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During the past decades, the Ising distribution has attracted interest in many applied disciplines, as the
maximum entropy distribution associated to any set of correlated binary (“spin”) variables with observed means
and covariances. However, numerically speaking, the Ising distribution is unpractical, so alternative models
are often preferred to handle correlated binary data. One popular alternative, especially in life sciences, is the
Cox distribution (or the closely related dichotomized Gaussian distribution and log-normal Cox point process),
where the spins are generated independently conditioned on the drawing of a latent variable with a multivariate
normal distribution. This article explores the conditions for a principled replacement of the Ising distribution
by a Cox distribution. It shows that the Ising distribution itself can be treated as a latent variable model, and it
explores when this latent variable has a quasi-normal distribution. A variational approach to this question reveals
a formal link with classic mean-field methods, especially Opper and Winther’s adaptive TAP approximation. This
link is confirmed by weak coupling (Plefka) expansions of the different approximations and then by numerical
tests. Overall, this study suggests that an Ising distribution can be replaced by a Cox distribution in practical
applications, precisely when its parameters lie in the “mean-field domain.”
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I. INTRODUCTION

During the past decades, the Ising distribution has been
used in several disciplines such as statistics (under the name
quadratic exponential model) [1,2], machine learning (under
the name Boltzmann machine) [3], information processing
[4–6], biology [7], and neurosciences, where it has been
proposed as a natural model for the spike-based activities
of interconnected neural populations [8,9]. In most of these
applications, classic assumptions from statistical physics do
not hold (e.g., arrangement on a rectangular lattice, uniform
couplings, independently distributed couplings, zero external
fields, etc.), and even old problems have to be revisited,
such as efficiently simulating the Ising distribution [10,11] or
inferring its parameters from data [12–15].

In this article I will consider the Ising probability distribu-
tion over a set of spins s = (s1, . . . , sN ) ∈ {−1, 1}N defined as

P(s|h, J) = 1

ZI
exp

⎛
⎝ N∑

i=1

hisi + 1

2

N∑
i, j=1

Ji jsis j

⎞
⎠, (1)

with parameters h ∈ RN (external fields) and J an N × N
symmetric matrix (coupling weights), ZI (h, J) being the
corresponding partition function. In this formulation,
diagonal elements Jii can be nonzero without influencing
the distribution, simply adding a constant term

∑
i Jii/2 to

both the exponent and log(ZI ).
I will note (m, C) the two first centered moments of the

distribution, that is, for all indices i, j,

mi = E (si ), Ci j = E (sis j ) − E (si )E (s j ).
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The essential interest of the Ising distribution, in all disci-
plines mentioned above, is its maximum entropy property:
whenever a dataset of N binary variables has measured
moments (m, C), a single distribution of the form Eq. (1)
is guaranteed to exist which matches these moments, and
furthermore it has maximal entropy under this constraint.

Unfortunately, the Ising distribution is numerically un-
wieldy. The simple act of drawing samples from the dis-
tribution already requires to set up lengthy Markov chain
Monte Carlo (MCMC) schemes. Besides, there is no simple
analytical link between parameters (h, J) and resulting mo-
ments (m, C). Given natural parameters (h, J), the direct Ising
problem of estimating (m, C) can only be solved by numerical
sampling from MCMC chains. Given (m, C), the inverse Ising
problem of retrieving (h, J) can only be solved by gradient
descent based on numerous iterations of the direct problem,
a procedure known as Boltzmann learning. In practice, this
means that the Ising distribution cannot be parametrized easily
from observed data.

For this reason, in spite of the Ising model’s theoretical
attractiveness when dealing with binary variables, alternative
models are generally preferred, which are numerically more
convenient. In one such family of alternative models, N latent
variables r = (r1, . . . , rN ) ∈ RN are drawn from a multivari-
ate normal distribution,

N (r|μ,�) = |2π�|−1/2 exp
[ − 1

2 (r − μ)��−1(r − μ)
]
,

and then used to generate N spins independently. The simplest
option, setting si = sign(ri ) deterministically, yields the di-
chotomized Gaussian distribution [16,17], which has enjoyed
recent popularity as a replacement for the Ising distribution
when modeling neural spike trains, as it is easy to sample and
to parametrize from data [18,19].
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Slightly more generally, each variable ri can serve as
an intensity to draw the corresponding spin si following a
Bernoulli distribution:

B(s|r) = 1

ZB
exp

(
N∑

i=1

risi

)
,

with partition function

ZB(r) =
∏

i

(eri + e−ri ).

In statistics, this is the model underlying logistic regression,
as introduced by Cox [20], so I will refer to it as the Cox
distribution:

Q(r|μ,�) = N (r|μ,�), (2)

Q(s|r) = B(s|r), (3)

with μ any vector in RN and � any N × N symmetric definite
positive matrix. Note that the dichotomized Gaussian corre-
sponds to a limiting case of the Cox distribution, when the
scaling of variables ri tends to +∞1.

Both the Ising [Eq. (1)] and Cox [Eqs. (2) and (3)] dis-
tributions can be generalized to point processes, by taking a
suitable limit when the N indexed variables tend to a contin-
uum [21]. These are respectively known as the Gibbs process
[21] and log Gaussian Cox process [22,23]. The latter, much
simpler to handle in practice, is used in various applied fields
such as epidemiology, geostatistics [24], and neurosciences,
to model neural spike trains [25,26].

To summarize, in practical application, Cox models (in-
cluding the dichotomized Gaussian, and Cox point processes)
are often preferred to the corresponding maximum entropy
distributions (Ising distribution, Gibbs point process), because
they are easier to sample and to parametrize from a set of
observed data. However, to date, we have little analytical
insights into the link between the two families of distributions.
For example, given some dataset, we cannot tell in advance
how similar the Cox and Ising models fitting this data would
be. The goal of this article is to investigate this link. I first
show that the Ising distribution itself can be viewed as a latent
variable model, which differs from a Cox distribution only
because of the non-Gaussian distribution of its latent variable
(Sec. II). This allows to derive simple relations between an
Ising distribution and its “best-fitting” Cox distributions, in
two possible senses (Sec. III). In particular, the variational
approach for targeting a best-fitting Cox distribution displays
formal similarities with classic mean-field methods which
aim at approximating the Ising moments (m, C) (Sec. IV).

1The dichotomized Gaussian of parameters (μ,�) is the limit
of the Cox distribution of parameters (λμ, λ2�) when λ → +∞.
Conversely, note that a Bernoulli variable S ∼ B(r) can be generated
as S = sign(r + X ) where X follows the logistic distribution of
density function f (x) = 1

2 cosh−2(x), which resembles closely the
normal distribution N (x|0, κ2) with κ � 0.85. As a result, any Cox
distribution of parameters (μ, �) is decently approximated by a
dichotomized Gaussian of parameters (μ, � + κ2I).

Numerical simulations reveal that both types of approxima-
tions, despite their seemingly different goals, are efficient in
roughly the same domain of parameters (Sec. V). Thus, an
Ising distribution can be replaced in practical applications
by a Cox distribution, precisely if its parameters lie in the
“mean-field domain.”

II. THE ISING LATENT FIELD

Given any vector h ∈ RN and N × N symmetric, definite
positive matrix J, we will consider the following probability
distribution over r ∈ RN and s ∈ {−1, 1}N :

P(s, r) = 1

Z
exp

(
−1

2
(r − h)�J−1(r − h) + r�s

)
, (4)

with Z ensuring proper normalization.
Marginalizing out variable s yields

P(r) = ZB(r)

Z
exp

[
−1

2
(r − h)�J−1(r − h)

]
, (5)

P(s|r) = B(s|r). (6)

Conversely, completing the square in Eq. (4) and marginaliz-
ing out variable r yields

P(s) = |2πJ|1/2

Z
exp

(
h�s + 1

2
s�Js

)
, (7)

P(r|s) = N (r|h + Js, J). (8)

From Eq. (7), the resulting spins s are distributed according to
the Ising distribution of parameters (h, J).

The introduction of field variables ri has long been known
in statistical physics as a mathematical construct to express
the Ising partition function ZI in an integral form [5]. Indeed,
equating the respective expressions for Z imposed by Eqs. (5)
and (7), we obtain the elegant formula

ZI (h, J) =
∫

r∈RN

ZB(r)N (r|h, J)dr, (9)

expressing ZI as the convolution of ZB with a Gaussian kernel
of covariance J. This formula can be used as a justification of
classic mean-field equations [5], and more generally to derive
the diagrammatic (i.e., Taylor) expansion of ZI as a function
of J [27].

In this work instead, I view the ri as a set of probabilis-
tic variables in their own right, coupled to the Ising spin
variables, through Eqs. (5)–(8). Given a spin configuration s,
variable r is normally distributed [Eq. (8)]. Thus, the overall
distribution P(r) is a mixture of Gaussians with 2N compo-
nents, where the component associated to spin configuration s
has weight P(s). More compactly, P(r) can be expressed with
Eq. (5).

