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Taking advantage of recent single-particle tracking data, we compare the popular standard mean-squared
displacement method with a statistical testing hypothesis procedure for three testing statistics and for two particle
types: membrane receptors and the G proteins coupled to them. Each method results in different classifications.
For this reason, more rigorous statistical tests are analyzed here in detail. The main conclusion is that the
statistical testing approaches might provide good results even for short trajectories, but none of the proposed
methods is “the best” for all considered examples; in other words, one needs to combine different approaches to
get a reliable classification.
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I. PARTICLE DYNAMICS ANALYSIS

Recent advances and ongoing developments in biophysics
have enabled scientists to investigate the dynamics of biologi-
cal processes in living cells with unprecedented spatiotempo-
ral resolution. This will hopefully enable us to address funda-
mental and still open questions such as the organization of the
cell and the rules that govern its function. The introduction
of single-molecule microscopy methods, which allow us to
follow the behavior of individual biological molecules over
space and time, has been an important development in this
direction. As the local dynamics of such molecules obeys
biophysical laws, it is crucial to properly classify the type
and nature of their motion [1–4]. Over the years, multiple
mathematical models have been proposed to describe the
motion of biological molecules on the surface of as well
as within living cells [5–7]. Although molecules are often
assumed to diffuse via Brownian motion, in a process that
is widely called free diffusion, other more complex types
of motions have been observed [8]. The occurrence of such
complex dynamics can be explained by several features of the
cell membrane and cytosol, such as high viscosity, crowding,
and intramolecular interactions. In this paper, three main types
of mobility are considered: free diffusion, subdiffusion, and
superdiffusion.

Generally speaking, a particle is driven by free diffusion
when it does not meet any obstacles in its path and does not
undergo relevant interactions with other particles. In the bio-
logical literature, this kind of dynamics is related to Brownian
motion.

In cell biophysics, the anomalous diffusion class called
subdiffusion is associated with several biological scenarios.
In general, subdiffusion occurs in a crowded area. A moving
particle, pausing for a while and then moving again, is driven
by confined diffusion. A particle slowing down due to the
viscosity of cytoplasm and whose movements are interrupted
by fixed obstacles is driven by anomalous diffusion. In this
paper, the above scenarios are not distinguished and will be
considered as the same type of dynamics: subdiffusion.

The third type of dynamics considered here is called su-
perdiffusion. Particles that are driven by such a type of motion
tend to move rapidly and do not come back to their previous
position. The motion is faster and often directed to a specific
area. Such particles can, for instance, transport cargos and be
driven by molecular motors [9].

Determining the mechanisms underlying anomalous diffu-
sion in complex fluids, e.g., in the cytoplasm of living cells or
in reconstituted systems in vitro [10,11], is a challenging task.
Subdiffusion can be rooted in different physical mechanisms
including immobile obstacles, binding, crowding, and hetero-
geneities [12]. Some of the theoretical models employed to
describe subdiffusion are the continuous-time random walk
[4,13], obstructed diffusion [14,15], fractional Brownian mo-
tion (fBM) [10,16], and diffusion in a fractal environment
[17]. In the paper, we focus only on the fractional diffusion
[18]. However, we remark that especially in the complex
environment of biological cells, where a vast array of specific
and nonspecific interactions transpire, fBM does not account,
of course, for all possible types of observed anomalous diffu-
sion; see [19]. For an overview of other models of anomalous
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FIG. 1. Trajectories used for analysis (blue color) for two particle
types: receptors (left panel) and G proteins (right panel) with mini-
mal trajectories length N = 50. The omitted trajectories are marked
with gray.

diffusion, see the review articles [20] and [21]. The observed
diffusive behavior may also be of “mixed origin,” i.e., it may
involve different stochastic mechanisms, as shown in [14] and
[22].

II. ILLUSTRATIVE DATA

The sample data used in this paper, as an illustration for
the presented methods, are based on a recent single-molecule
study on G protein-coupled receptors that investigated the
motion and interaction of individual receptors and G proteins
on the surface of living cells [23]. We analyzed only a subset
of data (about 2200 trajectories) as an example and to pro-
vide results obtained for different classification methods. Two
types of particles are considered: so-called G-proteins and
receptors coupled to them, tracked under specific biological
conditions. The main goal of the analysis is to classify the
dynamics for both types of particles. We study the effect of
the choice of method on the classification results and, as a
consequence, on the conclusions.

In Fig. 1, trajectories for both particle types are visualized.
Immobile objects are omitted, as well as the particles with
trajectories of insufficient length. Namely, we use only trajec-
tories with at least 50 data points. Finally, we analyze 1037 G
proteins and 1218 receptors.

