10.
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FIG. 14. The demonstration of the cascade temperature behavior
of the entropy per site of the model for the same parameter values as
in Fig. 11.

hierarchies and, as a result, to qualitatively different temper-
ature behavior of the specific heat capacity. Moreover, as is
discussed below, the violation of the strict residual-entropy
hierarchy among neighboring ground states has also nontrivial

FIG. 15. The behavior of the specific heat capacity as a function
of the reduced temperature for parameter α = 1.02 and for various
values of the external magnetic field in the vicinity of H/|J| = 2
where two peaks in the behavior of the specific heat capacity are
formed, namely, directly for H/|J| = 2 (the red dashed curve), for
which the first-order ground state g(2)

2,1 is formed in zero-temperature
limit, and for representative values of the external magnetic field
from its left vicinity, namely, for H/|J| = 1.98, 1.998, and 1.9998
(the green short-dashed curves), as well as from its right vicinity
for H/|J| = 2.02, 2.002, and 2.0002 (the dark-yellow dash-dotted
curves). In addition, the one-peak behavior of the specific heat
capacity for parameters H/|J| = 2 and α = 1 (the solid blue curve),
where the neighboring zeroth-order ground state g(1)

2,0 is formed, is
included for comparison.

FIG. 16. The demonstration of the reduced two-level cascade
temperature behavior of the entropy per site of the model for the
same parameter values as in Fig. 15.

consequences for the behavior of the specific heat capacity as
a function of the external magnetic field.

FIG. 17. Upper panel: The dependence of the specific heat ca-
pacity as a function of the external magnetic field for various values
of the reduced temperature and for the parameter α = 0. Lower
panel: The explicit illustration of the field-induced sharp double-
peak structure in the low-temperature behavior of the specific heat
capacity for kBT/|J| = 0.1.
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FIG. 18. Upper panel: The dependence of the entropy per site
of the model as a function of the external magnetic field for the
same parameter values as in Fig. 17. Lower panel: The entropy of
the model as a function of the external magnetic field at the zero
temperature for α = 0.

Again, when the residual-entropy hierarchy among neigh-
boring ground states of all orders is strict then one observes a
typical low-temperature behavior of the specific heat capacity
as a function of the external magnetic field. First of all,
in the upper panel of Fig. 17, the behavior of the specific
heat capacity as a function of the external magnetic field
is shown for several values of the temperature for the case
without the multisite interaction, i.e., for α = 0. Here, in
accordance with the detailed discussion present in Ref. [38],
one can see the formation of a typical field-induced sharp
double-peak structure at low temperatures centered in the
magnetic field absolute values |H/J| = 1 and 4, for which
the corresponding highly macroscopically degenerated single-
point ground states are formed in the limit T → 0. This can
be seen explicitly in the lower panel of Fig. 17, where the
curve for kBT/|J| = 0.1 is shown once more for clarity. At
the same time, the corresponding formation of the residual
entropies of the single-point ground states as a function of the
external magnetic field is shown in the upper panel of Fig. 18.
The residual entropies of the model for the case α = 0 are
demonstrated in the lower panel of Fig. 18.

Qualitatively similar behavior of the specific heat capacity
as a function of the external magnetic field (with formation of
the sharp double-peak structure around each value of the ex-
ternal magnetic field, for which the single-point ground states

FIG. 19. Upper panel: The dependence of the specific heat ca-
pacity as a function of the external magnetic field for various values
of the reduced temperature and for the parameter α = 0.8. Lower
panel: The explicit illustration of the field-induced sharp double-
peak structure in the low-temperature behavior of the specific heat
capacity for kBT/|J| = 0.1.

are formed) is also observed in the model with the presence of
the multisite interaction when its strength is weaker or at most
equal to the nearest-neighbor antiferromagnetic interaction,
i.e., when |α| � 1. The influence of the multisite interaction
on the behavior of the specific heat capacity as a function
of the external magnetic field is demonstrated in Fig. 19 for
α = 0.8. One can see that, in this case, the presence of the
multisite interaction leads to the reduction of the system of
the ground states of the model but, due to the fact that all
residual-entropy hierarchies among neighboring ground states
are strict, the low-temperature formation of the double-peak
structure in the specific heat capacity is again present (see the
lower panel of Fig. 19). The only difference is the reduced
number of formed double peaks related to the reduced number
of different ground states. The corresponding behavior of the
entropy of the model as a function of the external magnetic
field for α = 0.8 and for various values of the temperature
is shown in the upper panel of Fig. 20. The formation of the
residual entropies of all single-point ground states is evident
from this figure, which are shown explicitly in the lower panel
of Fig. 20.

