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We present a Monte Carlo study of the geometric properties of Fortuin-Kasteleyn (FK) clusters of the Ising
model on square [two-dimensional (2D)] and simple-cubic [three-dimensional (3D)] lattices. The wrapping
probability, a dimensionless quantity characterizing the topology of the FK clusters on a torus, is found to
suffer from smaller finite-size corrections than the well-known Binder ratio and yields a high-precision critical
coupling as Kc(3D) = 0.221 654 631(8). We then study other geometric properties of FK clusters at criticality.
It is demonstrated that the distribution of the critical largest-cluster size C1 follows a single-variable function
as P(C1, L) dC1 = P̃(x) dx with x ≡ C1/LdF (L is the linear size), where the fractal dimension dF is identical to
the magnetic exponent. An interesting bimodal feature is observed in distribution P̃(x) in three dimensions, and
attributed to the different approaching behaviors for K → Kc + 0±. To characterize the compactness of the FK
clusters, we measure their graph distances and determine the shortest-path exponents as dmin(3D) = 1.259 36(12)
and dmin(2D) = 1.094 0(2). Further, by excluding all the bridges from the occupied bonds, we obtain bridge-free
configurations and determine the backbone exponents as dB(3D) = 2.167 3(15) and dB(2D) = 1.732 1(4). The
estimates of the universal wrapping probabilities for the 3D Ising model and of the geometric critical exponents
dmin and dB either improve over the existing results or have not been reported yet. We believe that these numerical
results would provide a testing ground in the development of further theoretical treatments of the 3D Ising model.
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I. INTRODUCTION

The Ising model [1] plays an important role in the study of
phase transitions and critical phenomena. The model exhibits
a finite-temperature phase transition in two and higher dimen-
sions. It can be solved exactly for a few two-dimensional
(2D) lattices [2,3], leading to exact values of phase tran-
sition points and critical exponents, which are very often
used as benchmarks for new theories and methods. In three
dimensions, since an exact solution of the Ising model is still
unavailable, one usually applies approximation methods or
numerical simulations, among which the Monte Carlo (MC)
method is probably one of the best [4,5].

Recently, the study of conformal field theories (CFTs)
in three dimensions has led to significant progresses via
two complementary approaches, i.e., the conformal bootstrap
method [6–8] and the logarithmic conformal field theory
(LCFT) [9–11]. Using the constraints of unitarity, the con-
formal bootstrap program has dramatically improved the pre-
cision of critical exponents for local operators in the three-
dimensional (3D) Ising model [6,7]. These exponents describe
the critical scaling behavior of thermodynamic quantities,
including magnetization, susceptibility, energy, and heat
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capacity. Intensive efforts are being carried out to treat
nonunitary cases like 3D percolation [8], in which nonlocal
observables are defined in terms of cluster connectivities. In
the framework of LCFT, these nonlocal lattice observables are
described by limits of local fields. A variety of exact structural
properties can be obtained in the Fortuin-Kasteleyn (FK)
representation of the q-state Potts model [9–11], referred to as
the random-cluster (RC) model. The q = 2 and q → 1 cases
correspond to the Ising model and percolation, respectively.

For a given lattice L, the reduced Hamiltonian of the
q-state Potts model reads H = −J

∑
〈i j〉 δσi,σ j , where each

lattice site i has a spin σi, taking one of the q states σi =
1, 2, . . . , q. The summation 〈i j〉 is over all the pairs of
nearest-neighbor sites and J is the interaction constant. For
the Ising case, the Hamiltonian usually takes the form H =
−K

∑
〈i j〉 sis j with si = ±1, and thus J = 2K . Under the

FK transformation, the partition function of the q-state Potts
model can be rewritten as the RC model [12,13],

ZRC(q, v) =
∑
A⊆L

vNbond qNc (v = eJ − 1), (1)

where the summation is over all subgraphs A of lattice L, and
Nbond and Nc represent the number of occupied bonds and of
connected components (FK clusters), respectively.

The RC model, in which q � 0 can take any real value,
is itself a basic model in statistical physics and probability
theory. It has yielded a host of exact results for the q-state
Potts model in two dimensions [14], plays an important
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role in the development of CFT and of stochastic Loewner
evolution (SLE) theory [15], and starts to shed new insights
in higher dimensions in the context of LCFT [9–11]. The
FK representation is also a key ingredient of the well-known
Chayes-Machta-Swendsen-Wang cluster algorithm [16–18],
in which nonlocal updates make the algorithm significantly
suppress the so-called critical slowing down.

This paper conducts a Monte Carlo study of the FK clusters
of the Ising model on square and simple-cubic lattices. We
first consider the wrapping probability R, defined as the prob-
ability that at least one cluster connects to itself by wrapping
around the periodic boundaries of a finite lattice of side length
L, i.e., a torus. In the disordered phase v < vc, the FK clusters
are small and have trivial topology (contractable to a point),
and R(v < vc)|L→∞ = 0. In the ordered phase v > vc, a giant
cluster emerges and R(v > vc)|L→∞ = 1. Right at criticality
vc, R(v = vc)|L→∞ approaches a universal value in between.
Taking into account how such wrappings occur, we further
define a family of wrapping probabilities to characterize the
topology of the FK clusters on the torus. The exact values of
critical wrapping probabilities have been derived for the 2D
RC model [19,20]. The wrapping probability was sometimes
called the crossing probability [19]. Nevertheless, the latter is
now commonly used for open or fixed boundary conditions to
specify the probability that a boundary segment is connected
to another boundary segment [21]. In addition, the so-called
spanning probability was also studied [22].

As the Binder ratio [23], the wrapping probabilities prove
to be very useful in determining the critical frontier vc(q)
[24–26] and in studying ensemble-dependent finite-size
scaling [27,28]. Recently Jacobsen and Scullard defined the
critical polynomial for the 2D RC model as PL ≡ R2d − qR0d

[29,30], where R2d corresponds to the wrapping probability
in both periodic directions and R0d is the probability that
no wrapping exists. It is found that the solution vL of
PL(q, v) = 0 converges quickly to vc as L → ∞, leading
to unparalleled precision, up to O(10−13), in the estimates
of vc(q) for various lattices. Moreover, in exactly solvable
cases there is no finite-size dependence at all. In three
dimensions no such critical polynomial has been identified
yet. Nevertheless, it is observed that for 3D percolation, some
wrapping probabilities suffer from much smaller corrections
than the Binder ratios, yielding rather accurate thresholds for
a variety of lattices [25,26].

By performing finite-size scaling (FSS) analysis of the
wrapping probabilities, we obtain a high-precision estimate
of the critical coupling for the 3D Ising model as Kc =
0.221 654 631 (8). This provides an independent check of the
most recent result Kc = 0.221 654 626 (5) [5], in which a
state-of-the-art method, making use of cross correlations, is
applied to reduce statistical errors and extensive simulations
were carried out up to an impressive linear size L = 1024.
The universal values of the wrapping probabilities for the 3D
Ising model are numerically determined.