III. STOCHASTIC MODEL

The analysis is based on subsequent observations of a
particle’s position collected in the two-dimensional space
at equally spaced time points t0, t1, . . . , tn with lag �, i.e.,
ti+1 − ti = �. In the context of a real experiment, � is de-
fined by the temporal resolution of the microscopy method
used for imaging, and the number of frames collected in the
experiment equals n + 1. Let us denote the particle position
obtained at time ti as

Xti = (
X 1

ti , X 2
ti

) ∈ R2. (1)

Following [24], we consider three cases of underlying
dynamics:

(i) Free diffusion described by Brownian motion: X i
t =

σBi
t , i = 1, 2.
(ii) Subdiffusion given by (a) fractional Brownian motion:

X i
t = σBH,i

t , i = 1, 2 with H < 1
2 ; and (b) the Ornstein-

Uhlenbeck process: dX i
t = −λi(X i

t − θi )dt + σdBi
t , i = 1, 2,

where λi > 0.

(iii) Superdiffusion given by (a) fractional Brownian mo-
tion: X i

t = σBH,i
t , i = 1, 2 with H > 1

2 ; and (b) a directed
Brownian motion: dX i

t = vidt + σdBi
t , i = 1, 2, where v =

(v1, v2) ∈ R2 models the velocity of the particle as a constant
drift parameter.

It should be clarified that the considered two-dimensional
models are a considerable simplification of realistic dynamics
in physical systems. Namely, the correlations are introduced
only along coordinates and not between them. Nevertheless,
such simplified models are a frequent choice in the literature
and in our opinion are sufficient to illustrate the classification
methodology analyzed in the paper.

IV. STANDARD CLASSIFICATION WITH MSD

The most popular and widely used statistic to classify
dynamics of the underlying process in single-particle tracking
is MSD [1,3,4,6]. The measure is based on particle displace-
ments at specified time intervals called time lags (or lag times)
and has the following form:

MSDt = 〈∥∥Xt+t0 − Xt0

∥∥2〉
, (2)

where 〈·〉 is the mean and ‖ · ‖ stands for the Euclidean
distance. For free diffusion, MSDt is linear in time, for subdif-
fusion it is sublinear, while for superdiffusion it is superlinear.

If a large sample of trajectories is recorded in an exper-
iment, then the MSDt statistic (2) can be calculated as an
ensemble average. In such a case, confidence bounds for the
resulting empirical function can be derived using standard
confidence bounds for the mean [25]. However, many exper-
imental results consist of only one trajectory recorded or the
trajectories cannot be treated as identically distributed repli-
cates, e.g., in the case of ergodicity breaking [21,26,27]. Then
MSDt (2) is usually replaced by the time-averaged MSD.
Precisely, if the analyzed data consist of n + 1 successive
positions of a particle −→xti = (x1

ti , x2
ti ), i = 0, . . . , n, then the

̂MSDτ estimator at time lag τ has the form

̂MSDτ = 1

n + 1 − τ

n−τ∑
i=0

∥∥−−→xti+τ − −→xti

∥∥2
, (3)

where τ = �, 2�, . . . , K , and K is the maximum value for a
lag. Note that, while for small lags there are many displace-
ments included in mean value calculation, there are only a few
for the large ones. Selecting a suitable number of time lags
for an MSD analysis is a well-known problem in biophysics,
deeply investigated in [24,28,29].

Since the behavior of ̂MSDτ is different for different types
of diffusion, i.e., linear for free diffusion and sub(super)linear
for sub(super)diffusion, it became a standard classification
tool. This can be achieved by fitting a function β ln(τ ) + a
to the estimated ln(MSDτ ) curve and applying a simple rule
for some arbitrary cutoff parameter c:

(i) If β � 1 − c, claim subdiffusion.
(ii) If β ∈ (1 − c, 1 + c), claim free diffusion.
(iii) If β � 1 − c, claim superdiffusion.
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TABLE I. Results of diffusion-type classification for the standard
MSD method with different parameter c choice and the maximal lag
as a percentage of the trajectory length n.

Particle type Receptor

τmax 80%n 50%n 10%n

c 0.1 0.2 0.25 0.1 0.2 0.25 0.1 0.2 0.25
Free diffusion 20% 36% 44% 23% 43% 50% 19% 45% 56%
Subdiffusion 70% 60% 53% 69% 55% 48% 80% 55% 44%
Superdiffusion 10% 5% 3% 8% 3% 1% 1% 0% 0%

Particle type G protein

τmax 80%n 50%n 10%n
c 0.1 0.2 0.25 0.1 0.2 0.25 0.1 0.2 0.25
Free diffusion 13% 29% 35% 15% 33% 39% 22% 42% 49%
Subdiffusion 77% 66% 62% 76% 63% 59% 72% 57% 50%
Superdiffusion 10% 5% 4% 9% 4% 3% 6% 2% 1%

Practical example

In the following example, we classify the trajectories of the
dataset described in Sec. II using the standard MSD method
with different cutoff parameters c. The obtained percentage of
trajectories assigned to each diffusion-type group is given in
Table I. The classification is performed for each particle type
(i.e., G protein or receptor) separately. As the classification
results may vary depending on the choice of the maximal
lag τmax, we provide results for a wide range of τmax, namely
10%n, 50%n, and 80%n.