However, qualitatively different behavior of the specific
heat capacity as a function of the external magnetic field
is observed when |α| > 1. In this situation, as follows from
Figs. 2 and 3, except of the saturated plateau-like ground
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FIG. 20. Upper panel: The dependence of the entropy per site
of the model as a function of the external magnetic field for the
same parameter values as in Fig. 17. Lower panel: The entropy of
the model as a function of the external magnetic field at the zero
temperature for α = 0.8.

states, the system exhibits only one plateau ground state with
|m| = 1/3 and two single-point ground states of the first order
that separate them (the solid and dotted lines in Fig. 2). But, as
was discussed in the previous section, while, in this case, the
magnetization properties of all neighboring ground states are
different, the second-order ground states g(1)

2,2 and g(2)
2,2 as well

as g(4)
2,2 and g(5)

2,2 are separated by the first-order ground state

g(2)
2,1 and g(6)

2,1, respectively, the entropy of which is the same
(equal to zero); i.e., the strict entropy hierarchy among them is
violated. This fact has nontrivial impact on the behavior of the
specific heat capacity as a function of the external magnetic
field, which is demonstrated in detail in Figs. 21–24.

In Fig. 21, the specific heat capacity as a function of the
external magnetic field for various values of temperatures is
shown for α = 1.5. For this value of the parameter α, the
model exhibits the existence of two first-order single-point
ground states g(2)

2,1 and g(8)
2,1, which are formed for H/|J| =

2 and −8.5, respectively. This fact is again visible in the
behavior of the specific heat capacity shown in the upper panel
of Fig. 21. But, while the behavior of the specific heat capacity
in the vicinity of the magnetic field value H/|J| = −8.5
is completely the same as was already discussed above for
|α| < 1 (with the formation of the typical field-induced sharp
double-peak structure for low temperatures centered directly
at this value of the magnetic field), the behavior of the specific

FIG. 21. Upper panel: The dependence of the specific heat ca-
pacity as a function of the external magnetic field for various values
of the reduced temperature and for the parameter α = 1.5. Lower
panel: The explicit illustration of the field-induced sharp double-
peak structure in the low-temperature behavior of the specific heat
capacity for kBT/|J| = 0.1.

heat capacity in the vicinity of the magnetic field H/|J| = 2
is considerably different and no double-peak structure exists
for low temperatures in this case. This is demonstrated in the
lower panel of Fig. 21 for the reduced temperature kBT/|J| =
0.1. This difference in the behavior of the specific heat ca-
pacity is directly related to the corresponding difference in
the entropy behavior as a function of the external magnetic
field shown explicitly in the upper panel of Fig. 22, where it
is shown that while the entropy obtains its nonzero residual
value in the zero-temperature limit for H/|J| = −8.5, the
entropy tends to zero in this limit for H/|J| = 2 (see the lower
panel of Fig. 22).

It is also instructive to compare in detail the low-
temperature properties of the specific heat capacity as a
function of the external magnetic field in the vicinity of
these two specific values of the magnetic field. As fol-
lows from Fig. 23, in the case, when the entropy hierarchy
among neighboring different-order ground states is strict,
the double-peak structure in the behavior of the specific
heat capacity is formed in the vicinity of the corresponding
value of the magnetic field for relatively large values of
temperature. In this case, the behavior of the specific heat
capacity remains qualitatively the same when the tempera-
ture decreases and, at the same time, the formed double-
peak structure becomes sharper and more pronounced. On

042151-13
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FIG. 22. Upper panel: The dependence of the entropy per site
of the model as a function of the external magnetic field for the
same parameter values as in Fig. 17. Lower panel: The entropy of
the model as a function of the external magnetic field at the zero
temperature for α = 0.8.

FIG. 23. Detailed illustration of the formation of the field-
induced sharp double-peak structure in the low-temperature behavior
of the specific heat capacity centered in the external magnetic value
H/|J| = −8.5, for which the highly macroscopically degenerated
single-point ground state is formed in the case α = 1.5.