We then study other geometric properties of the FK clusters
of the Ising model at criticality. The probability distribution of
the largest-cluster size C1 is demonstrated to follow a single-
variable function as P(C1, L) dC1 = P̃(x) dx with x ≡ C1/LdF ,
where, as expected, the fractal dimension dF is identical
to the magnetic renormalization exponent yh. The function

P̃(x) displays a clear bimodal feature in three dimensions,
while in two dimensions, it exhibits an asymmetric peak
with a shoulder shape at the smaller-x side. By fine-tuning
simulations at L-dependent coupling K → Kc + 0±, we find
that the two modes correspond to the distinct asymptotic
behaviors approaching from the low- and high-temperature
sides. For the full FK configuration, we measure the cluster
number per site n(s, L) of size s and demonstrate that the
standard scaling n(s, L) ∼ s−τ ñ(s/LdF ) is obeyed both in two
and three dimensions, and the hyperscaling relation τ = 1 +
d/dF is well satisfied (d is the spatial dimension). To char-
acterize the compactness of the FK clusters, we record their
graph distances and determine the shortest-path exponents
as dmin(3D) = 1.259 36(12) and dmin(2D) = 1.094 0(2). In
addition, we classify the occupied bonds into bridges and
nonbridges; an occupied bond is a bridge iff its deletion
leads to the breaking of a FK cluster. By excluding all
the bridges, we obtain bridge-free configurations and deter-
mine the backbone exponents as dB(3D) = 2.167 3(15) and
dB(2D) = 1.732 1(4). These estimates of dmin and dB either
improve over the existing results or have not been reported
yet, to our knowledge.

The remainder of this paper is organized as follows.
Section II describes the simulation and sampled quantities.
Section III presents results for the wrapping probabilities of
FK clusters and the estimate of the critical coupling Kc for the
3D Ising model. Section IV studies other geometric properties
of the FK clusters, including the probability distribution of
the largest-cluster size, the cluster number per site n(s, L),
the graph distances of the FK clusters, the size of the largest
cluster in the bridge-free configuration, and the thermody-
namic bond densities of various types. A brief summary and
discussion is given in Sec. V. The Appendix collects results
on other observables.

II. SIMULATION AND SAMPLED QUANTITIES

We employ the Wolff cluster flipping algorithm [31] and
the Swendsen-Wang algorithm [16]. The latter is mainly used
to generate FK clusters over the whole lattice. The occu-
pied bonds on a FK configuration are classified into bridges
and nonbridges [32,33]. A bridge bond is an occupied bond
whose deletion would break a cluster. All bridges are deleted
by the procedure in Refs. [32,33]. In a bridge-free configu-
ration, any pairs of two sites are either disconnected or con-
nected by at least two independent paths of nonbridges, which
form the backbone of the FK configuration. Our simulation in
three dimensions is up to L = 512. For L = 512, 384, 256,
and 192, the numbers of samples are about 4 × 106, 1.5 ×
107, 1.3 × 108, and 1.3 × 108, respectively. For each L �
128, no less than 5 × 108 samples are generated. The 2D
simulation is up to L = 1024. The numbers of samples are
about 3.6 × 106 and 107 for L = 1024 and 768, respectively,
no less than 2 × 107 samples for L = 512, 384, 256, 192, 128,
and 96, and around 108 for each L � 64. Given a FK configu-
ration, we sample the following observables:

(a) The indicators R(x), R(y), and R(z). We set R(x) = 1
to record the event that at least one cluster wraps around the
lattice in the x direction and otherwise R(x) = 0.

(b) The size of the largest cluster C1.
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(c) The size of the largest cluster on the bridge-free con-
figuration C1,bf .

(d) An observable S := maxC maxy∈C d (xC, y) is used to
determine the shortest-path exponent. Here d (x, y) denotes the
graph distance from vertex x to vertex y, and xC is the vertex
in cluster C with the smallest vertex label, according to some
fixed (but arbitrary) vertex labeling.

(e) The numbers Nb, Nj, Nn of branch, junction, and
nonbridge bonds, respectively. The bridge bond is a junction
bond if neither of the two resulting clusters is a tree; other-
wise, it is a branch bond [32,33].

(f) The square M2 and the fourth power M4 of the mag-
netization density M, where M is defined as M = 1

Ld

∑
isi

with d the spatial dimension.
From these observables we calculate the following

quantities:
(a) The wrapping probabilities

R(x) = 〈R(x)〉 = 〈R(y)〉 = 〈R(z)〉,
R(2) = 〈R(x)R(y)〉 = 〈R(x)R(z)〉 = 〈R(y)R(z)〉,
R(3) = 〈R(x)R(y)R(z)〉,

(2)

where 〈.〉 means statistical average. Here R(x), R(2), and R(3)

give the probabilities that a winding exists in the x direction,
in two of the three possible directions, and simultaneously in
the three directions, respectively. At Kc, these wrapping prob-
abilities take nonzero universal values in the thermodynamic
limit L → ∞.

(b) The mean size of the largest cluster C1 = 〈C1〉, which
scales as C1 ∼ LdF at Kc, with dF the fractal dimension of the
FK clusters.

(c) The mean size of the largest cluster in bridge-free con-
figurations C1,bf = 〈C1,bf〉. It scales as C1,bf ∼ LdB at Kc, with
dB the backbone fractal dimension [32,33]. The exponent dB

used to be calculated from the subset of the incipient infinite
cluster sites carrying the current when a voltage difference is
applied between two sites far apart [34,35].

(d) The mean shortest-path distance S = 〈S〉, which
scales as S ∼ Ldmin at Kc, with dmin the shortest-path fractal
dimension.

(e) The number densities ρb = 〈Nb〉/Ld , ρj = 〈Nj〉/V and
ρn = 〈Nn〉/V of the branch, junction and nonbridge bonds,
respectively. The leading scaling terms of these bond densities
are proportional to Lyt −d .

(f) The Binder cumulant

Qm = 〈M4〉
〈M2〉2

. (3)

In addition, we record the statistics of the cluster number
per site n(s, L) of size s and the probability distribution
P(C1, L) dC1 for the largest-cluster size C1.

For computational efficiency, we use the standard
reweighting method [36] to obtain the expectations of the
wrapping probabilities and the Binder cumulant for multiple
values of K around Kc.

III. WRAPPING PROBABILITIES AND CRITICAL
POINT IN THREE DIMENSIONS

In numerical studies of phase transitions, dimensionless
quantities like the Binder cumulant Qm are known to pro-
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FIG. 1. Plots of R(x) vs K for different system sizes L (a) and
R(x)(K, L) − b1L−0.83 vs L for fixed values of K (b) for the 3D Ising
model. The value of b1 = −0.0393 is taken from Table I.

vide powerful tools for locating critical points. The wrapping
probabilities, being topological and dimensionless quantities,
should also provide a useful method for estimating Kc. This
is demonstrated in Fig. 1(a) for the 3D Ising model. The
intersections of the R(x) data for different system sizes L
would give the critical couplings Kc ≈ 0.221 654 6, with an
uncertainty at the seventh decimal place.