Given some configuration r, the spins s can simply
be drawn independently following a Bernoulli distribution
[Eq. (6)], so the Ising distribution P(s) itself can be viewed as
a latent variable model, based on hidden variables ri. It departs
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from a Cox distribution [Eqs. (2) and (3)] only through the fact
that the fields’ distribution P(r) is not normal, in general.

III. COX APPROXIMATIONS TO
THE ISING DISTRIBUTION

This article investigates the possible replacement of the
Ising distribution by a Cox distribution. With the above re-
formulation, this amounts to approximating the Ising latent
field distribution P(r) by a well-chosen multivariate normal
Q(r) = N (r|μ,�). I will now discuss two possible choices
in this regard.

From here on, I will note (m, C) for (any approximation
of) the first moments of a spin variable s, and (μ,�) for
(any approximation of) the first moments of a field variable
r. I will distinguish the true moments of the Ising distribu-
tion P(s) with a star: (m�, C�). Likewise, the true moments
of the corresponding Ising latent field P(r) follow, from
Eq. (8):

μ� = h + Jm�, (10)

�� = J + JC�J. (11)

A. Optimal Cox distribution

Arguably, the optimal approximation of P(r) by a normal
distribution Q(r) = N (μ,�) is achieved by equating their
moments, i.e., setting (μ,�) = (μ�,��). I will refer to this
choice as the optimal Cox distribution. Its qualification as
“optimal” stems from the observation that the following KL
divergence,

KLr(P||Q) =
∫

r∈RN

P(r) ln
P(r)

Q(r|μ,�)
dr, (12)

is minimized when (μ,�) = (μ�,��). Thus, in terms of
information geometry, the resulting distribution Q(r|μ�,��)
is the nearest neighbor of the latent Ising distribution P(r) in
the family of normal distributions.

Unfortunately, the optimal Cox distribution is unpracti-
cal to characterize, as (m�, C�) can only be estimated by
lengthy Monte Carlo simulation. In the scope of this article,
its study will only be of theoretical interest: it allows to
quantify the intrinsic effect of assuming a Gaussian shape
for P(r).

B. Variational Cox approximation

More practically, one may require to approximate an Ising
distribution P(s) by a Cox distribution, assuming only knowl-
edge of its natural parameters (h, J). The variational approach
to this problem consists in choosing (μ,�) that minimize the
reversed Kullback-Leibler divergence

KLr(Q||P) =
∫

r∈RN

Q(r|μ,�) ln
Q(r|μ,�)

P(r)
dr. (13)

With some straightforward algebra, one can establish the
derivatives of KLr(Q||P) with respect to μ and �, and thus
its stationary points (μ,�).

Given the fundamental relation Eqs. (10) and (11) between
spin and field moments in the Ising distribution, it is natural

to reparametrize the Cox parameters (μ,�) by the “spin
moment” parameters (m, C) such that

μ = h + Jm, (14)

� = J + JCJ. (15)

Then, the values of (m, C) at the stationary points of
KLr(Q||P) are characterized by the following, fixed point
equation:

mi =
∫

x∈R
tanh(μi + x

√
�ii )φ(x)dx, (16)

di =
∫

x∈R
[1 − tanh2(μi + x

√
�ii )]φ(x)dx, (17)

(C−1)i j = d−1
i δi j − Ji j, (18)

with φ(x) = N (x|0, 1) the standard one-dimensional normal
distribution.

Equations (14)–(18) can be solved by an iterative fixed
point method on variables {mi, di}i=1...N (see Appendix A).
At the solution, the Cox distribution Q(μ,�) provides an
approximation to the Ising distribution P(h, J).

Equations (16) and (17) are conceptually simple: mi [re-
spectively, di] is obtained as the average of tanh(r) [respec-
tively, 1 − tanh2(r)] using a Gaussian kernel, centered around
r = μi with variance �ii. Their estimation at any required pre-
cision is straightforward, using numerical integration. How-
ever, when repeated computations are required, it is faster to
use approximate formulas, given in Appendix E.

Figure 1 illustrates the nature of the latent field P(r), and of
its Cox approximations, on a two-spin toy model. The optimal
Cox distribution is unique by construction, but the variational
Cox approximation can have multiple solutions (panel b), a
classic feature of variational methods based on minimizing
reversed KL divergence [28].

C. Choice of diag(J)

The framework developed above requires strictly positive
diagonal coupling values Jii, large enough to ensure that
matrix J is definite positive. While these diagonal values do
not influence the Ising distribution P(s) over spins, a different
choice of diag(J) leads to a different latent field distribution
P(r), and thus to a different Cox approximation (see Fig. 1).
This naturally raises the question of what self-couplings Jii

represent in the latent field formalism, and how they should be
chosen in practice. Here, I only detail one concrete proposal
for this choice, and defer more general considerations to the
Discussion.

In the persective of this work, the choice of diag(J) should
be made to optimize the resemblance of P(r) with a normal
distribution. From Eq. (8), larger values of J increase the
overall separation of the 2N components in P(r) and thus,
its divergence from a normal distribution. In the extreme
case where diag(J) is very large, the 2N components of P(r)
display no overlap at all; see Fig. 1(b).

Consequently, the general prescription is that diag(J)
should be kept as small as possible. Given a fixed set of
off-diagonal weights {Ji j}i< j , a principled approach is to
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FIG. 1. Ising latent field and its normal approximations on a toy
model with N = 2. Normal distributions are materialized by their
2-σ level line. Classic Ising parameters (h1, h2, J12 ) = (0.2, 0, 0.9).
In (a), diagonal couplings are fixed at J11 = J22 = 1, whereas in
(b) they are fixed at J11 = J22 = 5. The Ising spin distribution P(s)
is the same in both cases, but not the field distribution P(r) and
subsequent Cox approximations. In (b), the variational Cox equation
has multiple solutions—two of which are displayed.

choose diag(J) with the following procedure:

minimize
{Jii}

∑
i

Jii subject to J � 0. (19)

This is a well known convex problem, which can be solved
efficiently [29]. Afterwards, a small ridge term λI can be
added to J to make it strictly definite positive.

D. Moments of the Cox distribution

A note of caution is also required on the interpretation
of variables (m, C) in the variational Cox approximation,
Eq. (14)–(18). By Eqs. (2) and (3), the first spin moment of
Cox distribution Q(s|μ,�) is

EQ(si ) =
∫

r∈R
tanh(r)N (r|μi, �ii )dr, (20)

and we recognize Eq. (16). Thus, at the fixed point of
Eq. (14)–(18), mi corresponds to the first moment of the
approximating Cox distribution.

In contrast, at the fixed point of Eq. (14)–(18), C is not the
spin covariance of the Cox distribution Q(s|μ,�). That would

be computed (for i 	= j) as

CovQ(si, s j ) =
∫∫

(r,t )∈R2
tanh(r) tanh(t )N (r, t |μ(i j),�(i j) )

× drdt − EQ(si )EQ(s j ), (21)

with μ(i j),�(i j) the two-dimensional restrictions of μ,� at
indices (i, j).

Thus, for given Cox parameters (μ,�), there are two
possible predictions for the Ising covariance matrix C : the
“forward” prediction of Eq. (21) (spin covariance matrix in the
Cox distribution) and the “backward” prediction of Eq. (15)
(spin covariance in the Ising model which would give rise to
field covariance matrix �). If Q(r|μ,�) is a good approxima-
tion of P(r), we expect both predictions to be very close. And
indeed, the discrepancy between the two predictions of C is a
good indicator of whether the approximation was successful
(see Supplemental Material [30]).

IV. COMPARISON WITH MEAN-FIELD
APPROXIMATIONS

In the variational Cox approximation, Eq. (14)–(18), vari-
ables (m, C) constitute an approximation for the moments of
the Ising distribution P(h, J). The goodness of fit with respect
to (w.r.t.) exact Ising moments (m�, C�) constitutes a simple
measure of how well distribution P is approximated by the
Cox distribution Q(μ,�).

Deriving an approximation for (m, C) is also the goal of
classic mean-field methods. In these methods, the magneti-
zations m are approximated first, as the solution of some
fixed point equation m = F (m|h, J). Then, this equation
is differentiated w.r.t. h, yielding a predicted covariance
matrix as

Ci j = ∂hi m j . (22)

Indeed, this so-called linear response formula holds true in the
exact Ising model; so it provides a concrete way of estimating
C from the approximation of m.

Informally, we may say that a given set of Ising parameters
(h, J) lies in the “mean-field domain” when some mean-field
method can provide a good estimate of the corresponding
moments (m�, C�). In the rest of this article, I will argue that
the variational approximation of P by a Cox distribution Q is
valid precisely in this “mean-field domain.”

In this section, I briefly remind of the nature of different
mean-field approximations, and I compare their respective
Plefka expansions in the case of weak couplings, up to order
3 (respectively, 4 in the Appendices). In Sec. V, I will proceed
to numerical comparisons.

A. Classic mean-field approximations

I considered two classic mean-field methods, the TAP
and Bethe approximations, and a more recent generalization
called the adaptive TAP approximation. For the sake of
self-completeness, these approximations are recalled in some
detail in Appendices B and C. Here, I only provide essential
formulas.