FIG. 24. Detailed illustration of the low-temperature behavior of
the specific heat capacity for α = 1.5 in the vicinity of the magnetic
field value H/|J| = 2 for which the single-point ground state is
formed that has the same zero value of the entropy as the neighboring
plateau-like ground states, i.e., in the case in which the residual-
entropy hierarchies between neighboring ground states of different
orders are violated.

the other hand, as follows from Fig. 24, the behavior of
the specific heat capacity around the magnetic field value
H/|J| = 2 (where the first-order ground state is formed with
the same zero entropy as both adjoining second-order ground
states have) also exhibits the tendency to form double-peak
structure at relatively large temperatures. But this double-peak
structure disappears at some finite temperature for which the
specific heat capacity comes to exhibit the one-peak structure
only that disappears continuously in the zero-temperature
limit.

As follows from the above discussion, the low-temperature
behavior of the specific heat capacity as a function of the
external magnetic field is significantly different in the vicinity
of the magnetic field values, for which single-point ground
states are formed in the limit T → 0 with higher values of
the residual entropies than neighboring plateau-like ground
states, than in the vicinity of the values of the magnetic
field, where the single-point ground states are formed with
the same entropy as the corresponding adjoining plateaus
have. However, from the experimental point of view, the very
existence and formation of different-order ground states in the
system at some external magnetic field values can be directly
detected in both these cases by the corresponding typical
behavior of the specific heat capacity described above.

V. CONCLUSION

In conclusion, let us summarize briefly the main results
obtained in this paper.

In the present paper, we have investigated in detail thermo-
dynamical consequences of the hierarchy violation between
residual entropies of neighboring ground states of different
orders in the framework of the exactly solvable antiferromag-
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netic Ising model with the presence of multisite interaction
in the external magnetic field on the geometrically frustrated
zigzag ladder.

First of all, a unique classification of the set of all ground
states of the model is performed from the point of view of
their dimensionality (i.e., from the point of view of the spatial
dimension of the region in the ground-state parametric space,
in which the corresponding ground state is realized) and their
residual entropies are exactly determined. It is shown that
the ground-state picture of the model from the magnetization
point of view is different than that from the entropy point
of view, namely, that there exist the ground states of lower-
order (the first-order ground states) whose residual entropy
is the same as the entropies of the neighboring higher-order
ground states (the second-order ground states), although all of
them have different values of magnetization. This means that
the entropy hierarchies between neighboring ground states of
different orders are violated in this case.

Further, it is shown in detail that this residual-entropy hi-
erarchy violation has nontrivial consequences on the behavior
of the specific heat capacity as a function of the temperature
as well as of the external magnetic field. On one hand, it is
shown that the absence of the strict hierarchy between residual
entropies of the neighboring ground states of different orders
leads to the reduction of the possible number of peaks in
the low-temperature behavior of the specific heat capacity
in the corresponding regions of the ground-state parametric
space. On the other hand, the violation of this strict entropy
hierarchy also leads to qualitatively significantly different
behavior of the specific heat capacity as a function of the
external magnetic field that can be directly measured by
experiments. Namely, while, in the cases when the hierarchies

between residual entropies of neighboring ground states of
different orders are strict, the specific heat capacity as a
function of the external magnetic field exhibits the formation
of typical field-induced sharp double-peak structures centered
in the magnetic field values for which the corresponding
single-point ground states are formed in the limit T → 0 (see
Fig. 23), in the case in which this hierarchy is violated, the
specific heat capacity as a function of the external magnetic
field also exhibits the tendency to form double-peak structure
at relatively large temperatures but this double-peak structure
disappears at some finite temperature and, subsequently, the
remaining one-peak structure disappears continuously in the
zero-temperature limit (see Fig. 24).

We suppose that the obtained theoretical results can be
used in experiments for obtaining nontrivial information
about macroscopic degeneracies of ground states of various
frustrated magnetic materials. Namely, measuring the
properties of the specific heat capacity as a function of the
external magnetic field at low temperatures, one can not only
identify the exact positions of all single-point ground states
but also identify relations between their residual entropies and
the residual entropies of the neighboring plateau-like ground
states.

ACKNOWLEDGMENTS

The work was supported by VEGA Grants No. 2/0065/17
and No. 2/0058/19 of the Slovak Academy of Sciences,
by Grant No. APVV-17-0020, and by the realization of the
project ITMS No. 26220120029, based on the supporting op-
erational Research and Development Program financed from
the European Regional Development Fund.