In order to estimate Kc more accurately, we resort to the
fitting of the data. Around Kc, we perform least-squares fits
of the MC data for the wrapping probabilities R(x), R(2), R(3)

and the Binder cumulant Qm by the ansatz

O(ε, L) = Oc +
2∑

k=1

qkε
kLkyt + c1εLyt +yi

+ b1Lyi + b2L−2 + b3L−3 , (4)

where ε = Kc − K, Oc is a universal constant, yt is the
thermal scaling exponent and yi is the leading correction
exponent.

As a precaution against correction-to-scaling terms that
we have neglected in our chosen ansatz, we impose a lower
cutoff L � Lmin on the data points admitted in the fit and
systematically study the effect on the χ2 value when Lmin is
increased. In general, our preferred fit for any given ansatz
corresponds to the smallest Lmin for which χ2 divided by the
number of degrees of freedom (DFs) is O(1), and for which
subsequent increases in Lmin do not cause χ2 to drop by much
more than one unit per degree of freedom. In the fits with yi

free and b3 = 0 fixed, our results of yi estimated from R(x) are
consistent with yi ≈ −0.83, as determined elsewhere [37,38].
In the subsequent fits, we fix yi = −0.83 for all quantities
since in theory yi should be a universal correction exponent.
In most cases, when performing the fits with yi fixed, we
include the correction term b3L−3. Nevertheless, we observe
that the R(x)(L) values exhibit smaller finite-size corrections,
which can be sufficiently described by term b1L−0.83 + b2L−2;
when b3 is set to be a free parameter, the estimated error
margin of b3 is bigger than the magnitude of b3 itself. Table I
summarizes the fitting results.

From Table I we observe that in comparison with Qm, the
wrapping probabilities, especially R(x), clearly have smaller
amplitudes of the leading corrections. Due to the weaker
corrections, the results of Kc fitted from the wrapping
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TABLE I. Fits of the wrapping probabilities R(x), R(2), R(3) and the Binder cumulant Qm for the 3D Ising model. “Obs.” is the abbreviation
of “observables.”

Obs. Lmin χ 2/DFs Kc yt Oc q1 b1 yi b2 b3

R(x) 12 86.1/156 0.221 654 633(3) 1.60(2) 0.457 59(4) −1.4(1) −0.036(2) −0.80(2) 0.009(9) –
16 75.7/140 0.221 654 631(4) 1.59(2) 0.457 53(6) −1.4(1) −0.040(5) −0.84(4) 0.04(3) –
24 71.5/124 0.221 654 629(4) 1.59(2) 0.457 49(9) −1.4(2) −0.05(2) −0.88(8) 0.08(8) –
12 89.4/157 0.221 654 629(2) 1.60(2) 0.457 529(7) −1.38(10) −0.038 9(2) −0.83 0.024(2) –
16 75.8/141 0.221 654 631(2) 1.59(2) 0.457 54(1) −1.4(2) −0.039 3(3) −0.83 0.032(4) –
24 72.0/125 0.221 654 631(3) 1.59(2) 0.457 55(2) −1.4(2) −0.039 4(5) −0.83 0.03(2) –

R(2) 12 91.9/134 0.221 654 633(3) 1.60(2) 0.332 01(4) −1.3(1) −0.093(3) −0.874(9) −0.25(1) –
16 73.8/121 0.221 654 629(4) 1.59(2) 0.331 93(6) −1.4(1) −0.101(6) −0.90(2) −0.21(3) –
24 71.2/108 0.221 654 628(4) 1.59(2) 0.331 90(9) −1.4(2) −0.11(2) −0.92(4) −0.17(9) –
12 98.6/134 0.221 654 637(3) 1.60(2) 0.332 12(2) −1.3(1) −0.080 3(5) −0.83 −0.37(2) 0.45(11)
16 75.9/121 0.221 654 633(3) 1.59(2) 0.332 07(3) −1.4(2) −0.078(1) −0.83 −0.47(5) 1.5(4)
24 72.1/108 0.221 654 631(4) 1.59(2) 0.332 04(4) −1.4(2) −0.076(2) −0.83 −0.6(2) 3(2)

R(3) 12 110.4/134 0.221 654 634(3) 1.60(2) 0.267 25(4) −1.3(1) −0.117(3) −0.885(8) −0.32(2) –
16 87.9/121 0.221 654 629(4) 1.59(2) 0.267 14(5) −1.3(1) −0.131(7) −0.92(2) −0.25(3) –
24 85.9/108 0.221 654 629(5) 1.59(2) 0.267 13(9) −1.3(2) −0.13(2) −0.92(4) −0.24(9) –
16 86.0/135 0.221 654 635(3) 1.59(2) 0.267 34(3) −1.3(2) −0.094(1) −0.83 −0.66(5) 2.3(4)
24 80.1/122 0.221 654 633(4) 1.59(2) 0.267 30(4) −1.3(2) −0.092(2) −0.83 −0.8(2) 4(2)
32 76.6/109 0.221 654 628(5) 1.58(2) 0.267 19(8) −1.4(2) −0.085(5) −0.83 −1.5(5) 16(8)

Qm 12 83.3/135 0.221 654 623(4) 1.59(2) 1.603 53(8) 2.1(2) −0.271(5) −0.860(7) −0.25(3) –
16 80.9/122 0.221 654 624(5) 1.59(2) 1.603 5(2) 2.1(3) −0.276(10) −0.87(2) −0.22(6) –
24 77.5/109 0.221 654 623(6) 1.59(2) 1.603 6(2) 2.1(3) −0.27(3) −0.85(3) −0.3(2) –
12 86.0/135 0.221 654 617(3) 1.59(2) 1.603 76(3) 2.1(3) −0.245(1) −0.83 −0.55(2) 1.0(3)
16 80.1/122 0.221 654 621(4) 1.59(2) 1.603 68(5) 2.1(3) −0.241(2) −0.83 −0.49(4) 2.5(8)
24 76.6/109 0.221 654 622(5) 1.59(2) 1.603 65(8) 2.1(3) −0.239(4) −0.83 −0.65(9) 4(3)

probabilities have relatively smaller error bars. The estimates
of Kc from Qm are systematically smaller than those from
the wrapping probabilities, despite that they agree with each
other within the combined error bar. Note that the fitting
formula is unavoidably approximate. For instance, it does not
include finite-size corrections originated from the regular part
of the free energy. These corrections should exist in the Qm

data but are absent in the wrapping probabilities, which are
nonlocal quantities. We regard that the fitting results from
the wrapping probabilities, especially R(x), are more reliable.
Table I also gives the estimate of the thermal exponent
yt ≈ 1.59.

After comparing the fitting results of Kc from various wrap-
ping probabilities, we present our final estimate as Kc(3D) =
0.221 654 631(8), where the finally quoted error margin δ =

8 × 10−9 is taken by requiring that Kc ± δ cover almost all the
fitting Kc results from the wrapping probabilities. Figure 1(b)
demonstrates the values of Kc and R(x)

c , where R(x) − b1L−0.83

is plotted versus L. The value of the parameter b1 is taken
from Table I. Precisely at K = Kc, the L → ∞ data tend to a
horizontal line, whereas the data with K �= Kc bend upward or
downward.