As can be observed in Table I, the choice of the cutoff pa-
rameter c has a huge impact on the classification results. The
percentage of trajectories classified as free diffusion is in some
cases almost three times smaller for c = 0.1 than for c = 0.25,
e.g., for receptors and τmax = 10%n only 19% of trajectories
were classified as free diffusion for c = 0.1, while for c =
0.25 it was 56%. Obviously, such differences might influence
conclusions based on the classification results. Looking at the
overall classification results, we can observe that most of the
trajectories were recognized as subdiffusion, with the percent-
ages ranging from 44% for receptors with τmax = 10%n and
c = 0.25 up to 80% for c = 0.1. On the other hand, there were
no more than 10% trajectories classified as superdiffusion.
Comparing the results obtained for different τmax, we can see
that in most cases the disagreement is not larger than 10%,
with the highest obtained value of 14% for free diffusion
for G proteins with c = 0.25. Hence, the choice of τmax

slightly influences the numerical results, but the qualitative
conclusions are similar. The results of the classification with
the standard MSD method are further illustrated in Figs. 6
and 7.

V. CLASSIFICATION BASED ON HYPOTHESIS TESTING

As can be observed in Table I, the choice of the cutoff
parameter c is crucial for the classification of the trajectories’
dynamics. At the same time, setting an arbitrary parameter
value would cause uncertainty in the results. Hence, we turn
to the classical statistical hypothesis testing approach [30,31],
which is based on the probability of observing the calculated

value of the considered statistic if the hypothesis were true.
If this probability (called significance level) is low, then we
can reject the hypothesis. Namely, the procedure for the
classification of the diffusion type is based on testing the
following hypothesis:

H0 : (Xt ) is free diffusion,

versus two alternatives:

H1 : (Xt ) is subdiffusion,

H2 : (Xt ) is superdiffusion.

Knowing the distribution of a test statistic Sn for trajectories
of length n under H0 (i.e., for free diffusion), one can calculate
critical regions of the test as Rα,1 = {Sn < qn(α)} and Rα,2 =
{Sn > qn(1 − α)}, where qn(α) is the α-quantile of the test
statistic Sn distribution F (t ). If the calculated statistic Sn

lies in Rα,1, then we can, with α significance level, reject
the free-diffusion hypothesis H0 in favor of the subdiffusion
hypothesis H1. Similarly, if the calculated Sn lies in Rα,2, then
we can, with α significance level, reject the free-diffusion
hypothesis H0 in favor of the superdiffusion hypothesis H2.
Putting together these two procedures, the test decision rule
	 can be defined as follows:

	α (Xn) =
⎧⎨
⎩

H1 when Xn ∈ Rα/2,1,

H2 when Xn ∈ Rα/2,2,

do not reject H0 otherwise.
(4)

In statistics, such a test is called a two-sided test, while the
authors of [24] use the term “three-decision test.” In the
following, we will compare results of the three-decision test
based on the maximum statistics (used recently in [24]) with
two other two-sided tests proposed in this paper based on the
MSD and p-variation statistics.

It is important to note that with such a formulation of
the classification method, one also needs to set an arbitrary
parameter, namely the significance level α. However, the
choice is well controlled, since α can be interpreted as the
probability of rejecting the true free-diffusion hypothesis H0,
i.e., error of the first kind. The cutoff parameters are then
related to the significance level and equal the α

2 and 1 − α
2

quantiles of the test statistic distribution. The significance
level is usually set as 5% (or sometimes 1%) and this value
will be used throughout this paper.

A. Mean-squared displacement test

First, we apply the general testing procedure to the MSD
approach. Since the classification with the standard MSD
approach is based on the analysis of the values of the MSDτ

power exponent βn, as the test statistic we choose βn. τmax is
now set to 50%n, which is usually considered as the maximal
reasonable lag in the literature. An analytic formula for the
probability density function of βn for fractional Brownian
motion was calculated in [32]. However, as the formula is
computationally demanding and involves several numerical
approximations, here instead we use Monte Carlo simula-
tions. To this end, we simulate 5000 trajectories of Brownian
motion (i.e., under H0 hypothesis). Next, for each trajectory
we calculate the ̂MSDτ for τ = 1, 2, . . . , 0.5n and estimate
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FIG. 2. Cumulative distribution F̂ (βn) for the power exponent βn

of MSDτ calculated with Monte Carlo simulations. In the upper left
panel, the distribution of βn under H0, i.e., free diffusion, is plotted
for different trajectories lengths n. In the remaining panels, the distri-
bution of βn with n = 1000 for different alternatives, i.e., fractional
Brownian motion (top right panel), the Ornstein-Uhlenbeck process
(bottom left panel), and directed Brownian motion (bottom right
panel), is plotted. Note that for fBM H = 0.5 corresponds to the
free-diffusion case (i.e., H0), for the Ornstein-Uhlenbeck process
λ = 0 corresponds to the free-diffusion case, while for dBM v = 0.
The critical regions are marked with yellow rectangles.

