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Quenched disorder in the contact process on bipartite sublattices
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We study the effects of distinct types of quenched disorder in the contact process with a competitive dynamics
on bipartite sublattices. In the model, the particle creation depends on its first and second neighbors and the
extinction increases according to the local density. The clean (without disorder) model exhibits three phases:
inactive (absorbing), active symmetric, and active asymmetric, where the latter exhibits distinct sublattice
densities. These phases are separated by continuous transitions; the phase diagram is reentrant. By performing
mean-field analysis and Monte Carlo simulations we show that symmetric disorder destroys the sublattice
ordering and therefore the active asymmetric phase is not present. On the other hand, for asymmetric disorder
(each sublattice presenting a distinct dilution rate) the phase transition occurs between the absorbing and the
active asymmetric phases. The universality class of this transition is governed by the less-disordered sublattice.
Finally, our results suggest that random-field disorder destroys the phase transition if it breaks the symmetry
between two active states.
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I. INTRODUCTION

In nonequilibrium systems, an absorbing-state phase tran-
sition occurs when a control parameter such as a creation
or annihilation rate is varied, and the system undergoes a
phase transition from a fluctuating state to a frozen state, with
no fluctuations (the “absorbing” state). Absorbing-state phase
transitions have attracted considerable interest in recent years
since they are related to the description of several phenomena
such as population dynamics, epidemic spreading, chemical
reactions, and others [1–4]. Since the late 2000s, several
experimental realizations, e.g., in turbulent liquid crystals [5],
driven suspensions [6], superconducting vortices [7], and open
quantum systems [8], have highlighted the importance of this
kind of phase transition.

In analogy with equilibrium phase transitions [9], it is
expected that the critical phase transitions into absorbing
states belong to a finite number of universality classes [4].
However, a complete classification of these nonequilibrium
classes is still lacking. In general, absorbing-state transitions
in models with short-range interactions and in the absence
of a conserved quantity or symmetry beyond translational
invariance belong to the directed percolation (DP) univer-
sality class [10]. On the other hand, models presenting two
absorbing states linked by particle-hole symmetry are known
fall in the voter model universality class [11]. There are also
models that are free of absorbing states but cannot achieve
thermal equilibrium because their transition rates violate the
detailed balance. An example is the majority vote model [12].
In its ordered phase a Z2 symmetry is spontaneously broken,
leading to Ising-like behavior for spatial dimensions d � 2.

A few years ago, a spatially structured model that suffers
a phase transition to a single absorbing state and also exhibit
a broken-symmetry phase was proposed [13]. The model is
based in a contact process (CP), where, besides the standard

particle creation and annihilation dynamics, one includes a
creation between second neighbors sites and an annihilation
proportional to the local density. This results, in addition to the
usual absorbing and active (symmetric) phases, in an unusual
active asymmetric phase in which the distinct sublattices are
unequally populated. A spontaneous symmetry breaking char-
acterizes the reentrant phase transition between the symmetric
and asymmetric phases. Mean-field theory (MFT) and simu-
lations revealed the absorbing phase transition belongs to the
DP class, whereas the transitions between active phases fall
into the Ising universality class, as expected from symmetry
considerations. The symmetry-breaking phase transition was
proven to be robust for different sublattice interactions [14]
and low diffusion particle rates [15].

The inclusion of disorder can affect the critical behavior
of nonequilibrium phase transitions dramatically. In real sys-
tems, quenched disorder is observed in the form of impurities
and defects [16], whereas in a regular lattice it can be included
in the forms of random deletion of sites or bonds [17–19]
or random spatial variation of the control parameter [20,21].
According to the Harris’s criterion [22], quenched disorder
is a relevant perturbation, from the field-theoretical point of
view, if dν⊥ < 2, where d is the dimensionality and ν⊥ is the
correlation length exponent of the pure model. In these cases,
quenched uncorrelated randomness induces the emergence of
rare regions, typically located λc(0) < λ < λc, the λc(0) and
λc being the critical point for the pure and disorder models, re-
spectively. Although globally the whole system is constrained
in the subcritical phase, local supercritical regions emerge
due to the presence of the disorder. The lifetime of such
“active rare regions” grows exponentially with the domain
size, usually leading to a slow dynamics, characterized for
nonuniversal exponents toward the extinction for some inter-
val of the control parameter below criticality. This behavior
characterizes a Griffiths phase (GP) and was verified in DP
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models with uncorrelated disorder irrespective to the disorder
strength [23,24]. In addition, it was shown this behavior corre-
sponds to the universality class of the random transverse Ising
model [23,24]. However, some kinds of correlated disorder do
not alter the critical behavior [25–27].

In this work, we provide a step further by investigating
the effects of quenched disorder in the phase diagram of
the contact processes on sublattices. Following the Harris
criterion, disorder should be relevant for the absorbing phase
transition, since ν⊥ = 0.734(4) for d = 2 in the clean system
[23]. On the other hand, for the symmetry-breaking phase
transition, the Harris criterion is inconclusive, because it
corresponds to a marginal case (ν = 1 for the pure Ising
model in d = 2) [28]. Here we study distinct kinds of disorder,
(i) a random homogeneous and (ii) inhomogeneous deletion
of sites, in which the disorder strength is different in each
sublattice. Interesting, we show, through mean-field analysis
and Monte Carlo simulations, that each one of the above
disorder prescriptions yields completely different outcomes.