The archetypal mean field method in the Ising model is
the TAP approximation, where the approximating vector of
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magnetizations m is sought as a fixed point of the following
Thouless-Anderson-Palmer equation [4,5,31]:

mi = tanh

⎡
⎣hi +

∑
j 	=i

Ji jm j − mi

∑
j 	=i

J2
i j

(
1 − m2

j

)⎤⎦. (23)

This equation can arise in different contexts, one of which
is the Plefka expansion of the exact Ising model [Eq. (29)],
stopped at order 2. Covariances C are derived in turn based on
the linear response formula [Eq. (22)]:

(
C−1

TAP

)
i j =

[
1 +

∑
k

J2
ik

(
1 − m2

i

)(
1 − m2

k

)] δi j

1 − m2
i

− Ji j − 2J2
i jmimj . (24)

The Bethe approximation is a related mean-field method,
where the approximating vector of magnetizations m is sought
as a fixed point of the following equation [32,33]:

θ
( j)
i = hi +

∑
k 	= j,i

tanh−1 [
tanh(Jik ) tanh

(
θ

(i)
k

)]
. (25)

Here, the so-called cavity fields θ
( j)
i are tractable functions of

m, namely, the only numbers such that each two-spin Ising
distribution of natural parameters (θ ( j)

i , θ
(i)
j , Ji j ) have first

moments (mi, mj ). This equation can be justified as the exact
solution for m when the couplings Ji j define a treelike lattice,
and its iterative resolution is known as the belief propagation
algorithm. Covariances C can be derived in turn based on the
linear response formula [Appendix B, Eq. (B10), derived here
with an original approach].

Finally, the adaptive TAP approximation of Opper and
Winther [34] is a generalized mean-field approximation, based
on the cavity method [4]. The magnetization variables {mi} are
joined with a second set of variables {Vi}, which represent the
variance of the cavity field distribution at each spin site, and
obey the following fixed point equations:

mi = tanh

⎛
⎝hi +

∑
j

Ji jm j − miVi

⎞
⎠, (26)

(
C−1

A

)
i j = (

1 + (
1 − m2

i

)
Vi

) δi j

1 − m2
i

− Ji j, (27)

1 − m2
i = (CA)ii. (28)

This derivation is detailed in Appendix C. Briefly, Eq. (26)
is a generalization of the TAP Eq. (23), where the variance
Vi of the cavity field is left as a free variable, and Eq. (27)
is the corresponding linear response prediction. Equation (28)
imposes coherent predictions for individual variances Var(si),
thereby closing the fixed point equation on variables {mi,Vi}.

The adaptive TAP approximation is a “universal” mean-
field method: by letting the variances Vi adapt freely, it can
account for any statistical structure of matrix J, whereas
the classic TAP equation [Eq. (23)] is only true when the
individual coupling weights Ji j are decorrelated [35]. This is
especially welcome in machine learning and neurosciences,
where coupling strengths Ji j are generally structured (because
they represent learned regularities of the outside world).

Equations (26)–(28) bear a striking similarity with the
variational Cox equations, Eqs. (14)–(18). Both can be seen
as modifications of the naive mean-field equations through
N additional variables (the di, respectively, Vi) associated to
the variance of the field acting on each spin. This similarity
will be confirmed in the subsequent analytical and numerical
results.

B. Weak coupling expansions

In the Ising model, the link between natural parameters
(h, J) and magnetizations m can be abstractly described as
h = f (m, J), for an intractable function f . Only when J = 0
does the link become tractable : the Ising model boils down to
a Bernoulli distribution, with the obvious hi = tanh−1(mi).

One step further, when couplings are weak but nonzero,
one can derive the Taylor expansion of f around J = 0. In
practice, the coupling matrix is written αJ, α being the small
parameter of the expansion, and the result is known as the
Plefka expansion [36]—although the approach can be traced
back to anterior work [27].

The expansion up to order 4 is a classic computation,
outlined in Appendix B. Stopping at order 3 for brevity, it
reads:

hi = tanh−1(mi ) − α
∑
j 	=i

Ji jm j + α2mi

∑
j 	=i

J2
i j

(
1 − m2

j

)

+ α3

⎡
⎣2mi

∑
( jk|i)

Ji jJjkJki
(
1 − m2

j

)(
1 − m2

k

)

+ 2

(
m2

i − 1

3

)∑
j 	=i

J3
i jm j

(
1 − m2

j

)⎤⎦ + o(α3), (29)

where ( jk|i) denotes all unordered triplets of the form {i, j, k}
with j and k distinct, and distinct from i.

This expansion can serve as a first test on the various
approximations (TAP, Bethe, adaptive TAP, variational Cox)
introduced above. Indeed, these approximations can also be
described as h = f (m, J) for a different function f , and we
can compare its Taylor expansion to that of the true Ising
model.

The expansion for the TAP approximation is, by definition,
the exact Ising expansion [Eq. (29)] stopped at order 2. The
expansion for the Bethe approximation is obtained from the
exact Ising expansion by retaining only the sums over spin
pairs [37] (see Appendix B). In Eq. (29), this means suppress-
ing the sum over ( jk|i) in the order 3 term, but keeping the
sum over j 	= i.

The expansion for the adaptive TAP approximation, de-
rived in Appendix C, writes

hi = tanh−1(mi ) − α
∑
j 	=i

Ji jm j + α2mi

∑
j 	=i

J2
i j

(
1 − m2

j

)

+ α3

⎡
⎣2mi

∑
( jk|i)

Ji jJjkJki
(
1 − m2

j

)(
1 − m2

k

)⎤⎦ + o(α3).

(30)
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The expansion for the variational Cox approximation, derived
in Appendix D, writes

hi = tanh−1(mi ) − α
∑
j 	=i

Ji jm j + α2mi

∑
j 	=i

J2
i j

(
1 − m2

j

)

+ α3

⎡
⎣2mi

∑
( jk|i)

Ji jJjkJki
(
1 − m2

j

)(
1 − m2

k

)

− 2

(
m2

i − 1

3

)
J3

iimi
(
1 − m2

i

)⎤⎦ + o(α3). (31)

At order 2, all approximations considered have the same
expansion as the exact Ising solution, meaning that they will
perform well in case of weak couplings.

At order 3, discrepancies appear between the exact Ising
solution and its various approximations. The first contribution
to the order 3 term in Eq. (29), the sum over ( jk|i), is cor-
rectly accounted for by the adaptive TAP and variational Cox
approximations. The second contribution to the order 3 term
in Eq. (29), the sum over j 	= i, is correctly accounted for by
the Bethe approximation. Of these two sums, that over ( jk|i)
involves many more terms, so we expect it will generally be
the dominant contribution, except for very specific coupling
matrices J.

At order 4, the same qualitative features are observed. The
“generally dominant” contribution at order 4 in the true Ising
solution writes

2mi

∑
( jkl|i)

Ji jJjkJkl Jli
(
1 − m2

j

)(
1 − m2

k

)(
1 − m2

l

)

[Appendices, Eq. (B3)], and this is also the dominant con-
tribution to the adaptive TAP [Eq. (C7)] and variational Cox
[Eq. (D12)] approximations. Hence, we may expect these two
approximations to provide a better fit than the others in case
of generic coupling matrices J—and this will indeed be our
observation in numerical tests (Fig. 6).

The similar structures of Eqs. (18) and (27) suggest a
proximity between the adaptive TAP and variational Cox
approximations, and this is confirmed by their weak coupling
expansions: up to order 4, their respective expansions differ
only through additional terms involving the diagonal weights
Jii, so they would be identical for a classic coupling matrix
such that diag(J) = 0.

V. NUMERICAL TESTS

To gain more insights on the behavior of all approximations
above, I turned to numerical exploration: I picked a large
number of possible configurations (h, J), estimated the true
Ising moments (m�, C�) in each configuration with lengthy
MCMC sampling, and compared all approximations against
this ground truth. The numerical details for computing the
approximations are given in Appendix A.

I should stress from the start that the role of these tests
is not to target the most accurate mean-field method for
approximating (m, C)—which turns out to be the adaptive
TAP method, in most configurations tested here. Instead, the
goal of these tests is to support one main claim of this article:

that the Ising distribution is well approximated by a Cox
distribution in the same domain of parameters where mean-
field methods are efficient.

To focus on the most important aspect of the Ising model,
I only tested configurations where h = 0, so that magnetiza-
tions verify m = 0—both in the exact Ising solution and in
the various approximations. Hence, the efficiency of a given
approximation is assessed by its ability to correctly predict
the covariance matrix C. For each tested configuration and
approximation, the fit performance is summarized by number

z = 1

N2

∑
i, j

∣∣Ci j − C�
i j

∣∣,
where C�

i j is the true covariance of spins i and j, and Ci j its
approximation.