the βn exponent of the fitted power function. The obtained
cumulative distribution functions F̂ (βn) for different n are
plotted in the upper left panel of Fig. 2. Having calculated the
distribution of the βn exponent, we can find critical regions for
the test. For example, for n = 100 we get the 5% significance
interval for the βn parameter equal to (0.5, 1.34). This means
that with 95% probability the βn parameters for free diffusing
particles should lie within this interval. If the obtained βn is
lower than 0.5, then we can reject the free-diffusion hypothe-
sis in favor of subdiffusion. On the other hand, if βn is greater
than 1.34 we can reject the free-diffusion hypothesis in favor
of superdiffusion. It is interesting to note that the obtained
interval is much wider than often considered in the literature.
Furthermore, our analysis shows that the interval for βn is not
symmetric around 1, being left-skewed, which might be the
effect of the logarithmic transformation.

In Fig. 2 we also plot the distributions of βn for the
alternative models considered in this paper: fractional Brown-
ian motion (top right panel), the Ornstein-Uhlenbeck process
(bottom left panel), and directed Brownian motion (bottom
right panel). These distributions are not used directly in the
testing procedure, but they are an illustration of the power of
the test, i.e., the probability of rejecting the H0 hypothesis
if an alternative is true. Note that in each case we report
also the distribution for the free-diffusion case together with
the critical regions for the test (yellow rectangles). The free-
diffusion case would be accurately distinguishable from the
alternatives if the corresponding distributions did not overlap,
i.e., the distributions for the alternatives would lie outside
the critical regions. Looking at the plots of Fig. 2 we can

TABLE II. Results of diffusion-type classification with MSD
test procedure based on the simulated βn distribution under H0 for
different maximal lags τmax and significance level α = 5%.

Particle type Receptor G protein

τmax 80%n 50%n 10%n 80%n 50%n 10%n

Free diffusion 85% 79% 79% 78% 76% 76%
Subdiffusion 15% 21% 21% 21% 24% 24%
Superdiffusion 0% 0% 0% 1% 1% 1%

observe such behavior for the Ornstein-Uhlenbeck process
with λ � 0.1 and for the directed Brownian motion, since the
distributions for the free-diffusion case (λ = 0 or v = 0) are in
different ranges from the distributions for the alternative ones.
In contrast, for the fractional Brownian motion case we can
see that the distributions overlap. Hence the values obtained
for free diffusion might with high probability be obtained also
for sub(super)diffusion. As a consequence, the classification
with the MSD test for the fractional Brownian motion and the
Ornstein-Uhlenbeck with small λ can be unreliable. We will
investigate this aspect in further detail in Sec. VI.

Practical example

We apply the method based on MSD testing to the same
dataset as in the previous example. In Table II we give the
classification percentages for different particle types, while in
Figs. 6 and 7 we plot an illustration of the results.

We can observe that, compared to the results of Table I, the
percentage of particles classified as freely diffusing is much
higher. This is simply a consequence of the wider interval for
β in the free-diffusion case. Now, the free-diffusion case is
assigned in most cases with percentages ranging from 76%
for G proteins up to 85% for receptors. On the other hand,
superdiffusion is almost not recognized, with only 1% for G
proteins and 0% for receptors. Looking at the influence of the
maximal lag on the classification results, we can see that there
are slight differences in the obtained values. However, they do
not exceed a few percentages and they do not influence the
overall conclusions. Hence in the rest of the paper we provide
results only for τmax = 50%n.

B. Maximum test

The approach considered in this section was developed
recently in [24]. It is based on the largest distance traveled by
a particle from the starting point in a given time period [t0, tn]:

Dn = max
i=1,...,n

∥∥−→xti − −→xt0

∥∥. (5)

A similar statistic, called mean maximal excursion (MME),
was previously used in [33]. The MAX test statistic is a
standardized value of Dn and takes the following form:

Tn = Dn√
σ̂ 2

n (tn − t0)
, (6)

where σ̂ 2
n stands for a consistent estimator of σ , e.g., σ̂ 2

1,n =
1

2�n

∑n
j=1 ‖−→xt j − −→xt j−1‖2. A crucial property of the test statistic

is that, for Brownian motion, the distribution of Tn does not
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TABLE III. Results of diffusion-type classification with MAX
test procedure and significance level α = 5%.

Particle type Receptor G protein

Free diffusion 79% 76%
Subdiffusion 21% 24%
Superdiffusion 0% 1%

depend on σ . The choice of this test statistic can be further
clarified by its biophysical interpretation. A particle trapped
in a small area, hindered by static and/or nonstatic obstacles,
stays close to its initial position. If the largest distance traveled
by a particle is small, it is driven by subdiffusion dynamics.
In the opposite situation, if the particle is able to travel long
distances, the value of the MAX statistic Tn is higher [24],
indicating a superdiffusional nature of motion.