Our estimate agrees well with the most recent result
0.221 654 626(5) by Ferrenberg et al. [5] within one error
bar but with slightly lower precision. Since Ref. [5] used
cross correlations to reduce statistical errors and carried out
simulations up to an impressive linear size L = 1024, our
result provides a valuable and independent check. A previous
estimate 0.221 654 55(3) [37] reported by one of our authors
and his collaborator is ruled out.

TABLE II. Fits of C1 for the 3D and 2D Ising models.

Lmin χ 2/DF dF a0 b1 y1 b2

3D 8 6.2/8 2.481 7(3) 1.107(2) −0.096(10) −0.78(7) −0.30(4)
12 6.2/7 2.481 7(4) 1.107(3) −0.10(3) −0.79(12) −0.29(10)
12 6.3/8 2.481 82(6) 1.106 0(4) −0.106(3) −0.83 −0.25(3)
16 5.6/7 2.481 78(8) 1.106 3(5) −0.109(5) −0.83 −0.21(5)
24 5.2/6 2.481 84(13) 1.105 9(9) −0.104(9) −0.83 −0.3(2)

2D 8 14.0/11 1.875 01(2) 1.007 0(1) −0.039(7) −1.6(1) –
12 14.0/10 1.875 01(3) 1.007 0(2) −0.04(2) −1.6(3) –
16 12.3/9 1.875 02(3) 1.007 0(2) −0.12(15) −2.0(5) –
16 12.3/10 1.875 024(13) 1.006 91(6) −0.12(1) −2 –
24 12.2/9 1.875 020(17) 1.006 93(8) −0.13(3) −2 –
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In Appendix 1, we determine the thermal exponent as
yt = 1.587 0(5) by analyzing the covariance of the wrapping
probability and the energy density, which is also consistent
with the result 1.587 5(3) in Ref. [5].

IV. GEOMETRICAL PROPERTIES OF FK CLUSTERS AT Kc

Fixing K at our estimated critical coupling 0.221 654 63
for the simple cubic lattice and the exact solution
ln (1 + √

2)/2 ≈ 0.440 686 79 for the square lattice, we an-
alyze geometrical quantities defined in Sec. II. These include
the size of the largest cluster C1, the shortest-path distance S,
and the size of the largest cluster on the bridge-free config-
uration C1,bf . These analyses allow us to estimate the fractal
dimension dF, the shortest-path fractal dimension dmin, and
the backbone fractal dimension dB. In addition, we study the
cluster-size distribution and the probability distribution of the
size of the largest cluster.

A. Fractal dimension dF and the probability distribution of the
largest-cluster size

In order to estimate dF, we fit the MC data of C1 to the
following equation:

A = LyA (a0 + b1Ly1 + b2Ly2 ). (5)

For the 3D Ising model, when we perform the fit with y2 = −2
fixed and y1 free, we observe that y1 ≈ −0.83. To reduce one
fitting parameter, in the subsequent fit we fix y1 = −0.83 and
y2 = −2. The fitting results are shown in Table II. We also try
the fit using b1L−1 + b2L−2 as correction terms for both two
and three dimensions, in which case b2 cannot be determined
and the corresponding results are not shown in the table.

Comparing these fits, we determine the fractal dimensions
dF = 2.481 8(4) for three dimensions and 1.875 01(4) for two
dimensions. The latter agrees with the exact value yh = 15/8
[39,40]. In Fig. 2 we plot C1/LdF versus L−0.83 using three
different values of dF for the 3D Ising model: namely our
estimate, as well as the estimate plus or minus three standard
deviations. As L increases, the data with dF = 2.480 6 and
dF = 2.483 0 bend upward and downward, respectively, while
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FIG. 2. Plots of C1/LdF vs L−0.83 for the critical 3D Ising model.
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FIG. 3. Probability density distribution of the largest-cluster size
for three dimensions (a) and two dimensions (b) at Kc, with x ≡
C1/LdF .

the data with dF = 2.481 8 are consistent with a straight line.
This illustrates the reliability of our estimate.

We also study the probability distribution P(C1, L) dC1

of the size of the largest cluster C1. In the MC simulation,
P(C1, L) dC1 is measured by the fraction of the number of
the configurations on which the size of the largest cluster
lies between C1 ∼ C1 + dC1. According to finite-size scaling
theory, we expect that P(C1, L) dC1 can be expressed as a
single-variable function P̃(x) dx, with x ≡ C1/LdF . This is
well confirmed by Fig. 3, where the data for different system
sizes collapse on top of each other. Interestingly, we see that
the scaling function P̃(x) exhibits a bimodal structure in three
dimensions and a single peak with a wide shoulder shape in
the small-x side in two dimensions.

To understand the bimodal structure in three dimensions,
we explore P̃(x) in the critical window � ≡ Lyt (K − Kc), with
� a finite constant. An example with � = ±0.1 is shown
in Fig. 4(a), where the distributions become to have a single
peak with a wide shoulder shape. Therefore, it is reasonable to
assume that the asymptotic peak locations xmax(� → 0±) are
actually different. From the similarity between the 3D low-
temperature distribution with � = 0.1 [Fig. 4(a)] and the 2D
critical one [Fig. 3(b)], we expect that a bimodal distribution
would appear for two dimensions in the high-temperature
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FIG. 4. Probability density distribution of the largest-cluster size
for three dimensions (a) and two dimensions (b) with K = Kc ±
�L−yt .

region with � < 0. The 2D results with � = ±0.4 are shown
in Fig. 4(b), confirming our expectation.

B. Cluster-size distribution

We consider the critical cluster-number density n(s, L) of
size s, of which the scaling behavior is expected to follow

n(s, L) = s−τ ñ(s/LdF ), (6)

where τ = 1 + d/dF is the Fisher exponent and ñ(x) with
x ≡ s/LdF is a universal scaling function. The above scaling
relation of cluster-size distribution was found to be satisfied
for the Ising model in three dimensions [41,42] and two
dimensions [43]. From dF ≈ 2.4818 (3D) or 15/8 (2D), one
has τ ≈ 2.2088 (3D) or 31/15 (2D), respectively. In the main
plots of Fig. 5, we show a log-log plot of n(s) versus s for
L = 64, 96, 128, 192, and 256 for the 3D Ising model, and for
L = 128, 192, and 256 for the 2D Ising model. The straight
lines with slope −2.2088 (3D) and 31/15 (2D) are drawn
for comparison with the MC data. In these plots, we observe
clearly the power-law behaviors n(s,∞) ∼ s−2.2088 (3D) and
n(s,∞) ∼ s−31/15 (2D), respectively. These results are more
precise than previous results [41–43].

In order to display the universal scaling function ñ(x),
we further plot s2.2088n(s, L) versus s/L2.4818 (3D) and
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FIG. 5. Cluster-size distribution for FK clusters for three dimen-
sions (a) and two dimensions (b) at criticality. In both cases, the insets
show sτ n(s) vs s/LdF .

s31/15n(s, L) versus s/L15/8 (2D) for several system sizes, and
show them in the insets of Fig. 5. We find a good collapse of
those curves for different system sizes, which provides strong
numerical evidence for the conjectured scaling (6).