[1] A. P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994).
[2] N. P. Raju, E. Gmelin, and R. K. Kremer, Phys. Rev. B 46, 5405

(1992).
[3] K. Ishida, M. Morishita, K. Yawata, and H. Fukuyama,

Phys. Rev. Lett. 79, 3451 (1997).
[4] V. K. Pecharsky and K. A. Gschneidner, Jr., Phys. Rev. Lett. 78,

4494 (1997).
[5] M. J. Harris, S. T. Bramwell, P. C. W. Holdsworth, and J. D. M.

Champion, Phys. Rev. Lett. 81, 4496 (1998).
[6] B. Revaz, A. Junod, and A. Erb, Phys. Rev. B 58, 11153

(1998).
[7] N. P. Raju, M. Dion, M. J. P. Gingras, T. E. Mason, and J. E.

Greedan, Phys. Rev. B 59, 14489 (1999).
[8] R. Siddharthan, B. S. Shastry, A. P. Ramirez, A. Hayashi, R. J.

Cava, and S. Rosenkranz, Phys. Rev. Lett. 83, 1854 (1999).
[9] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S.

Shastry, Nature (London) 399, 333 (1999).
[10] R. G. Melko, B. C. den Hertog, and M. J. P. Gingras, Phys. Rev.

Lett. 87, 067203 (2001).
[11] K. Matsuhira, Z. Hiroi, T. Tayama, S. Takagi, and T. Sakakibara,

J. Phys.: Condens. Matter 14, L559 (2002).
[12] Z. Hiroi, K. Matsuhira, S. Takagi, T. Tayama, and T. Sakakibara,

J. Phys. Soc. Jpn. 72, 411 (2003).
[13] Z. Hiroi, K. Matsuhira, and M. Ogata, J. Phys. Soc. Jpn. 72,

3045 (2003).

[14] S. Noguchi, T. Sakon, H. Nojiri, and M. Motokawa, Physica B
346-347, 179 (2004).

[15] S. Noguchi, T. Sakon, H. Nojiri, and M. Motokawa, Physica B
346-347, 183 (2004).

[16] S. S. Sosin, L. A. Prozorova, A. I. Smirnov, A. I. Golov,
I. B. Berkutov, O. A. Petrenko, G. Balakrishnan, and M. E.
Zhitomirsky, Phys. Rev. B 71, 094413 (2005).

[17] L. Gondek, A. Szytula, D. Kaczorowski, A. Szewczyk, M.
Gutowska, and P. Piekarz, J. Phys.: Condens. Matter 19, 246225
(2007).

[18] X. Ke, M. L. Dahlberg, E. Morosan, J. A. Fleitman, R. J. Cava,
and P. Schiffer, Phys. Rev. B 78, 104411 (2008).

[19] P. Schobinger-Papamantellos, J. Rodríguez-Carvajal, L. D.
Tung, C. Ritter, and K. H. J. Buschow, J. Phys.: Condens.
Matter 20, 195201 (2008).

[20] X. Ke, D. V. West, R. J. Cava, and P. Schiffer, Phys. Rev. B 80,
144426 (2009).

[21] J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod.
Phys. 82, 53 (2010).

[22] D. O’Flynn, M. R. Lees, and G. Balakrishnan, J. Phys.:
Condens. Matter 26, 256002 (2014).

[23] I. Panneer Muthuselvam, R. Sankar, A. V. Ushakov, W. T. Chen,
G. Narsinga Rao, S. V. Streltsov, S. K. Karna, L. Zhao, M.-
K. Wu, and F. C. Chou, J. Phys.: Condens. Matter 27, 456001
(2015).