The maximum (MAX) test procedure for the classifica-
tion of the diffusion type is based on the knowledge of the
distribution of the MAX test statistic Tn under H0, i.e., for
free diffusion. Again, as for the MSD test, one can calculate
critical regions and apply a test decision rule (4). The level of
the test, i.e., the probability of rejecting the true H0 hypothesis,
equals α. For a detailed discussion on the power of the test, see
[24].

Providing the exact formula for the distribution of Tn

statistic under the null hypothesis is nontrivial. In [24] the
authors analyzed the asymptotic distribution of Tn under H0.
However, biophysical experiments do not provide samples of
infinite length. In practice, trajectories may be very short,
but nevertheless relevant. Using asymptotic distribution as an
approximation of quantiles for short samples may lead to a
disturbance of the test level. Nevertheless, the distribution of
Tn and its quantiles qn(α) can be approximated via a Monte
Carlo simulation. The procedure is analogous to the one
described in Sec. V A. Sample results of the Tn cumulative
distribution function F̂ (Tn) for different lengths of trajectories
under H0 as well as its alternatives together with critical
regions are presented in Fig. 3.

A visual comparison of Tn distribution plots for free dif-
fusion and the considered sub(super)diffusion processes sug-
gests that the classification results would be accurate for the
Ornstein-Uhlenbeck process with λ � 0.1 and for the directed
Brownian motion, as distributions for these processes and the
distribution for free diffusion do not overlap. This is not the
case for the fractional Brownian motion, which indicates that
using the decision rule based on the MAX statistic in the case
of fractional Brownian motion might lead to overclassification
of free diffusion.

Practical example

Based on the simulated Tn distribution for the free-
diffusion case, we have classified the illustrative data analo-
gously to for the methods based on MSD. Results are given in
Table III, while sample illustration is plotted in Figs. 6 and 7.

The results are of a similar order to those in Table II.
Precisely, the obtained percentages of trajectories classified as
free diffusion are slightly lower than the ones obtained using
the MSD test with simulated β distribution and there were
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FIG. 3. Cumulative distribution function F̂ (Tn) for Tn calculated
with Monte Carlo simulations. In the left panel, the distribution of
Tn under H0, i.e., free diffusion, is plotted for different trajectory
lengths n. In the remaining panels, the distribution of Tn with n =
1000 for different alternatives, i.e., fractional Brownian motion (top
right panel), the Ornstein-Uhlenbeck process (bottom left panel),
and directed Brownian motion (bottom right panel), is plotted. Note
that for fBM, H = 0.5 corresponds to the free-diffusion case (i.e.,
H0), for the Ornstein-Uhlenbeck process λ = 0 corresponds to the
free-diffusion case, while for dBM v = 0. The critical regions are
marked with yellow rectangles.

slightly more trajectories assigned to subdiffusion than in the
MSD test approach, but the difference is not higher in any case
than 6%.

C. p-variation test

A third approach that can be used in the context of trajecto-
ries classification is based on the notion of p-variation, which
was successfully used in [34] to distinguish between fBM
and the continuous time random walk (CTRW) process—a
problem in which the standard MSD method based on one tra-
jectory fails. The concept of p-variation generalizes the well-
known notions of total or quadratic variations, which have
found applications in various areas of physics, mathematics,
and engineering [34,35]. Let X (t ) be a stochastic process
analyzed on the time interval [0, T ]. Then, the p-variation of
X (t ) is defined as the limit of the sum of increments of X (t )
taken to the pth power over all partitions P of the interval
[0, T ], when the mesh of the partitions goes to zero. When
p = 1, it reduces to the total variation, whereas p = 2 leads
to the notion of quadratic variation. Since such a p-variation
statistic would not be helpful in recognizing confined systems
analyzed in this paper (see [36]), we turn to the notion of
sample p-variation defined as a function of time lags [37].
Let {−→xi , i = 0, . . . , n} be a sample of length n + 1, where−→x i = (x1

i , x2
i ). Sample p-variation V̂ (p)

m for lag m is defined
as

V̂ (p)
m =

n/m−1∑
k=0

‖−→x (k+1)m − −→x km‖p. (7)
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FIG. 4. Cumulative distribution function F̂ (γ 1
n ) for the power

exponent of p-variation V̂ 1
n calculated with Monte Carlo simulations.

In the top left panel, the distribution under H0, i.e., free diffusion, is
plotted for different trajectory lengths n. In the remaining panels, the
distribution of γ 1

n with n = 1000 for different alternatives, i.e., frac-
tional Brownian motion (top right panel), the Ornstein-Uhlenbeck
process (bottom left panel), and directed Brownian motion (bottom
right panel), is plotted. Note that for fBM H = 0.5 corresponds to
the free-diffusion case (i.e. H0), for the Ornstein-Uhlenbeck process
λ = 0 corresponds to the free-diffusion case, while for dBM v = 0.
The critical regions are marked with yellow rectangles.