C. Shortest-path fractal dimension dmin

We estimate the shortest-path fractal dimension dmin for the
3D and 2D Ising models by studying the shortest-path distance
S. The MC data for S are fitted to Eq. (5) with the exponent yA
being replaced by dmin. For the 3D Ising model, with y2 = −3
and y1 being free, we obtain y1 = −1.8(2), much smaller than
yi ≈ −0.83 from the leading irrelevant scaling field. On this
basis, we further perform the fit with y1 = −1.8 and y2 = −3
fixed. For the 2D Ising model, setting b2 = 0 and y1 free,
y1 cannot be determined by our MC data. We then try the
fit with y1 = −2 fixed and find b1 consistent with zero. On
this basis, we perform the fit with b1 = 0 and b2 = 0. Thus,
S suffers rather small finite-size corrections both in two and
three dimensions.

The fitting results are shown in Table III. From these fits,
we estimate dmin = 1.259 36(12) (3D) and 1.094 0(2) (2D),
respectively. As far as we know, the shortest-path fractal
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TABLE III. Fits of S for the 3D and 2D Ising models.

Lmin χ 2/DF dmin a0 b1 y1 b2

3D 16 9.3/6 1.259 34(5) 2.045 3(5) −5.0(8) −1.78(5) 27(5)
24 6.2/5 1.259 42(6) 2.044 3(7) −9(4) −1.9(1) 60(24)
16 9.5/7 1.259 36(2) 2.045 0(2) −5.38(4) −1.8 29.5(7)
24 8.0/6 1.259 34(3) 2.045 2(3) −5.48(9) −1.8 33(3)
32 7.0/5 1.259 37(4) 2.044 9(4) −5.3(2) −1.8 25(9)

2D 96 6.7/5 1.093 99(6) 1.334 7(5) 5(2) −2 –
128 2.9/4 1.094 09(8) 1.333 9(6) 10(3) −2 –
192 2.9/3 1.094 08(12) 1.334(1) 9(9) −2 –
192 4.2/4 1.093 96(5) 1.335 0(4) – – –
256 3.0/3 1.094 00(6) 1.334 7(5) – – –

dimension of the 3D Ising FK clusters has not been previously
estimated. The 2D result improves over the previous reported
value dmin = 1.095 5(10) [44].

To illustrate our estimate, Fig. 6 shows a plot of S/Ldmin

versus L−1.8 (3D) and a plot of S/Ldmin versus L−2 (2D) at
three different dmin values. In both cases, using the estimated
values of dmin produces a straight line, but in contrast the other
two curves bend upward or downward for large L. The figure
suggests that the true value of dmin does indeed lie within three
error bars of our estimate.
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FIG. 6. Plots of S/Ldmin vs L−1.8 or L−2 for the critical 3D (a) or
2D Ising model (b), respectively.

D. Backbone fractal dimension dB

In order to estimate the backbone fractal dimension dB for
the 3D and 2D Ising models, we fit the MC data of C1,bf to
Eq. (5) with yA being replaced by dB. For the 3D Ising model,
in the fit with y2 = −2 fixed and y1 free, we observe that y1 ≈
−0.83. On this basis we fix y1 = −0.83 and y2 = −2. For the
2D Ising model, when set b2 = 0 and leave y1 free, we find
that y1 ≈ −0.67, which is an unknown correction exponent
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FIG. 7. Plots of C1,bf/LdB vs L−0.83 or vs L−0.67 for the critical 3D
(a) or 2D (b) Ising model, respectively.
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TABLE IV. Fits of C1,bf for the 3D and 2D Ising models.

Lmin χ 2/DF dB a0 b1 y1 b2

3D 8 8.9/6 2.168 0(7) 0.621(3) 0.40(2) −0.78(3) −0.50(8)
12 6.9/5 2.166 9(9) 0.626(4) 0.46(6) −0.85(6) −0.8(3)
12 7.0/6 2.167 3(2) 0.624 2(8) 0.439(6) −0.83 −0.71(5)
16 6.0/5 2.167 1(3) 0.615(1) 0.433(9) −0.83 −0.6(1)
24 4.8/4 2.167 4(5) 0.624(2) 0.45(2) −0.83 −0.9(3)

2D 8 12.7/11 1.732 14(13) 0.7997(7) 0.116 8(9) −0.66(2) –
12 10.5/10 1.732 0(2) 0.8008(10) 0.119(2) −0.69(2) –
16 8.6/9 1.732 2(3) 0.7996(14) 0.116(3) −0.66(3) –
8 13.1/12 1.732 07(4) 0.800 1(2) 0.117 2(4) −0.67 –

12 11.2/11 1.732 10(4) 0.800 0(2) 0.117 8(6) −0.67 –
16 8.8/10 1.732 06(5) 0.800 2(3) 0.116 9(9) −0.67 –

and suggests rather strong finite-size corrections. To reduce
one fitting parameter, we perform the subsequent fit with both
y1 = −0.67 and b2 = 0 fixed.

The fitting results are shown in Table IV. Comparing these
fits, we estimate the backbone fractal dimension as dB =
2.167 3(15) (3D) and 1.732 1(4) (2D), respectively. The 3D
result improves over the previous reported value dB(3D) =
2.171(4) [45], and the 2D result rules out the previous es-
timate dB(2D) = 1.730 4(3) [46]. These previous reported
values were estimated by studying the scaling behavior of
the probability that a pair of lattice sites at a distance r
are connected by at least two mutually independent paths.
Similarly, by using three different dB values, in Fig. 7 we plot
C1,bf/LdB versus L−0.83 (3D) or L−0.67 (2D), illustrating the
reliability of our estimate of dB.

E. Bond densities ρb, ρ j , and ρn

In order to estimate the critical bond densities for branch,
junction and nonbridge bonds for the 3D and 2D Ising models,
we fit the MC data of ρb, ρ j and ρn to the ansatz

ρ = ρ0 + Lyt −d (a + bLy1 ) (7)

with yt − d = −1.413 (3D) and −1 (2D) fixed. For the 3D
Ising model, in the fits with y1 free, we observe that y1 ≈
−1.2 for ρb; however, for ρ j and ρn, we cannot obtain stable
fitting results. On this basis, in the subsequent fits we fix
y1 = −1.2. For the 2D Ising model, the correction exponent
y1 for ρb, ρ j , and ρn can not be determined by our MC data
when leaving it free. We then try the fits with fixed y1 = −1
or −2 respectively. In both cases, b1 is found to be consistent

TABLE V. Fits of the bond densities ρb, ρ j , and ρn for the 3D and 2D Ising models.