A. Generative model for couplings J

In this approach, the choice of a generative model for
coupling matrix J is a delicate matter, as the Ising model can
exhibit very different behaviors depending on its parameters.
To test different regimes with a single formula, I used the
following generative model:

J =
[

J0

pN
1 + J√

κ pN
XκX�

κ

]
.∗ Mp, (32)

with 1 the N × N matrix with uniform unit entries and Xκ

an N × κN matrix of independent standard normal entries.
Afterwards, elementwise multiplication by a symmetric mask-
ing matrix Mp can randomly set each edge (i j) at 0 with
probability 1 − p.

This model has 4 parameters. The positive numbers (J0, J )
correspond to the standard Sherrington-Kirkpatrick (SK) pa-
rameters for spin glasses [38], meaning that the probabilistic
distribution of each nonzero off-diagonal term Ji j follows

Ji j ∼ N
(

J0

pN
,

J2

pN

)
(33)

to a very good approximation, owing to the central limit
theorem applied to the κN samples in matrix Xκ .

Parameter κ > 0 fixes the amount of global correlation
between individual couplings Ji j . When κ → +∞, all off-
diagonal entries Ji j constitute independent random variables,
and the classic SK model is recovered (see Supplemental
Material [30]). When κ is smaller, the random matrix XκX�

κ

follows a Wishart distribution, as in the Hopfield model of
associative memory [4,39]. The random variables Ji j become
dependent, and the spectrum of J differs markedly from the
SK case (Wigner vs Marčenko-Pastur laws). Note that the
probabilistic distribution of each element Ji j remains virtually
unchanged in the process, given by Eq. (33) except at very low
values of κ .

Finally, parameter p ∈ [0, 1] allows to dilute the overall
connectivity, so that only a proportion p of the couplings are
nonzero. Coherently, J0 and J2 in Eq. (33) are scaled by pN ,
the effective number of neighbors in the (possibly diluted)
model.
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FIG. 2. TAP, Bethe, adaptive TAP and variational Cox approxi-
mations on a typical paramagnetic configuration with N = 100 spins,
and reference parameter values (J0, J, κ, p) = (0.5, 0.5, ∞, 1). The
corresponding fit values z are indicated as insets. In each of
Figures 3–6, one parameter will be modified, while the three others
keep their reference value.

B. Results for the approximations

As the four parameters in model Eq. (32) prevent from
an exhaustive search, I performed a restricted exploration
of parameter space, based on a set of reference parameter
values:

(J, J0, κ, p) = (0.5, 0.5,∞, 1). (34)

Since (κ, p) = (∞, 1), the individual coupling weights Ji j are
drawn independently and the connectivity matrix is dense.
Hence, this is a classic SK model in its paramagnetic phase,
because J and J0 are smaller than 1 [38].

Figure 2 shows the fit performances of the various approx-
imation methods on a typical configuration (h, J) with these
generative parameters. All approximations perform well, as
expected, since the TAP equations are exact when N → ∞
in the paramagnetic phase of the SK model [4]. However,
the variational Cox approximation (fourth panel) displays a
bias : the overall magnitude of its predictions Ci j is some-
what underestimated, leading to a slant in the graph of
(C�

i j,Ci j ), and a larger fit value z. This bias is a systematic
property of the Cox approximation, which is mainly caused
by the presence of nonzero self-coupling terms Jii > 0 (see
Discussion).

I then explored the approximations’ behavior in different
departures from the SK paramagnetic situation. In each of
Figs. 3–6, one parameter in Eq. (34) is varied while the three
others keep their reference value. Panels (a) show the various
approximations on a typical configuration at the transition
out of the “paramagnetic SK” phase. Panels (b) show the
mean fit performance of each approximation as the concerned
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FIG. 3. Transition from paramagnetic to ferromagnetic phase,
when parameter J0 is increased. Other parameters keep their refer-
ence value (J, κ, p) = (0.5,∞, 1). (a) TAP, Bethe, adaptive TAP,
and variational Cox approximations on a typical configuration with
J0 = 1. (b) Average fit value z for each of the approximations,
assessed over 30 configurations of matrix J picked according to
Eq. (32), for each tested value of J0. Fit measure is also provided
for the optimal Cox distribution (see text). The vertical dashed line
corresponds to the reference values of Fig. 2. (c) Apparition of
multiple solutions to the respective fixed point equations. For each
value of J0 and approximation considered, I plot the percentage of
the 30 configurations in which multiple solutions were found (see
Appendix A, Numerical procedures).

parameter is varied. Panels (c) show when multiple solutions
have been detected to each approximation’s constitutive fixed
point equation.
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FIG. 4. Transition from paramagnetic to spin glass phase, when
parameter J is increased. Other parameters keep their reference
value (J0, κ, p) = (0.5,∞, 1). (a) TAP, Bethe, adaptive TAP, and
variational Cox approximations on a typical configuration with
J = 1. (b, c) Same as described in the caption of Fig. 3.

I first tested the approximations’ behavior when transiting
into the ferromagnetic (Fig. 3) and spin-glass (Fig. 4) phases
of the SK model. The ferromagnetic phase, corresponding to
J0 > max(1, J ), is characterized by a symmetry breaking into
two “magnetized” states with si = 1 (respectively, −1) for all
spins, constituting the stable solutions of the TAP equation
[4,6]. The spin glass phase, corresponding to J > max(1, J0),
is characterized by the apparition of multiple “metastable”
local minima of the TAP free energy, with limited basins of

attraction [4]. All approximations considered have roughly
the same behavior at the phase transitions (Fig. 3, J0 � 1;
Fig. 4, J � 1), losing precise fit [panels (b)] concurrently with
the apparition of multiple solutions to their respective equa-
tions [panels (c)]. This confirms the existence of a universal
“mean-field” domain for the SK model, corresponding to its
paramagnetic phase.2

When couplings are made sparser, all approximations
again display the same qualitative behavior (Fig. 5), main-
taining a reasonable precision down to very diluted models.
The Bethe approximation is the most efficient in this case,
because the rarefaction of loops creates a “treelike” structure
of connectivity.

The main difference between the approximations is their
handling of structured coupling matrices J (Fig. 6). When
parameter κ decreases and couplings weights Ji j become cor-
related, the TAP and Bethe approximations deteriorate much
faster than the variational Cox and adaptive TAP approxi-
mation—which was designed precisely for this purpose [34].

This numerical study confirms the adaptive TAP’s interest
as a “universal” mean-field method, the most efficient in
all tested regimes with dense couplings, and second most
efficient in case of sparse couplings (the Bethe approxima-
tion performing marginally better). It also reveals similar
domains of validity for the adaptive TAP and variational Cox
approximations—notwithstanding the latter’s systematic bias
in “easy” configurations, leading to higher fit values z. In
summary, a “mean-field domain” can be defined as the ensem-
ble of parameters (h, J) for which the adaptive TAP method
efficiently predicts the spin moments (m, C), and this is also
the domain where the Ising distribution can be easily replaced
by a Cox approximation, thanks to a variational principle.

C. Optimal Cox distribution

As such, the above results do not explicitly tell whether the
Ising distribution can be approximated by a Cox distribution
outside of the “mean-field domain.” It may be the case that
a decent Cox approximation exists, but cannot be retrieved
by a variational principle anymore. To clarify this point,
I also considered the fit performance of the optimal Cox
distribution Q(μ�,��) defined above. My measure of fit in
this case consisted in comparing the true spin covariances
C�

i j to their values in the optimal Cox distribution, as given
by Eq. (21). Thus, a successful fit indicates when assum-
ing a Gaussian shape for the latent field distribution P(r),
without modifying its moments, does not modify much the
resulting spin moments. Figures 3–6 [panels (b)] show that
this measure globally correlates with the efficiency of the

2Looking in more detail, a notable qualitative difference exists
between the different approximations, at least in the ferromagnetic
phase. In the TAP and Bethe approximations, the symmetric solution
with m = 0 becomes unstable [4,6], and the linear response pre-
diction for C at this point diverges—as visible in Fig. 3(a). In the
adaptive TAP and variational Cox approximations, this symmetric
solution remains stable and coexists with the magnetized solutions
[as in Fig. 1(b)], and the prediction for C is progressively degraded,
rather than totally lost—see Fig. 3(a).
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FIG. 5. Introduction of sparseness in the coupling weights, when
parameter p is decreased. Other parameters keep their reference
value (J, J0, κ ) = (0.5, 0.5, ∞). (a) TAP, Bethe, adaptive TAP, and
variational Cox approximations on a typical configuration with p =
0.01. (b, c) Same as described in the caption of Fig. 3.

adaptive TAP and variational Cox approximations, i.e., it also
deteriorates outside of the “mean-field domain.” Hence, the
increased discrepancy between Ising and Cox distributions
outside of the “mean-field domain” seems intrinsically related
to the Ising latent field P(r) becoming non-Gaussian. This
is also coherent with the fact that the adaptive TAP approx-
imation is bound to fail precisely when the instantaneous
field acting on each spin cannot be considered Gaussian (see
Appendix C).
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FIG. 6. Introduction of stochastic dependence between the cou-
pling weights, when parameter κ is decreased. Other parameters
keep their reference value (J, J0, p) = (0.5, 0.5, 1). (a) TAP, Bethe,
adaptive TAP, and variational Cox approximations on a typical
configuration with κ = 1. (b, c) Same as described in the caption
of Fig. 3.