Using the fact that for fractional Brownian motion V̂ (p)
m ∼

mH p−1 for large n
m [37], one obtains a simple classification

procedure. First, calculate sample p-variation for different
lags assuring that n

m is large [in this paper we consider m =
1, 2, . . . , max(0.01n, 5)]. Next, fit a power function kmγ p

to the estimated p-variation. Finally, apply a decision rule:
if γ p >

p
2 − 1 + c claim superdiffusion, if γ p <

p
2 − 1 − c

claim subdiffusion, otherwise claim free diffusion. As in the
MSD method case, such a decision rule would be highly
dependent on the choice of the cutoff parameter c. Hence,
again, we turn to the classical approach in testing the statistical
hypothesis, and we use the p-variation (p-VAR) test with
the simulated distribution F̂ (γ p

n ) of the fitted power function
exponent γ

p
n . The distributions under free diffusion as well

as the considered alternatives calculated via Monte Carlo
simulations are plotted in Figs. 4 and 5 for V̂ 1

n and V̂ 4
n ,

respectively. The cutoff parameters c are now related to the
significance level and equal the α

2 and 1 − α
2 quantiles of the

test statistic distribution.
Applying the p-variation test, we can observe a different

picture for the F̂ (γ p
n ) distributions. Now, the distributions for

fBM and free diffusion do not overlap, indicating that the
method would work well in this case. On the other hand, the
distributions for directed Brownian motion with v < 0.4 as
well as the Ornstein-Uhlenbeck process with λ < 0.5 and free
diffusion overlap, which might lead to the overclassification
of free diffusing particles in this case. Recall that for the
previously described MSD and MAX tests, the distributions
for the directed Brownian motion were easily distinguishable
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FIG. 5. Cumulative distribution function F̂ (γ 4
n ) for the power

exponent of p-variation V̂ 4
n calculated with Monte Carlo simulations.

In the top left panel, the distribution under H0, i.e., free diffusion,
is plotted for different trajectories lengths n. In the remaining pan-
els, the distribution of γ 4

n with n = 1000 for different alternatives,
i.e., fractional Brownian motion (top right panel), the Ornstein-
Uhlenbeck process (bottom left panel), and directed Brownian mo-
tion (bottom right panel), is plotted. Note that for fBM H = 0.5
corresponds to the free-diffusion case (i.e., H0), for the Ornstein-
Uhlenbeck process λ = 0 corresponds to the free-diffusion case,
while for dBM v = 0. The critical regions are marked with yellow
rectangles.

from free diffusion for any of the considered parameters,
while for the Ornstein-Uhlenbeck process they were easily
distinguishable for λ � 0.01.

Practical example

The p-VAR test was applied to the dataset considered in
this paper. The obtained classification percentages are given
in Table IV, while the sample illustration is plotted in Figs. 6
and 7. The percentages obtained for the free diffusion, ranging
from 44% up to 53%, are lower than those obtained using the
MSD and MAX test, but still higher than those assigned by the
standard MSD approach. Here, on average the subdiffusion
case is recognized most often. On the other hand, as for the
MSD and MAX tests, trajectories are classified as superdiffu-
sion very rarely. Comparing the p-VAR test results obtained

TABLE IV. Results of diffusion-type classification with p-VAR
test depending on the p parameter choice for significance level α =
5%.

Particle type Receptor G protein

p 1 2 4 1 2 4

Free diffusion 53% 47% 44% 52% 51% 48%
Subdiffusion 47% 53% 56% 46% 48% 50%
Superdiffusion 0% 0% 0% 1% 2% 3%
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FIG. 6. Classification results for G proteins obtained with differ-
ent methods: standard MSD with c = 0.1 (upper left panel), MSD
test (upper right panel), MAX test (lower left panel), and p-VAR
test with p = 1 (lower right panel). Trajectories classified as free
diffusion are plotted with black, as subdiffusion with yellow, and as
superdiffusion with red.

using different p, we can observe that the motion of particles
is usually recognized as slightly slower for higher p.

In Figs. 6 and 7, the results of all four considered methods
are visually compared. It can be noticed that the results ob-
tained with different methods are visibly different. Definitely,
the standard MSD approach underclassifies free diffusion
(denoted by black). Moreover, as compared to other methods,
it also overclassifies superdiffusion (red). The proportion of

FIG. 7. Classification results for receptors obtained with differ-
ent methods: standard MSD with c = 0.1 (upper left panel), MSD
test (upper right panel), MAX test (lower left panel), and p-VAR
test with p = 1 (lower right panel). Trajectories classified as free
diffusion are plotted with black, as subdiffusion with yellow, and as
superdiffusion with red.