042151-15

https://doi.org/10.1146/annurev.ms.24.080194.002321
https://doi.org/10.1146/annurev.ms.24.080194.002321
https://doi.org/10.1146/annurev.ms.24.080194.002321
https://doi.org/10.1146/annurev.ms.24.080194.002321
https://doi.org/10.1103/PhysRevB.46.5405
https://doi.org/10.1103/PhysRevB.46.5405
https://doi.org/10.1103/PhysRevB.46.5405
https://doi.org/10.1103/PhysRevB.46.5405
https://doi.org/10.1103/PhysRevLett.79.3451
https://doi.org/10.1103/PhysRevLett.79.3451
https://doi.org/10.1103/PhysRevLett.79.3451
https://doi.org/10.1103/PhysRevLett.79.3451
https://doi.org/10.1103/PhysRevLett.78.4494
https://doi.org/10.1103/PhysRevLett.78.4494
https://doi.org/10.1103/PhysRevLett.78.4494
https://doi.org/10.1103/PhysRevLett.78.4494
https://doi.org/10.1103/PhysRevLett.81.4496
https://doi.org/10.1103/PhysRevLett.81.4496
https://doi.org/10.1103/PhysRevLett.81.4496
https://doi.org/10.1103/PhysRevLett.81.4496
https://doi.org/10.1103/PhysRevB.58.11153
https://doi.org/10.1103/PhysRevB.58.11153
https://doi.org/10.1103/PhysRevB.58.11153
https://doi.org/10.1103/PhysRevB.58.11153
https://doi.org/10.1103/PhysRevB.59.14489
https://doi.org/10.1103/PhysRevB.59.14489
https://doi.org/10.1103/PhysRevB.59.14489
https://doi.org/10.1103/PhysRevB.59.14489
https://doi.org/10.1103/PhysRevLett.83.1854
https://doi.org/10.1103/PhysRevLett.83.1854
https://doi.org/10.1103/PhysRevLett.83.1854
https://doi.org/10.1103/PhysRevLett.83.1854
https://doi.org/10.1038/20619
https://doi.org/10.1038/20619
https://doi.org/10.1038/20619
https://doi.org/10.1038/20619
https://doi.org/10.1103/PhysRevLett.87.067203
https://doi.org/10.1103/PhysRevLett.87.067203
https://doi.org/10.1103/PhysRevLett.87.067203
https://doi.org/10.1103/PhysRevLett.87.067203
https://doi.org/10.1088/0953-8984/14/29/101
https://doi.org/10.1088/0953-8984/14/29/101
https://doi.org/10.1088/0953-8984/14/29/101
https://doi.org/10.1088/0953-8984/14/29/101
https://doi.org/10.1143/JPSJ.72.411
https://doi.org/10.1143/JPSJ.72.411
https://doi.org/10.1143/JPSJ.72.411
https://doi.org/10.1143/JPSJ.72.411
https://doi.org/10.1143/JPSJ.72.3045
https://doi.org/10.1143/JPSJ.72.3045
https://doi.org/10.1143/JPSJ.72.3045
https://doi.org/10.1143/JPSJ.72.3045
https://doi.org/10.1016/j.physb.2004.01.045
https://doi.org/10.1016/j.physb.2004.01.045
https://doi.org/10.1016/j.physb.2004.01.045
https://doi.org/10.1016/j.physb.2004.01.045
https://doi.org/10.1016/j.physb.2004.01.046
https://doi.org/10.1016/j.physb.2004.01.046
https://doi.org/10.1016/j.physb.2004.01.046
https://doi.org/10.1016/j.physb.2004.01.046
https://doi.org/10.1103/PhysRevB.71.094413
https://doi.org/10.1103/PhysRevB.71.094413
https://doi.org/10.1103/PhysRevB.71.094413
https://doi.org/10.1103/PhysRevB.71.094413
https://doi.org/10.1088/0953-8984/19/24/246225
https://doi.org/10.1088/0953-8984/19/24/246225
https://doi.org/10.1088/0953-8984/19/24/246225
https://doi.org/10.1088/0953-8984/19/24/246225
https://doi.org/10.1103/PhysRevB.78.104411
https://doi.org/10.1103/PhysRevB.78.104411
https://doi.org/10.1103/PhysRevB.78.104411
https://doi.org/10.1103/PhysRevB.78.104411
https://doi.org/10.1088/0953-8984/20/19/195201
https://doi.org/10.1088/0953-8984/20/19/195201
https://doi.org/10.1088/0953-8984/20/19/195201
https://doi.org/10.1088/0953-8984/20/19/195201
https://doi.org/10.1103/PhysRevB.80.144426
https://doi.org/10.1103/PhysRevB.80.144426
https://doi.org/10.1103/PhysRevB.80.144426
https://doi.org/10.1103/PhysRevB.80.144426
https://doi.org/10.1103/RevModPhys.82.53
https://doi.org/10.1103/RevModPhys.82.53
https://doi.org/10.1103/RevModPhys.82.53
https://doi.org/10.1103/RevModPhys.82.53
https://doi.org/10.1088/0953-8984/26/25/256002
https://doi.org/10.1088/0953-8984/26/25/256002
https://doi.org/10.1088/0953-8984/26/25/256002
https://doi.org/10.1088/0953-8984/26/25/256002
https://doi.org/10.1088/0953-8984/27/45/456001
https://doi.org/10.1088/0953-8984/27/45/456001
https://doi.org/10.1088/0953-8984/27/45/456001
https://doi.org/10.1088/0953-8984/27/45/456001
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