It is worth noting that, even outside of the “mean-field
domain”, the loss of fit by the optimal Cox distribution is
never total. Figure 7 shows examples of fit performance for
the optimal Cox distribution in various configurations at the
boundary [first row, compare to Figs. 3–6 [panels (a)]] and
far outside (second row) of the mean-field domain. It reveals
that, even when the Ising latent field P(r) is far from being
Gaussian-distributed, its replacement by a Gaussian preserves
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FIG. 7. Fit for the optimal Cox distribution on typical configurations at the boundary (first row) and far outside (second row) of the
paramagnetic SK phase. Each panel plots the pairwise spin covariances in the true Ising distribution (C�

i j) against their values in the optimal
Cox distribution (Ci j), computed with Eq. (21). Starting from reference parameter values (J0, J, κ, p) = (0.5, 0.5, ∞, 1), the approximation is
assessed at different values of J0 (first column, transition to ferromagnetic SK model), J (second column, transition to spin glass SK model), κ

(third column, introduction of correlations between coupling weights Ji j), and p (fourth column, dilution of connectivity).

the overall pattern of spin correlations [as visible in Fig. 1(b)].
This global correctness is hardly reflected in the magnitude of
error z, yet it does imply that an Ising model is never “too far”
away from its optimal Cox distribution.

VI. DISCUSSION

I have proposed a reformulation of the Ising distribution
as a latent variable model, and used it to derive principled
approximations by the simpler Cox distribution. In practical
applications, Cox models (including the dichotomized Gaus-
sian and Cox point processes) are often preferred to the corre-
sponding maximum entropy distributions (Ising distribution,
Gibbs point process) because they are easier to sample, and
to parametrize from a set of observed moments. This article
establishes a simple analytical connection between the two
families of models, and investigates under what conditions
they can be used interchangeably.

The most natural connection between an Ising and a Cox
distribution is obtained by equating the two first moments
of their latent variables, Eqs. (10) and (11), a simple but
fundamental result of the article. The resulting “optimal” Cox
approximation holds well in paramagnetic conditions, and
even beyond, as far as global trends are concerned (Fig. 7).
However, Eqs. (10) and (11) involve both the natural param-
eters (h, J) and the resulting moments (m�, C�) of the Ising
distribution, which makes them unpractical in most concrete
situations.

To target a Cox approximation given only some natural
parameters (h, J), I have explored a classic variational ap-
proach, leading to Eqs. (14)–(18). These equations are not
particularly interesting as a mean-field method for predicting
(m, C), since they globally behave as a biased version of

Opper and Winther’s adaptive TAP method. However, their
analytical (Sec. IV) and numerical (Sec. V) analysis allows
to formulate the key conclusion of this article: mean-field
methods are efficient precisely when the Ising distribution
can be associated to a quasinormal latent field distribution. If
the practical goal is to establish a Cox approximation for the
Ising distribution of parameters (h, J), the moments (m, C)
may as well be estimated with any other choice of mean-field
method, and then input to Eqs. (14) and (15) to produce the
corresponding Cox approximation.

Naturally, the relation to mean-field methods is not acci-
dental. From Eq. (8), given a spin configuration s, the latent
field ri is distributed as N (hi + ∑

j Ji js j, Jii ). In particular, if
self-couplings Jii are zero as in the classic Ising model, we
simply recover

ri = hi +
∑
j 	=i

Ji js j,

that is, the instantaneous field variable considered in the cavity
method [Appendix C, Eq. (C1)] and adaptive TAP equations.
Thus, the latent field formalism differs from the classic cavity
approach only through the role of nonzero self-couplings Jii.
Coherently, the weak coupling expansions of the variational
Cox and adaptive TAP approximations up to order 4 differ
only because of nonzero Jii.

This suggests that nonzero self-couplings Jii may be re-
sponsible for the systematic bias of the Cox approxima-
tion in its prediction of (m, C), compared to the adaptive
TAP approximation. As a direct confirmation, I observed
that when matrix J is given a zero diagonal, the variational
Cox Eqs. (14)–(18) generally retains a solution, and it is
then remarkably close to the adaptive TAP solution (see
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Supplemental Material [30]). Unfortunately, nonzero weights
Jii are required to endow the field variables ri with a true,
multivariate distribution P(r) (this is not the case in the
cavity method), and thus produce a concrete approxima-
tion of the Ising distribution by a simpler latent variable
distribution.

A disturbing consequence is that there is not one latent
field distribution associated to the Ising distribution, but many
different distributions, depending on the value given to self-
couplings Jii. When all values Jii are taken very large, the
latent field P(r) is “useless”: it is the mere mixture of 2N

Gaussian bumps with no overlap, located on the 2N summits
of a hypercube, and the bump at summit s is simply associated
to weight P(s) [as in Fig. 1(b)]. Then, as the Jii become
smaller, some of the 2N bumps start overlapping, and P(r)
acquires a less trivial overall distribution. In some cases,
when the Jii are made small enough, the overall shape of
P(r) becomes quasi-Gaussian [as in Fig. 1(a)]. In other cases,
P(r) never becomes quasi-Gaussian, because a lower bound is
reached where the Jii cannot be made smaller while ensuring
that matrix J remains definite positive. Given some classic
Ising parameters {Ji j}i< j , the set of self-couplings Jii obtained
with Eq. (19) represents the “smallest” diagonal elements
that can be used, and we could suppose that if the latent
field P(r) is still not Gaussian for these values, it will not
be Gaussian for other values of Jii either. Interestingly, the
optimization problem in Eq. (19) has an intrinsic significance
for the “classic” Ising distribution (without self-couplings):
the resulting value of −∑

i Jii constitutes the Lagrangian dual
approximation for the minimum of

∑
i< j Ji jsis j over all 2N

spin configurations [29], that is, the log-likelihood of the
most unlikely spin configuration in the model. Arguments of
this type suggest that, while self-couplings Jii are extraneous
elements to the standard Ising model, the set of admissible
values for the Jii may have theoretical links with the nature
and global difficulty of the considered Ising model.

Empirically, I observed a certain robustness to the exact
choice of diag(J), and the values could generally be doubled
without affecting much the numerical results. In some cases,
increasing all self-couplings Jii a little from the “optimal” so-
lution of Eq. (19) can even improve the fit performance of the
variational Cox approximation, presumably because it reduces
the condition number of matrix J (see also Appendix A).
Thus, theoretically as well as practically, the significance and
optimal choice of diag(J) is not totally settled, and could be
the subject of future work.

More generally, the present work could give rise to a
number of developments. For example, the theoretical study
of phase transitions in the variational Cox approximation, as
observed in Figs. 3–6(c), remains to be done. Intuitively, these
phase transitions are related to the apparition of multiple,
well-separated modes in the distribution of the latent fields
(see Fig. 1), which would then play a role similar to the “pure
states” of spin glass theory [4,6].

On a more applied level, the latent field variables ri could
be incorporated into MCMC sampling schemes for the Ising
distribution. For example, drawing the initial spins si with
a Cox approximation Q(s), instead of a classic independent
Bernoulli draw, can largely reduce the chain’s convergence
time to its equilibrium distribution P(s). One step further, one

could devise MCMC schemes that directly sample the fields’
distribution P(r) and use it to generate the spins.

Finally, the formalism of latent variables could be applied
to the inverse problem of retrieving (h, J) from a set of
observed moments (m, C), which is arguably the biggest
obstacle in practical applications of the Ising model listed
above [7–9]. On the one hand, advanced methods of mean-
field inspiration have been developed in the last decade to
tackle the inverse Ising problem [13,14,40]. On the other hand,
it has been suggested to replace the Ising distribution by a
dichotomized Gaussian (a limiting case of Cox distribution)
in practical applications, precisely because it offers an easier
inverse problem [19]. Hopefully, the latent field formalism can
reconcile the two approaches in a unified picture.

APPENDIX A: NUMERICAL PROCEDURES

In this Appendix, I give numerical details of the tests
presented in Sec. V. All approximation methods considered
are naturally described by a fixed point equation of the form
X = F (X ). A simple heuristic for solving such equations is a
numerical scheme

Xn+1 = (1 − α)Xn + αF (Xn),

with α a small, adaptive, update parameter. When ‖Xn −
F (Xn)‖ is found to increase between two successive iterations,
α is divided by 10. Else, α is multiplied by 1.05. This
heuristic proved sufficient to target a fixed point, in all cases
encountered.

In the Cox approximation, the variable was X =
{mi, d−1

i }i=1...N . In the adaptive TAP approximation, it was
X = {mi,Vi}i=1...N . The starting point X0 was chosen with
mi = 0, and numbers 
i = d−1

i (respectively, 
i = 1 + Vi) as
the minimal values ensuring that matrix C−1 = diag(
i ) − J
be definite positive [see Eqs. (18) and (27)].