SUB FREE SUP SUB FREE SUP SUB FREE SUP SUB FREE SUP
0

0.5

1

SUB FREE SUP SUB FREE SUP SUB FREE SUP SUB FREE SUP
0

0.5

1

     1-VAR     MSD
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     4-VAR

FIG. 8. Box plots of the classification results obtained with
different methods from 300 simulated trajectories driven by the
fractional Brownian motion with different H parameters: 100 for
the free-diffusion case (H = 0.5), 100 for subdiffusion (H = 0.4),
and 100 for superdiffusion (H = 0.6). Classification procedure was
repeated 100 times. The lengths of the simulated trajectories were
set as 50 (upper panel) or 500 (bottom panel). The dashed thick line
indicates the correct classification value of 1/3.

trajectories assigned as free or subdiffusion varies among
three tests, with the highest percentage of subdiffusive trajec-
tories for the p-VAR test, especially for receptors.

VI. SIMULATION STUDY

The results obtained by applying the three considered test
approaches to the illustrative dataset are not consistent, and
the differences between the methods can lead to differences
in conclusions depending on the chosen approach. Hence,
we check the reliability of the considered methods using
simulated trajectories. To this end we simulate a set of 300
trajectories consisting of 100 trajectories for subdiffusion,
100 for superdiffusion, and 100 for free diffusion, and we
classify the trajectories using each of the described methods.
The procedure is repeated 100 times. We consider four cases
regarding the models analyzed in this paper. The first case is
fractional Brownian motion with H = 0.4 for subdiffusion,
H = 0.5 for free diffusion, and H = 0.6 for superdiffusion.
Note that the parameters are close to each other, which
might make the classification difficult. The second case is
fractional Brownian motion with H = 0.1 for subdiffusion,
H = 0.5 for free diffusion, and H = 0.9 for superdiffusion.
Here, the parameters are far from each other, so the classi-
fication results should be more accurate. The third case is
the Ornstein-Uhlenbeck process with λ = 0.01 and θ = 0 for
subdiffusion, Brownian motion (i.e., the Ornstein-Uhlenbeck
process with λ = 0, θ = 0) for free diffusion, and directed
Brownian motion with v = 0.2 for superdiffusion. The pa-
rameters are chosen in such a way that they are close to the
free-diffusion case. The last case is analogous to the third one,
but the parameter values are much higher, making the type of
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FIG. 9. Box plots of the classification results obtained with dif-
ferent methods from 300 simulated trajectories driven by the frac-
tional Brownian motion with different H parameters: 100 trajectories
for the free-diffusion case (H = 0.5), 100 for subdiffusion (H =
0.1), and 100 for superdiffusion (H = 0.9). Classification procedure
was repeated 100 times. The lengths of the simulated trajectories
were set as 50 (upper panel) or 500 (bottom panel). The dashed thick
line indicates the correct classification value of 1/3.

dynamics easily identifiable, namely λ = 0.5 and θ = 0 for
the Ornstein-Uhlenbeck process (subdiffusion) and v = 0.8
for the directed Brownian motion (superdiffusion). To check
the dependence on the reliability of the results on the
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     MSD
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FIG. 10. Box plots of the classification results obtained with
different methods from 300 simulated trajectories: 100 trajectories
for the free-diffusion case (driven by Brownian motion), 100 for
subdiffusion (driven by the Ornstein-Uhlenbeck process with λ =
0.01), and 100 for superdiffusion (driven by the directed Brownian
motion with v = 0.2). Classification procedure was repeated 100
times. The lengths of the simulated trajectories were set as 50 (upper
panel) or 500 (bottom panel). The dashed thick line indicates the
correct classification value of 1/3.
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FIG. 11. Box plots of the classification results obtained with
different methods from 300 simulated trajectories: 100 trajectories
for the free-diffusion case (driven by Brownian motion), 100 for
subdiffusion (driven by the Ornstein-Uhlenbeck process with λ =
0.5), and 100 for superdiffusion (driven by the directed Brownian
motion with v = 0.8). Classification procedure was repeated 100
times. The lengths of the simulated trajectories were set as 50 (upper
panel) or 500 (bottom panel). The dashed thick line indicates the
correct classification value of 1/3.

trajectory length, in each case we simulate short (of length
N = 50) and long (of length N = 500) trajectories. The box
plots of the obtained percentages together with the exact value
equal to 1/3 are plotted in Figs. 8–11.

From the plots obtained for fBM (Figs. 8 and 9), we may
conclude that if the dynamics type is hardly distinguishable
(i.e., H = 0.4, 0.6), then a trajectory of length N = 50 is not
enough for any of the methods, as the overestimation of free
diffusion reaches 80%. Nevertheless, the lowest errors come
from the MSD test resulting in a free-diffusion percentage
of about 60%. For the longer trajectories (N = 500) we can
see a large improvement in the results for a p-VAR test,
with most of the trajectories classified correctly, a moderate
improvement in the MAX test results, and no improvement
in the MSD test results. Looking at the classification results
for the easily distinguishable case (i.e., H = 0.1, 0.9) we can
see that even for short trajectories the p-VAR test works very
well. The results of the MAX test are slightly worse than for
the p-VAR test in the case of short trajectories, and they are
comparable for long trajectories. The MSD test results are in
this case the least accurate.