Lmin χ 2/DF ρ0 a b y1

8 6.2/8 0.176 526 50(5) −0.136 9(1) 0.025(6) −1.2(2)
12 4.3/7 0.176 526 47(5) −0.136 8(1) 0.05(4) −1.5(3)

ρb 16 3.9/6 0.176 526 49(6) −0.136 9(2) 0.03(3) −1.2(5)
12 5.5/8 0.176 526 50(4) −0.136 92(5) 0.028(2) −1.2
16 3.9/7 0.176 526 49(4) −0.136 88(6) 0.026(3) −1.2
24 3.6/6 0.176 526 48(4) −0.136 85(8) 0.023(5) −1.2

3D
24 6.9/6 0.010 298 17(2) −0.070 29(3) 0.008(2) −1.2

ρ j 32 5.8/5 0.010 298 18(2) −0.070 32(4) 0.011(4) −1.2
48 4.8/4 0.010 298 19(3) −0.070 37(8) 0.018(9) −1.2
12 5.3/8 0.051 342 34(9) 0.340 1(1) −0.052(4) −1.2

ρn 16 4.9/7 0.051 342 35(9) 0.340 1(2) −0.049(6) −1.2
24 4.9/6 0.051 342 35(10) 0.340 1(2) −0.05(1) −1.2

24 7.4/9 0.183 250 4(3) −0.109 68(9) 0.004(3) −1
ρb 24 6.4/9 0.183 250 3(3) −0.109 64(6) 0.09(6) −2

24 9.6/10 0.183 250 0(3) −0.109 56(4) – –
32 4.7/9 0.183 250 2(3) −0.109 60(4) – –
16 8.7/10 0.023 856 2(2) −0.110 52(4) −0.0001(8) −1

ρ j 16 8.7/10 0.023 856 2(2) −0.110 52(3) 0.001(9) −2
2D

16 8.7/11 0.023 857 2(2) −0.110 52(2) – –
24 8.6/10 0.023 856 2(2) −0.110 52(2) – –
24 7.5/9 0.292 893 6(8) 0.311 4(2) −0.005(6) −1

ρn 24 7.0/9 0.292 893 7(7) 0.311 4(1) −0.1(1) −2
24 8.2/10 0.292 894 0(6) 0.311 25(7) – –
32 5.2/9 0.292 893 7(6) 0.311 33(9) – –
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TABLE VI. Summary of the estimates of the critical exponents
and the universal critical wrapping probabilities. The value of dF

from Ref. [5] is calculated by the scaling law dF = (γ + dν )/2ν.

2D 3D

Present Previous Present Previous

R(x)
c – 0.627 138 794 [21] 0.457 5(1) –

R(2)
c – 0.480 701 867 [21] 0.332 0(2) –

R(3)
c – – 0.267 2(2) –

dF 1.875 01(5) 15/8 [39,40] 2.481 8(4) 2.481 6(1) [37]
2.481 9(4) [5]

dmin 1.094 0(2) 1.095 5(10) [44] 1.259 36(12) –
dB 1.732 1(4) 1.730 4(3) [46] 2.167 3(15) 2.171(4) [45]

with zero. On this basis, we perform the fit with fixed b1 = 0.
The fitting results are shown in Table V.

After comparing various fits, we obtain the critical
thermodynamic bond densities of various types, including
the branch bonds ρb,0(3D) = 0.176 526 5(1) and ρb,0(2D) =
0.183 250 2(5), the junction bonds ρ j,0(3D) = 0.010 298 2(1)
and ρ j,0(2D) = 0.023 856 2(2), as well as the nonbridge
bonds ρn,0(3D) = 0.051 342 35(10) and ρn,0(2D) =
0.292 893 7(9). The nonbridge density in two dimensions
is very consistent with the exact result 0.292 893 219 [47,48].
Among all the occupied bonds, the fraction of the branch,
junction, and nonbridge bonds are 74.12%, 4.32%, and
21.56% for the 3D Ising model, 36.65%, 4.77%, and 58.58%
for the 2D Ising model, respectively. This suggests that as the
spatial dimension d increases, the critical FK clusters become
more and more dentritic.

V. SUMMARY AND DISCUSSION

In this work, we investigate the Ising model from the
perspective of the geometric properties of the FK clusters.
We find that the wrapping probabilities, a kind of topolog-
ical quantities, suffer less from finite-size corrections near
the critical point, and thus they provide a powerful tool for
locating the critical point. This leads to a high-precision
estimate for the 3D Ising model Kc = 0.221 654 631(8), a
competing result with the most recent one, 0.221 654 626(5)
[5]. The probability distribution is observed to follow a single-
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FIG. 8. Plot of g(x)
ER/Lyt − b1L−0.83 vs L−2 for the 3D Ising model,

using three different values of yt . The value of b1 is taken from
Table VII.

variable function P(C1, L) dC1 ≡ P̃(x) dx, with x ≡ C1/LdF .
The scaling function P̃(x) displays very rich behaviors within
the scaling window � ≡ Lyt (K − Kc), with a finite constant
�, including a bimodal feature. We also study other quantities
that characterize the geometric “compactness” of the critical
FK clusters. In particular, we determine the shortest-path
fractal dimension dmin(3D) = 1.259 36(12) and dmin(2D) =
1.094 0(2) from the graph distances and the backbone fractal
dimension dB(3D) = 2.167 3(15) and dB(2D) = 1.732 1(4).
A brief summary is given in Table VI.

The results for dmin and dB, together with the thermody-
namic bond densities of various types, suggest that as the
spatial dimension increases, the critical FK clusters become
more and more dentritic. The FK representation of the Ising
model provides much richer critical behaviors than the spin
representation, some of which are not well understood yet. For
instance, even in two dimensions, it remains an open question
whether the shortest-path and backbone dimensions take some
fractional numbers, and if so, what their values are. It also re-
mains to understand the correction exponent −0.67 observed
in the largest backbone cluster of the 2D Ising model.

The FK clusters display many geometric properties which
are beyond the study of our work. For instance, in the frame-

TABLE VII. Fits of g(x)
ER for the 3D and 2D Ising models.

Lmin χ 2/DF yt a0 b1 y1 b2

12 6.5/8 1.586 7(3) 0.492 2(9) −0.651(3) −0.815(5) –
16 6.0/7 1.586 5(4) 0.493(2) −0.648(6) −0.811(7) –
24 4.8/6 1.587 0(6) 0.491(2) −0.66(2) −0.82(2) –

3D
12 7.4/8 1.587 2(2) 0.490 4(4) −0.672(3) −0.83 0.09(3)
16 5.0/7 1.587 0(2) 0.490 9(5) −0.677(5) −0.83 0.15(5)
24 4.7/6 1.587 2(3) 0.490 6(9) −0.673(10) −0.83 0.1(2)

6 7.5/12 0.999 8(8) 0.428(3) −0.474(2) −0.456(4) –
8 7.4/11 0.999 8(10) 0.428(4) −0.474(2) −0.456(6) –

12 7.0/10 1.000 5(15) 0.426(5) −0.473(2) −0.46(1) –
2D

8 7.9/12 1.000 4(2) 0.425 9(3) −0.472 6(8) −0.46 –
12 7.0/11 1.000 3(2) 0.426 2(5) −0.473(1) −0.46 –
16 6.9/10 1.000 2(3) 0.426 3(6) −0.474(2) −0.46 –
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TABLE VIII. Fits of the cluster number density ρ for the 3D and 2D Ising models.