In the TAP and Bethe approximations, the starting point
X0 = m = 0 was directly a solution of the fixed point equa-
tion, and I simply used the linear response prediction for C
at this point. This seemed the fairer choice in the context
of these tests, even though in some parameter regimes (e.g.,
SK ferromagnetic phase) the solution at m = 0 is unstable:
The iterative scheme started at any neighboring point does not
converge to this solution.

It is well-known that, in certain regimes of parameters, the
Ising model can display spontaneous symmetry breaking [4].
First, ergodicity breaking can occur in the MCMC chain used
to sample the distribution. To counteract this effect, the true
moments (m�

i ,C�
i j ) were estimated from several independent

MCMC chains with simulated annealing.
Second, the various approximations themselves can start

displaying multiple solutions to their constitutive equation
[4]. To assess this effect, for each tested configuration (h, J)
and approximation formula, I relaunched the numerical search
from different starting points, namely, the empirical means
found in each individual MCMC chain used during the sam-
pling phase. This procedure only served as a (rudimentary)
attempt to detect the presence of multiple solutions. It did not
affect the measure of fit for the approximation, which was
always based on the solution found from the starting points
X0 listed above.
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In the Cox approximations (optimal and variational), for
each configuration with off-diagonal elements {Ji j}i< j , the
diagonal couplings Jii were chosen as the solution of Eq. (19),
plus a constant ridge term λ chosen for J to have a condition
number of 10. Indeed, ill-conditioned matrices J lead to
increased errors in some parameter regimes.

APPENDIX B: VARIATIONAL MEAN-FIELD
APPROXIMATIONS

In this Appendix, I recall the variational approach of mean-
field theory, which can be used to recover the Plefka expansion
of the exact Ising model, as well as the TAP and Bethe
approximations.

1. Mean-field variational approach

As in the main text, let us note P(s) the true Ising dis-
tribution of parameters (h, J), and (m�, C�) its correspond-
ing moments. Let Q(s) any other distribution proposed as
an approximation of P. The KL divergence KL(Q||P) =∑

s Q(s) ln[Q(s)/P(s)] can be expressed as

KL(Q||P) = U (Q) − S(Q) + ln ZI (h, J),

where U (Q) is the average Ising energy, and S(Q) the entropy,
under distribution Q:

U (Q) := −
∑

s

Q(s)

(
h�s + 1

2
s�Js

)
,

S(Q) := −
∑

s

Q(s) ln Q(s).

The functional G(Q) := U (Q) − S(Q) is called the varia-
tional (or Gibbs) free energy of distribution Q as an approx-
imation of P. Smaller values of G(Q) correspond to a lower
KL divergence and thus to a better fit, and its minimum is
achieved for Q = P.

In the Ising distribution, given fixed couplings J, there
is a one-to-one correspondence between values of h and
resulting values of m = E (s). Thus, in theory, we can apply
the variational approach to the family of Ising distributions
Q(m, J), where couplings J are taken equal to those in P, and
m constitutes the N-dimensional parametrization variable.
The natural field parameters of Q, say θ, are then a (generally
intractable) function of (m, J), and the associated free energy
writes

G(m, J) = (θ − h)�m − ln ZI (θ, J), (B1)

whose minimum over m is obtained when m = m�, that is,
when Q = P. (Note that G also depends on the field parameter
h of distribution P, but I omit it for lighter notations.)

Using the classic conjugacy relation ∂θ ln ZI = m in the
Ising model, one can note that

∂mG(m, J) = θ − h, (B2)

so function G(m, J) + h�m corresponds to the Legendre
transform of ln ZI in its first variable.

Function G(m, J) is not tractable in general, but it can
be approximated—and the resulting minimum will yield an
approximation of the true moments m�. This approach is

known as the mean-field variational method, of which the TAP
and Bethe approximations are two prominent examples.

2. TAP and Plefka approximations

In so-called Plefka expansions, one approximates G(m, J)
by its Taylor expansion in J around J = 0:

Gn(m, J) := G(m, 0) + [∂JG(m, 0)](J)

+ 1

2

[
∂2

J G(m, 0)
]
(J, J)

+ · · · + 1

n!

[
∂n

J G(m, 0)
]
(J, . . . , J),

where ∂n
J G(m, 0) is the nth derivative of G wrt J (a symmetric

tensor of order n) evaluated at point (m, 0). All these terms
can be evaluated, albeit laboriously. First, the fundamental re-
lation ∂Ji j ln ZI = mimj + ∂2

θi,θ j
ln ZI allows to replace deriva-

tives wrt. J by derivatives wrt. θ. Second, at J = 0, the Ising
distribution boils down to a Bernoulli distribution, where all
derivatives wrt. θ are fully tractable.

The approximation at order n = 4 is a classic computation
[27,41–43], which yields

G4(m, J) =
∑

i

G(mi ) −
∑
(i j)

Ji jmimj − 1

2

∑
(i j)

J2
i jcic j

−
∑
(i jk)

Ji jJjkJkicic jck − 2

3

∑
(i j)

J3
i jmicimjc j

−
∑
(i jkl )

Ji jJjkJkl Jlicic jckcl

− 2
∑
(i j),k

J2
i jJ jkJkimicimjc jck

+ 1

12

∑
(i j)

J4
i jcic j

(
1 + 3m2

i + 3m2
j − 15m2

i m2
j

)
.

(B3)

Here, (i j), (i jk), (i jkl ) indicate, respectively, all unordered
pairs, triplets, and quadruplets of distinct spins. G(mi ) is the
free energy of each one-spin marginal distribution [Eq. (B1)
with θi = tanh−1(mi )]. Finally, we use the shorthand ci =
1 − m2

i .
By differentiating this function w.r.t. m, we obtain a fixed

point characterization of its extremum(s) m. Stopping at order
1 in J yields the “naive” mean-field equation. Stopping at
order 2 (first line) yields the TAP equation. Stopping at order
3 (two first lines) yields Eq. (29) from the main text.

3. Bethe approximation

In one particular case, G(m, J) in Eq. (B1) is tractable
exactly. This is when the underlying couplings Ji j define a
tree topology, that is, they are zero except on a subset of the
edges defining a graph without loops. In that case, the test
Ising distribution Q(m, J) can be written as

Q(s|m, J) =
∏
〈i j〉

Q(si, s j )

Q(si )Q(s j )

∏
i

Q(si ), (B4)
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where 〈i j〉 denotes all edges in the tree. This can be proved
by repeated applications of Bayes’ formula, starting from any
leaf of the tree. Besides, each marginal Q(si, s j ) is a two-
spin Ising distribution with coupling parameter Ji j , as proved
directly by integrating out the remaining variables from the
original Ising formula.

In consequence, the (exact) free energy writes

GB(m, J) =
∑
i< j

G(mi, mj, Ji j ) − (N − 2)
∑

i

G(mi ), (B5)

G(mi ) and G(mi, mj, Ji j ) being the respective free energies
of the marginal distributions Q(si) and Q(si, s j ), as defined
by Eq. (B1). Note that the sum can be made over all spin
pairs i < j, and not just neighboring pairs 〈i j〉 in the tree.
Indeed, unconnected spin pairs yield a zero contribution, as
G(mi, mj, 0) = G(mi ) + G(mj ).

The Bethe approximation consists in using Eq. (B5) as an
approximation for the free energy, even when the Ji j do not
have a tree topology.

Imposing that ∂mGB = 0 and using Eq. (B2), leads to the
N equations,

∀i, (N − 2) tanh−1(mi ) =
⎛
⎝∑

j

θ
( j)
i

⎞
⎠ − hi, (B6)

where the so-called cavity fields (θ ( j)
i , θ

(i)
j ) are the natural

field parameters of each two-spin Ising distribution Q(si, s j ),
that is, tractable functions of (mi, mj, Ji j ). In fact, it is easily
shown that the two-spin Ising distribution of natural parame-
ters (θ ( j)

i , θ
(i)
j , Ji j ) has moments

mi = ti + t jti j

1 + tit jti j
, ci j = ti j

(
1 − t2

i

)(
1 − t2

j

)
(1 + ti jtit j )2

, (B7)

with ti j = tanh(Ji j ), ti = tanh(θ ( j)
i ), t j = tanh(θ (i)

j ). Insert-
ing this expression for mi into Eq. (B6), with tanh−1(m) =
1
2 [ln(1 + m) − ln(1 − m)], and after some linear recombina-
tions, we obtain

∀(i, j), θ
( j)
i = hi +

∑
k 	= j

tanh−1
[
tik tanh

(
θ

(i)
k

)]
, (B8)

and the optimum is now characterized by N (N − 1) equations
over the N (N − 1) cavity variables. This switching from N
principal variables (the mi) to N (N − 1) auxiliary variables
(the θ

( j)
i ) can also be interpreted as a dual Lagrangian opti-

mization procedure [32].
In a treelike topology, Eq. (B8) can be solved iteratively

starting from any leaf of the tree, allowing to recover the
exact values for all the θ

( j)
i , and thus, for magnetizations m�

i .
The resulting algorithm is known as belief propagation, or
sum-product. In a general topology, the fixed point approach
to characterize solutions of Eq. (B8) is known as loopy belief
propagation. It is not guaranteed to have a single solution
anymore—and it only characterizes an approximation for the
magnetizations mi.