The classification results obtained for the Ornstein-
Uhlenbeck process and the directed Brownian motion produce
a different picture. Here, the p-VAR test performs worst. For
short trajectories and hardly distinguishable dynamics (λ =
0.01, v = 0.2) the most accurate results are obtained using
the MSD test, the results for the MAX test being slightly
worse. For longer trajectories, both the MAX and MSD tests
give better results, being accurate for the directed Brownian
motion but still underestimated for the Ornstein-Uhlenbeck.
Again, the results of the MSD test yield the lowest errors.
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TABLE V. Mean absolute errors of the classification results for
each of the analyzed methods obtained from 300 simulated trajecto-
ries: 100 trajectories for the free-diffusion case, 100 for subdiffusion,
and 100 for superdiffusion. Means were calculated from 100 Monte
Carlo repetitions. The lowest values for each case are marked in bold.

Method MSD test MAX test 1-VAR test 4-VAR test
N fBM: H = 0.4, H = 0.5, H = 0.6

50 17% 36% 35% 36%
500 21% 28% 2% 3%

N fBM: H = 0.1, H = 0.5, H = 0.9
50 6% 3% 1% 1%
500 4% 1% 1% 1%

N Ornstein-Uhlenbeck: λ = 0.01, λ = 0, dBM: v = 0.2
50 20% 36% 40% 41%
500 3% 12% 33% 35%

N Ornstein-Uhlenbeck: λ = 0.5, λ = 0, dBM: v = 0.8
50 7% 1% 2% 3%
500 5% 1% 1% 1%

The results of the p-VAR test even for longer trajectories
are still unacceptable with the overclassification of the free-
diffusion case exceeding 80%. In the case of easily identifiable
dynamics (λ = 0.5, v = 0.8), all methods work well even for
short trajectories, but inaccuracy is slightly higher for the
MSD test. Comparing the obtained results for different p in
the p-VAR test, we can observe that the results are slightly
more accurate for p = 1 than p = 4, but the difference seems
to be not significant.

To sum up the obtained results, we calculate the mean
absolute errors for each of the methods. Results are given
in Table V. Choosing the best method is not a simple task
as the results are highly dependent on the type of processes
that drive the particle motion. If the motion is driven by
fBM, then the best among the considered methods is the one
based on the p-VAR test, especially for longer trajectories.
On the other hand, if the particle dynamics can be described
by the Ornstein-Uhlenbeck or dBM process, then the method
yielding the smallest errors is based on the MAX test for an
easily distinguishable dynamics type or the MSD test in the
opposite situation.

VII. CONCLUSIONS

In this paper, we have analyzed in detail a subset of original
data describing G protein-coupled receptor experiments pre-
sented in [23] as an example, and we provided a comparison
between results obtained with different classification methods,

namely MSD, MAX, and p-VAR test. The quantitative results
differ among methods. We have demonstrated here that all
three tests (MSD, MAX, and p-VAR) are statistically more
robust than the standard MSD method in that one does not
have to arbitrarily set c cutoffs (among a series of other
advantages). The selection of c cutoff is rather empirical
even though many authors already have proposed some so-
lutions to that; see, e.g., [10,11,13,23,26]. Instead, we use a
well-controlled significance level. The MAX and MSD test
procedures indicate a prevalence of freely diffusing particles,
the proportions of free and subdiffusive trajectories is similar
for the p-VAR test, while the methodology based on the
standard MSD analysis classifies particles mainly as driven by
subdiffusion. Moreover, all three test procedures in most cases
do not recognize superdiffusive motion, while for the standard
MSD methodology about 10% of trajectories are indicated as
driven by superdiffusion.

To compare the correctness of the considered methods, we
have conducted a simulation study. We found that the p-VAR
test is the most accurate for the fractional Brownian motion,
while for the directed Brownian motion and the Ornstein-
Uhlenbeck process the most accurate is the MAX test or the
MSD test. Therefore, as none of the methods can be regarded
as the best, we propose to use the following procedure in the
classification problem. First, apply all three methods to the
analyzed trajectories. If the obtained classification results are
similar, each can be further used. If the results differ among
methods, one can use one of two approaches: (i) Calculate the
mean of the obtained results, which would minimize the risk
of large errors. (ii) Alternatively, one can use other methods
to identify the process that drives the motion and then use
the results from the test that is the most accurate for such a
process.

We believe that our methodology based on the rigorous
two-sided statistical tests provides a unified way to gain
deeper information on the dynamics of complex biological
processes leading to anomalous diffusion in single-particle
tracking experiments. We remark here that due to the clarity
of the presentation, we neglected the measurement errors.
However, the analysis can be further extended in the presence
of noise; see, e.g., [38] or [29].
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