Lmin χ 2/DF ρ0 a yt b y1

12 2.4/7 0.315 588 26(9) −0.282 0(9) 1.587 5(7) 1.04(4) −1.49(2)
16 1.4/6 0.315 588 2(1) −0.283(2) 1.587(1) 0.96(9) −1.45(5)
24 1.2/5 0.315 588 2(2) −0.282(3) 1.587(2) 1.1(3) −1.49(12)

3D 12 3.0/8 0.315 588 19(4) −0.282 67(6) 1.587 1.01(2) −1.470(7)
16 1.4/7 0.315 588 21(5) −0.282 73(7) 1.587 0.98(3) −1.46(2)
12 3.0/9 0.315 588 19(3) −0.282 67(3) 1.587 1.009(2) −1.47
16 2.5/8 0.315 588 18(4) −0.282 66(3) 1.587 1.007(3) −1.47

8 10.6/11 0.128 679 5(3) −0.091 2(1) 1 0.974(3) −1.002(2)
12 10.6/10 0.128 679 4(4) −0.091 2(2) 1 0.974(8) −1.002(4)
16 7.8/9 0.128 679 1(4) −0.091 0(2) 1 0.993(14) −1.009(6)

2D
8 11.2/12 0.128 679 6(2) −0.091 29(4) 1 0.971 5(5) −1

12 10.8/11 0.128 679 6(3) −0.091 27(5) 1 0.971 0(9) −1
16 10.3/10 0.128 679 6(3) −0.091 30(6) 1 0.972(2) −1

work of LCFT, a generalized class of two-point correlation
functions can be defined on the basis of operators that insert
N FK clusters with any given symmetry under the symmetric
group SN , where N � 1 is an integer. These functions may
exhibit rich behaviors under rotations, some of them can
depend logarithmically on distance, and the corresponding
critical exponents in three dimensions remain to be deter-
mined [9–11]. The intensive study of the conformal bootstrap
method may also lead to significant progresses in percolation
and the FK representation of the Potts model [6–8]. Our work
might provide a solid numerical test ground for some fantastic
theoretical developments in the future.
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APPENDIX: OTHER QUANTITIES

In addition to those in the main text, we have also consid-
ered several other quantities in the Monte Carlo simulations,
including the following:

(a) The energy density E and its square E2, where E is
defined as E = 1

dLd

∑
〈i j〉sis j .

(b) The number of clusters Nc.
(c) The second cluster-size moments S2 = ∑

k C2
k , where

the sum runs over all the clusters and Ck denotes the size of
the kth cluster.

(d) An observable F := 1
dLd

∑d−1
k=0 | ∑xsx exp (i 2πxk

L )|2,
which is the Fourier transform of the correlation function at
the lowest nonzero momentum.

We measure the following quantities:
(a) The covariance of R(x) and E :

g(x)
ER = 〈R(x)E〉 − 〈R(x)〉〈E〉, (A1)
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 0  0.01  0.02

(ρ
-ρ
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Ld

-y
t
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-0.08

-0.04

 0

 0.04

L-1

FIG. 9. Plots of the cluster number density (ρ − ρ0)L1.413 vs L−1.47 for the 3D (a) Ising model and (ρ − ρ0)L vs L−1 for the 2D (b) Ising
model at the critical temperature.
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TABLE IX. Fits of Ce for the 3D and 2D Ising models.

Lmin χ 2/DF α/ν c0 a0 b1 y1 b2

8 7.1/8 0.169(1) −3.61(7) 4.83(6) −1.76(10) −1.49(6) –
12 7.0/7 0.170(2) −3.6(2) 4.8(1) −1.7(3) −1.4(2) –
16 4.5/6 0.174(5) −3.3(4) 4.6(3) −1.0(3) −1.1(3) –
12 7.2/8 0.169 3(6) −3.62(4) 4.84(3) −1.77(4) −1.5 –

3D
16 7.0/7 0.169 1(7) −3.63(5) 4.85(4) −1.74(8) −1.5 –
24 4.7/6 0.170(2) −3.54(8) 4.78(6) −2.0(2) −1.5 –

8 6.7/8 0.171(2) −3.5(1) 4.73(8) −0.24(8) −0.83 −1.7(2)
12 6.7/7 0.171(3) −3.4(2) 4.7(2) −0.3(2) −0.83 −1.7(4)

6 10.7/12 – 0.178(2) 0.6365(4) −0.22(2) −1 0.05(6)
8 10.1/11 – 0.180(3) 0.6363(5) −0.24(3) −1 0.1(2)

2D 6 11.3/13 – 0.1772(9) 0.6367(2) −0.211(4) −1 –
8 11.2/12 – 0.1774(1) 0.6367(3) −0.212(6) −1 –

12 10.3/11 – 0.1785(2) 0.6365(4) −0.22(1) −1 –

which scales as g(x)
ER ∼ Lyt at Kc, with yt = 1/ν the thermal

exponent.
(b) The cluster number density ρ = 〈Nc〉/Ld , whose lead-

ing scaling term is proportional to Lyt −d .
(c) Specific heat Ce = Ld (〈E2〉 − 〈E〉2), which scales as

Ce ∼ L2yt −d = Lα/ν at Kc.
(d) Susceptibility χ = 〈S2〉/Ld , which scales as χ ∼

L2dF −d = Lγ /ν at Kc.
(e) The second moment correlation length

ξ2nd =
√

χ/F − 1

4 sin2 π/L
, (A2)

where F = 〈F〉. At Kc, the ratio ξ2nd/L takes an nonzero
universal value in the thermodynamic limit L → ∞.

1. Estimating yt

We estimate yt by studying the covariance g(x)
ER for the

3D and 2D Ising models at the critical couplings K =
0.221 654 63 (3D) and Kc = 0.440 686 79 (2D), respectively.
The MC data are fitted to Eq. (5) with yA being replaced by
yt , We note that, in percolation case [25], a similar procedure
for estimating yt has been found preferable to methods, such
as that employed in Ref. [49], in which yt is estimated by
studying how quantities behave in the neighborhood of the
percolation threshold.

For the 3D Ising model, in the fit with b2 = 0 fixed and
y1 free, we find y1 ≈ −0.83. We then perform the fit with
y1 = −0.83 and y2 = −2 fixed. For the 2D Ising model, when
leave b2 = 0 fixed and y1 free, we determine y1 ≈ −0.46. The
fitting results are shown in Table VII.

After comparing various fits, we estimate the thermal
scaling exponent for the 3D and 2D Ising models as yt =
1.587 0(5) (3D) and 1.000(1) (2D), respectively. In order to
illustrate our estimate of yt for the 3D Ising model, we plot
g(x)

ER/Lyt − b1L−0.83 versus L−2 using three different values
of yt : our estimate, as well as our estimate plus or minus
three standard deviations, and show them in Fig. 8. Using
the estimated value of yt should produce a straight line for
large L. In the figure, the data using yt = 1.585 5 and yt =
1.588 5 respectively bend upward and downward, suggesting
that the true value of yt does indeed lie within 3σ of our
estimate. The data with yt = 1.587 0 appear to be consistent
with an asymptotically straight line. For the 2D Ising model,
our estimate of yt is very consistent with the analytical result
yt = 1, as expected.