The covariances Ci j can be approximated in turn, based
on the linear response formula, Eq. (22). Applied to each
two-spin distribution of natural parameters (θ ( j)

i , θ
(i)
j , Ji j ), it

implies the differential equality

∀(i, j), (∂mi ) = (
1 − m2

i

)(
∂θ

( j)
i

) + ci j
(
∂θ

(i)
j

)
, (B9)

with ci j given by Eq. (B7). We can then differentiate Eq. (B6)
as a function of (∂hi) and linearly eliminate the cavity fields
(∂θ

( j)
i ) thanks to Eq. (B9). As a result, we express (∂hi ) as

a function of the (∂mj ) only, and this provides the linear
response prediction:

(
C−1

B

)
i j =

[
1 +

∑
k

c2
ik(

1 − m2
i

)(
1 − m2

k

) − c2
ik

]
δi j

1 − m2
i

− ci j(
1 − m2

i

)(
1 − m2

j

) − c2
i j

. (B10)

This derivation, which I could not find in the literature,
expresses the linear response matrix CB in an alternative form
than in Ref. [37].

To derive the weak coupling (Plefka) expansion of the
Bethe approximation, note that each G(mi, mj, Ji j ) in Eq. (B5)
is an exact Ising free energy over two spins i and j. Compared
to a generic Ising free energy over N spins, its expansion only
contains the two-spin diagrams, summed over the single spin
pair involved. It follows, after summing over all spin pairs
i < j in Eq. (B5), that the Plefka expansion of the Bethe free
energy is obtained by keeping only the pairwise diagrams in
the expansion for the true Ising free energy.

APPENDIX C: CAVITY METHOD AND
ADAPTIVE TAP EQUATIONS

1. Cavity method

The cavity method is a classic approach allowing recovery
of many analytical properties of the Ising model and other
multivariate exponential models [4,5]. Singling out an arbi-
trary spin location i, one can rewrite Eq. (1) as

P(s\i, si ) ∼ P\i(s\i) exp

⎡
⎣si

⎛
⎝hi +

∑
j 	=i

Ji js j

⎞
⎠

⎤
⎦,

where s\i denotes the remaining N − 1 spins, and the so-called
cavity distribution P\i is the Ising distribution obtained by
deleting line and column i from (h, J). The remaining spins
interact with i only through the random variable

r̃i := hi +
∑
j 	=i

Ji js j, (C1)

and we can write

P(r̃i, si ) ∼ P\i(r̃i ) exp(sir̃i ), (C2)

P\i(r̃i ) indicating the distribution of variable r̃i when the spins
s\i follow the cavity distribution P\i.

In general, distribution P\i(r̃i ) is not tractable exactly.3 But
in many circumstances, since r̃i is the sum of variables with

3Except when the couplings Ji j have a treelike topology. In this
case, P\i(r̃i ) is a factorized product over the neighboring spins of i,
and this is another way of deriving the Bethe Eq. (B8) [33].
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many degrees of freedom, it can be assumed to have a normal
distribution:

P\i(r̃i ) = N (r̃i|θi,Vi ),

and Eq. (C2) becomes, approximately,

P(r̃i, si ) ∼ exp

[
− 1

2Vi
(r̃i − θi )

2 + sir̃i

]
. (C3)

This equation is the starting point of the classic cavity
method. Note the formal similarity with our definition for the
joint probability of spins and latent fields, Eq. (4), so we can
simply recycle our results. From Eq. (7), P(si ) is the Bernoulli
distribution of parameter θi, so mi = tanh(θi ). From Eq. (14),
we have E (r̃i ) = θi + Vimi. Taken together, this yields the
generalized TAP equation:

mi = tanh

⎛
⎝hi +

∑
j

Ji jm j − miVi

⎞
⎠. (C4)

For the SK model in the limit N → ∞, it can be shown
that the different summands to r̃i in the cavity distribution
[Eq. (C1)] become linearly independent [4,6], so the variance
writes Vi � ∑

j J2
i j (1 − m2

j ) and we recover the classic TAP
equation.

2. Adaptive TAP approximation

Instead, in the adaptive TAP method [34,35], Vi is left as
a free variable which can adapt to any statistical structure
of the couplings J. First, differentiating Eq. (C4) w.r.t. h
(but neglecting the dependency of Vi itself) leads to a linear
response prediction for C:

(
C−1

A

)
i j = (

1 + (
1 − m2

i

)
Vi

) δi j

1 − m2
i

− Ji j . (C5)

Second, given magnetization mi, the individual variance of
spin i should be 1 − m2

i . Self-coherence of the variance pre-
diction imposes that

1 − m2
i = (CA)ii. (C6)

Taken together, Eqs. (C4)–(C6) constitute a system on vari-
ables {mi,Vi}, which can be solved by classic iterative meth-
ods [35].

I now turn to the weak coupling (Plefka) expansion of
Eqs. (C4)–(C6), when magnetizations mi are fixed, and the
coupling matrix writes αJ. Given the form of Eq. (C4), this
only requires to obtain the expansion for miVi or, after a
convenient rescaling, for variable

xi := Vi
(
1 − m2

i

)
,

for which we want to establish the Taylor development

xi = αx[1]
i + α2x[2]

i + α3x[3]
i + . . .

(note that xi = Vi = 0 when α = 0).
From Eq. (C5), it is clear that the solution depends on the

diagonal of J only through the simple offset Vi → Vi + Jii, so
we may assume Jii = 0 without loss of generality.

Introducing the variables

di := 1 − m2
i

1 + (
1 − m2

i

)
Vi

= (
1 − m2

i

)[
1 − xi + x2

i − x3
i + · · · ],

and matrix D = diag(di ), we rewrite Eq. (C5) as

C−1 = D−1 − (αJ)

and thus, after a classic switching from C−1 to C,

C = D + αDJD + α2D(JD)2 + α3D(JD)3 + . . . ,

allowing us to easily express the development of C from that
of di.

Then, noting ci := 1 − m2
i for concision, the fixed point

Eq. (C6) imposes, at order 4:

1 = (
1 − xi + x2

i − x3
i + x4

i

)
+ α2

∑
j

ciJ
2
i jc j

(
1 − 2xi + 3x2

i − x j + 2xix j + x2
j

)

+ α3
∑

j,k

ciJi jc jJjkckJki(1 − 2xi − x j − xk )

+ α4
∑
j,k,l

ciJi jc jJjkckJkl clJli + o(α4).

We can then replace xi by its expansion, and regroup the
powers of α. For the equation to be verified at order 1, this
imposes that

x[1]
i = 0.

Using this newly found value, the fixed point equation at order
2 imposes

mi

ci
x[2]

i = mi

∑
j 	=i

J2
i jc j .

Then, the fixed point equation at order 3 imposes
mi

ci
x[3]

i = 2mi

∑
( jk|i)

Ji jJjkJkic jck,

where ( jk|i) denotes all unordered triplets of the form {i, j, k}
with j and k distinct, and distinct from i. By inserting these
values into Eq. (C4), we recover the expansion from the main
text, Eq. (30).

Finally, the fixed point equation at order 4 yields
mi

ci
x[4]

i = 2mi

∑
( jkl|i)

Ji jJjkJkl Jlic jckcl − mici

∑
j 	=i

J4
i jc

2
j . (C7)

Note that the sum over ( jkl|i)—which involves the most terms
and is generally dominant—is identical to that for the true
Ising expansion; see Eq. (B3).

APPENDIX D: WEAK COUPLING EXPANSION FOR
THE COX APPROXIMATION

We consider the “variational” Cox approximation, solution
to the equations

mi =
∫

x∈R
tanh(μi + x

√
�ii )φ(x)dx, (D1)

di =
∫

x∈R
[1 − tanh2(μi + x

√
�ii )]φ(x)dx, (D2)
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(C−1)i j = d−1
i δi j − αJi j . (D3)

μ = h + αJm, (D4)

� = αJ + α2JCJ, (D5)

when magnetizations mi are fixed, and the coupling matrix

writes αJ, α being the small parameter of the expansion.
Here, I detail the computation up to order 3, and also

provide the result at order 4. The overall structure of the
computation is largely similar to that for the adaptive TAP
approximation, in the previous paragraph.

When α = 0, the solution is obvious: couplings αJ vanish,
and so does the covariance matrix �. The Cox distribution
Q(μ,�) is simply a Bernoulli distribution B(μ) with μ = h,
and the fixed point equations impose that

μi = tanh−1(mi ),

di = 1 − m2
i .

We now seek a Taylor expansion for the solution of
Eqs. (D1)–(D5) when α is small but nonzero, and magneti-
zations mi are fixed. More precisely, noting


i := μi − tanh−1(mi ),

our purpose is to find the parameters in the following Taylor
expansions:


i = α

[1]
i + α2


[2]
i + α3


[3]
i + . . .

�i j = α�
[1]
i j + α2�

[2]
i j + α3�

[3]
i j + . . .

When inserted into Eq. (D4), the development of 
i will
exactly provide the desired Plefka expansion.

1. Development for Eq. (D1)

Equation (D1) writes

mi =
∫

x∈R
tanh(tanh−1(mi ) + 
i + x

√
�ii )φ(x)dx,

where 
i is of leading order α, and
√

�ii is of leading order
α1/2. Applying the Taylor development of tanh:

tanh(tanh−1(m) + X ) = m + (1 − m2)[X − mX 2 + · · · ]

up to order 6 (because
√

�ii is of leading order α1/2), and
using the classic integration formulas,∫

x
xnφ(x)dx =

{
(n − 1)(n − 3) . . . if n is even
0 if n is odd , (D6)

we obtain

mi = mi + (
1 − m2

i

)[

i − mi

(

2

i + �ii
) + (

m2
i − 1

3

)(

3

i + 3
i�ii
) + ( − m3

i + 2
3 mi

)(

4

i + 6
2
i �ii + 3�2

ii

)
+ (

m4
i − m2

i + 2
15

)(
10
3

i �ii + 15
i�
2
ii

) + ( − m5
i + 4

3 m3
i − 17

45 mi
)(

45
2
i �

2
ii + 15�3

ii

)] + o(α3).

Notice that, after integration by the Gaussian kernel, only integer powers of �ii remain.
For this equation to be verified, the term inside square brackets must be equal to zero up to order α3. Expanding 
i and �ii

with the shorthand Xk = 

[k]
i , Yk = �

[k]
ii , and regrouping the powers of α, we obtain

0 = α[X1 − miY1] (D7)

+α2
[
X2 − mi

(
X 2

1 + Y2
) + (

3m2
i − 1

)
X1Y1 + (−3m3

i + 2mi
)
Y 2

1

]
(D8)

+α3[X3 − mi(2X2X1 + Y3) + (
m2

i − 1
3

)(
X 3

1 + 3X2Y1 + 3X1Y2
) + (−6m2

i + 4mi
)(

X 2
1 Y1 + Y2Y1

)
+ (

15m4
i − 15m2

i + 2
)
X1Y

2
1 + (−15m5

i + 20m3
i − 17

3 mi
)
Y 3

1

] + o(α3). (D9)

2. Solution at order 2

At this point, we can readily find the two first orders of the
solution. Indeed, we have � = αJ + α2JCJ and Ci j = (1 −
m2

i )δi j + o(1), and so

�
[1]
i j = Ji j, �

[2]
i j =

∑
k

JikJjk
(
1 − m2

k

)
.

Then, at order 1, the fixed point equation above [Eq. (D7)]
imposes that



[1]
i = mi�

[1]
ii = miJii.

Using this new value, the fixed point equation at order 2
[Eq. (D8)] imposes that



[2]
i = mi

((



[1]
i

)2 + �
[2]
ii

) − (
3m2

i − 1
)



[1]
i �

[1]
ii + . . .

= mi

∑
j 	=i

J2
i j

(
1 − m2

j

)
,

which is identical to the order 2 coefficient in the exact Ising
model—see Eq. (29). Note that the diagonal terms Jii are
nonzero and an active part of the derivation, but cancel out
in the final result, so they play no role in the expansion up to
order 2.

3. Development for C

In general, to establish the development of � at any given
order n, we need the expansion of C up to order n − 2, because
� = αJ + α2JCJ. Thus, to expand μ and � at order 3, we
must first establish the development for C at order 1, based on
the development of (μ,�) at order 1 established above.

Regarding Eq. (D2), a very similar computation [develop-
ment of tanh at order 2, and simplification by the integral
formulas of Eq. (D6)] yields

di = (
1 − m2

i

) − α
(
1 − m2

i

)2
Jii + o(α).
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Introducing matrix D = diag(di ), Eq. (D3) writes

C−1 = D−1 − (αJ),

and thus, after a classic switching from C−1 to C,

C = D + αDJD + o(α).

So, finally,

Ci j = δi j
(
1 − m2

i

) + α(1 − δi j )
(
1 − m2

i

)(
1 − m2

j

)
Ji j + o(α).

(D10)

4. Solution at orders 3 and 4

The coefficient C[1]
i j found in Eq. (D10) is pasted into � =

αJ + α2JCJ, to obtain

�
[3]
i j =

∑
k 	=l

JikJkl Jl j
(
1 − m2

k

)(
1 − m2

l

)
. (D11)

Then, Eq. (D9) allows us to find the order 3 coefficient of μ.
After computation, this gives



[3]
i = 2mi

∑
( jk|i)

Ji jJjkJki
(
1 − m2

j

)(
1 − m2

k

)

− 2

(
m2

i − 1

3

)
J3

iimi
(
1 − m2

i

)
,

where ( jk|i) denotes all unordered triplets of the form {i, j, k}
with j and k distinct, and distinct from i.

Using the values found for 

[1]
i , 
[2]

i , and 

[3]
i , and the fact

that μi = hi + α
∑

j Ji jm j , yields Eq. (31) from the main text.
Pushing all computations one order further, with the help

of the computer algebra system MAXIMA, yields



[4]
i = 2mi

∑
( jkl|i)

Ji jJjkJkl Jlic jckcl − mici

∑
j 	=i

J4
i jc

2
j

− 2mici
(
3m2

i − 1
)
J2

ii

∑
j 	=i

J2
i jc j

− 2mici

(
7m4

i − 8m2
i + 5

3

)
J4

ii − 2mi

∑
j 	=i

J2
i jJ

2
j jm

2
j c

2
j ,

(D12)

with the shorthand ci = 1 − m2
i . The two first terms are iden-

tical to the adaptive TAP expansion, Eq. (C7). The remaining
terms involve the diagonal weights Jii, and would be absent if
the coupling matrix was such that diag(J) = 0.

APPENDIX E: APPROXIMATE FORMULAS
FOR THE COX DISTRIBUTION

The formulas inherent to the Cox distribution, Eqs. (13),
(16), (17), and (21) from the main text, are easily estimated
by numerical integration (for example, Simpson quadrature).
But the overall computation time quickly becomes forbidding,
as these estimations must be done for each pair of spins, and
on many iterations to target the fixed point.

Hence, I found it more convenient to use approximate
formulas. Let us note L the logistic function at scale 1/2,

that is

L(r) := 1

1 + e−2r
.

Function L is pivotal in the Bernoulli distribution, since
tanh(r) = 2L(r) − 1, log 2 cosh(r) = 2

∫ r
0 L(u)du − r, and

1 − tanh2(r) = 2L′(r).
I suggest to approximate L by the following combination

of Gaussian functions:

Lapp(r) = �
( r

κ

)
+ νφ′

( r

λ

)
, (E1)

with �(x) := ∫ x
−∞ φ(u)du the standard normal cumulative

distribution, and φ′(r) = −rφ(r).
Taking parameters (κ, ν, λ) � (0.7072, 0.1648, 0.9712),

one has ‖L − Lapp‖∞ < 0.001 on the whole real line. The
approximation also applies to the primitive, with ‖ ∫

(L −
Lapp)‖∞ < 0.001, and to the first derivative, with ‖L′ −
(Lapp)′‖∞ < 0.0033.

As the convolution product of two Gaussian functions
remains Gaussian, this replacement allows to compute ana-
lytically all the formulas. Here, I only provide the results, and
refer to Supplemental Material [30] for the derivation.

Given spin index i, let us introduce the following reduced
quantities:

xi := μi√
�ii

,

ki :=
√

�ii√
κ2 + �ii

,

li :=
√

�ii√
λ2 + �ii

.

Then, the first moment of the Cox distribution, Eq. (16) [or
equivalently Eq. (20)], can be approximated as

mapp
i = 2

[
�(xiki ) + ν

(
1 − l2

i

)
φ′(xili )

] − 1, (E2)

with a guaranteed maximum error |mi − mapp
i | < 0.002.

The variance term di in Eq. (17) is approximated as

dapp
i = 2�

−1/2
ii

[
kiφ(xiki ) + ν(1 − l2

i )liφ
′′(xili )

]
,

with a guaranteed maximum error |di − dapp
i | < 0.007.

To concretely estimate the free energy associated to
Eq. (13), it is necessary to compute Fi := ∫

x log 2 cosh(μi +
x
√

�ii )φ(x)dx. It is approximated as

F app
i = μi[2�(xiki ) − 1] + 2

√
�ii

[
φ(xiki )

ki
− ν

φ′′(xili )

li

]
,

with a guaranteed maximum error inferior to 0.002.
The approximate formula for the covariance of the Cox

distribution, Eq. (21), is quite bulky and provided in Sup-
plemental Material [30]. It has guaranteed maximum error
inferior to 0.008.

In my numerical tests, using these approximate formulas
instead of lengthier Simpson quadrature yielded no noticeable
difference in the final solution of the fixed point equations.
At the same time, computation times were cut by (up to) two
orders of magnitude.
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