2. Cluster number density ρ

At K = Kc and for L → ∞, the FK cluster number density
shall approach to a nonuniversal (model-dependent) constant
ρ0. We fit the MC data of ρ for the 3D and 2D Ising models
to Eq. (7). For the 3D Ising model, in the fit with yt and

TABLE X. Fits of χ for the 3D and 2D Ising models.

Lmin χ 2/DF dF a0 b1 y1 b2

8 5.6/8 2.481 77(16) 1.551(2) −0.30(2) −0.80(4) −0.86(8)
12 5.5/7 2.481 7(3) 1.552(3) −0.29(5) −0.78(8) −0.9(2)

3D 8 6.2/9 2.481 88(3) 1.549 1(5) −0.319(3) −0.83 −0.79(2)
12 5.9/8 2.481 86(5) 1.549 2(8) −0.321(6) −0.83 −0.77(5)
16 4.8/7 2.481 82(7) 1.550(1) −0.329(9) −0.83 −0.7(1)

8 12.8/11 1.875 00(2) 1.092 1(2) −0.14(2) −1.71(7) –
12 12.7/10 1.875 00(2) 1.092 0(2) −0.16(6) −1.8(2) –

2D 16 10.4/10 1.875 007(10) 1.091 9(1) −0.30(2) −2 –
24 10.4/9 1.875 007(13) 1.091 9(2) −0.30(4) −2 –
32 7.0/8 1.875 02(2) 1.091 7(2) −0.17(8) −2 –
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FIG. 10. Plots of χ vs L−0.83 at Kc for the 3D Ising model.

y1 free, we observe that yt = 1.587(3) which is consistent
with our estimated yt = 1.5870(5). On this basis, we further
perform the fit with yt = 1.587 fixed and y1 free, and observe
that the correction exponent y1 ≈ −1.47. To reduce one fitting
parameter, we also try the fit with yt = 1.587 and y1 = −1.47
fixed. For the 2D Ising model, if letting yt = 1 fixed and y1

free, we observe that the correction exponent y1 ≈ −1. To
reduce one fitting parameter, we then try the fit with y1 =
−1 fixed. The fitting results are shown in Table VIII. After
comparing various fits, we estimate the critical cluster num-
ber densities as ρ0 = 0.315 588 2(2) (3D) and 0.128 679 6(6)
(2D), respectively.

In Fig. 9 we plot (ρ − ρ0)Ld−yt versus L−1.47 (3D) and
versus L−1 (2D). In both cases, for large system sizes the data
points are arranged in an straight line, as expected.

3. Specific heat Ce

According to the scaling theory, specific heat at criticality
scales as Ce ∼ Lα/ν . In order to fit the MC data of Ce, the
fitting ansatz (5) is reformulated by adding a constant term
c0 due to the existence of analytic background, leading to

A = c0 + LyA (a0 + b1Ly1 + b2Ly2 ), (A3)

where the exponent yA stands for α/ν. For the 3D Ising
model, in the fit with b2 = 0 fixed and y1 free, we observe
that y1 ≈ −1.5. To reduce one fitting parameter, we perform
the subsequent fit with both y1 = −1.5 and b2 = 0 fixed.
Besides, we also perform the fit with both y1 = −0.83 and
y2 = 2y1 = −1.66 fixed.

For the 2D Ising model, since α = 0, the leading scaling
term LyA changes to ln L. We fit the MC data of Ce to the
following equation [50,51]:

A = a0 ln L + c0 + b1L−1 + b2L−2. (A4)

In the fitting results b2 is consistent with zero. On this basis,
we perform the fit with b2 = 0 fixed. The fitting results are
reported in Table IX. For 2D Ising model, a0 = 0.6366(5) is
consistent with the theoretical value a0 = 2/π [51].

4. Susceptibility χ

We fit the MC data of χ in both two and three dimensions
to Eq. (5) with the exponent yA replaced by 2dF − d . For the
3D Ising model, in the fit with y2 = −2 fixed and y1 free, we
observe that y1 ≈ −0.83. To reduce one fitting parameter, in
the subsequent fit we fix y1 = −0.83 and y2 = −2. For the
2D Ising model, when leave b2 = 0 fixed and y1 free, we
determine y1 ≈ −2. On this basis, we perform the fit with
y1 = −2 and b2 = 0 fixed. The fitting results are shown in
Table X.

From these fits, we get the estimate dF = 2.481 8(4) (3D)
and dF = 1.875 00(4) (2D), respectively. In Fig. 10 we plot
χ/L2dF−d versus L−0.83 using three different values of dF for
the 3D Ising model: our estimate, as well as our estimate
plus or minus three standard deviations. As L increases, the
data with dF = 2.480 6 and dF = 2.483 0 bend upward and
downward, respectively, while the data with dF = 2.481 8 are
consistent with an asymptotically straight line.

5. The second moment correlation length ξ2nd

At K = Kc, the ratio ξ2nd/L approaches a universal value
(ξ2nd/L)c in the thermodynamic limit L → ∞. It means that
the second moment correlation length scales as ξ2nd ∼ L. We
fit the MC data of ξ2nd for the 3D and 2D Ising models to
Eq. (5) with yA = 1 fixed and a0 replaced by (ξ2nd/L)c. For
the 3D Ising model, in the fit with y2 = −2 fixed and y1

TABLE XI. Fits of ξ2nd for the 3D and 2D Ising models.

Lmin χ 2/DF (ξ2nd/L)c b1 y1 b2

12 10/8 0.64321(9) −0.026(4) −0.72(6) 0.02(3)
16 7.3/7 0.64310(10) −0.037(10) −0.83(9) 0.11(7)

3D 16 7.4/8 0.64310(3) −0.0367(8) −0.83 0.11(2)
24 7.1/7 0.64309(4) −0.036(1) −0.83 0.09(5)
32 6.9/6 0.64310(5) −0.037(2) −0.83 0.13(9)

8 6.4/12 0.905 05(6) 0.46(2) −1.54(2) –
12 6.3/11 0.905 06(7) 0.48(4) −1.56(4) –
16 6.2/10 0.905 06(8) 0.47(7) −1.55(6) –

2D
8 6.5/13 0.905 06(4) 0.468(2) −1.55 –

12 6.3/12 0.905 05(4) 0.469(4) −1.55 –
16 6.2/11 0.905 06(5) 0.468(7) −1.55 –
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free, we observe that the correction exponent y1 ≈ −0.83.
To reduce one fitting parameter, we further perform the fit
with y1 = −0.83 and y2 = −2 fixed. For the 2D Ising model,
if letting b2 = 0 and y1 free, we observe that the correction
exponent y1 ≈ −1.55. To reduce one fitting parameter, we
then try the fit with fixed y1 = −1.55. The fitting results are
shown in Table XI.

After comparing these fits, we determine the universal
critical ratio as (ξ2nd/L)c = 0.6431(1) (3D) and 0.905 06(8)
(2D), respectively. The current estimates for the 3D and 2D
Ising models agree well with the previous reported value
(ξ2nd/L)c(3D) = 0.643 1(1) [38] and the numerical integra-
tion result (ξ2nd/L)c(2D) = 0.905 048 829 2(4) [52] using
conformal field theory, respectively.
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