The remainder of this paper is organized as follows. In the
next section we review the model and analyze its mean-field
theory. In Sec. III we present and discuss our simulation
results; Sec. IV summarizes our conclusions.

II. MODEL AND MEAN-FIELD THEORY

Consider a stochastic interacting particle system, defined
on a square lattice of linear size L, where each site can be
either occupied by a particle or empty. Each particle creates a
new particle in one of its first-neighbor sites with rate λ1 and
in one of its second-neighbor sites with rate λ2. Note that in
such bipartite sublattice, λ1 is the creation rate in the opposite
sublattice, whereas λ2 is the rate in the same sublattice as the
replicating particle. Therefore, unequal sublattice occupan-
cies are favored if λ2 > λ1. An occupied site is emptied at a
rate of unity (independent of its neighboring sites). In addition
to the intrinsic annihilation rate of unity, an “inhibition term”
proportional to the local density is included in the dynamics.
As a consequence of this term, if the occupation fraction ρA

of sublattice A is much larger than that of sublattice B, for
instance, then any particles created in sublattice B will die out
quickly, stabilizing the unequal sublattice occupancies.

In order to typify the model properties, we evaluate the
macroscopic particle densities of each sublattice A and B
given by ρA and ρB, respectively. In the absorbing (AB)
and active symmetric (AS) phases, ρA = ρB = 0 and ρA =
ρB �= 0, respectively. Hence, ρ = ρA + ρB is a reliable order
parameter for absorbing phase transitions. Conversely, for the
active asymmetric (AA) phase, it is convenient to calculate the
difference of sublattice occupation by φ = |ρA − ρB|, since φ

distinguishes from the AS phase, where φ = 0.
The disorder is introduced by means of a fraction � of

random deletion of sites. We shall consider two cases: the
symmetric and asymmetric, in which the sublattice remotion
is equal (�A = �B) and different (�A �= �B), respectively. In
both cases, the disorder is quenched in space and time, i.e.,
its position or strength does not change during the evolution
of the process. In order to achieve a qualitative portrait of the
phase diagram, we begin by employing the one-site MFT. For
a lattice with coordination number q, it results in following
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FIG. 1. Mean-field densities φ (solid curves) and ρ (dashed) for
λ1 = 0.1 and μ = 2.0. Inset: Detail of the data close to the absorbing
transition (linear scale).

coupled equations:

dρA

dt
= −[

1 + μq2ρ2
B

]
ρA + (λ1ρB + λ2ρA)(1 − �A − ρA)

(1)
and

dρB

dt
= −[

1 + μq2ρ2
A

]
ρB + (λ1ρA + λ2ρB)(1 − �B − ρB).

(2)
Let us first consider that the disorder is homogeneously

distributed in both sublattices, i.e., �A = �B = �. In this case,
one derives explicit solutions for the densities as

ρ = 1

2k

⎧⎨
⎩

√(
λ1 + λ2

2

)2

+ 4k[(λ1 + λ2)(1 − �) − 1]

− λ1 + λ2

2

⎫⎬
⎭ (3)

and

φ =
√

−[(λ2 − λ1)(1 − �) − 1 − λ2ρ − kρ2]

k
. (4)

The mean-field densities ρ and φ are plotted as function
of λ2 for distinct values of disorder and fixed λ1 = 0.1 in
Fig. 1. For all fractions of disorder, the system undergoes a
phase transition to the absorbing state at the threshold λ2 =
λABS

2,c (�), with ρ = 0, to the active symmetric phase, where
ρ > 0 and φ = 0. Note the phase transition moves for larger
values of λ2 when increasing the disorder, as expected. A fur-
ther increase of λ2 gives rise to the AS-AA and AA-AS phase
transitions at λ2 = λI

2,c(�) and λ2 = λII
2,c(�), respectively.

The phase diagram for distinct values of � is shown in
Fig. 2. The increase of � enlarges the absorbing phase and
then the AB-AS phase transition moves for larger values of
λABS

2,c . In the active phase, the phase diagram is reentrant, and
we note the size of the AA phase is reduced when the disorder
increases.
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FIG. 2. Phase diagram in the λ1 − �2 plane, for μ = 2, showing
absorbing (ABS), active-symmetric (AS), and active-asymmetric
(AA), for distinct values of disorder �.

The asymmetric disorder case, �A �= �B, is shown in Fig. 3.
MFT indicates the suppression of the AS phase, signed by
a smooth change of both of ρ and φ at the same λ2,c. The
AS phase is not stable for any value of λ2, so that φ does
not vanish for finite values of λ2. So the phase diagram
only presents two phases: the absorbing phase and the active
asymmetric phase separated by a continuous phase transition.

In the next section, we compare the results from MFT with
those evaluated from numerical simulations.

III. RESULTS AND DISCUSSION

A. Methods

We performed extensive Monte Carlo simulations of the
model on square lattices with periodic boundaries. The simu-
lation scheme is as follows. First, a site is selected at random.
If the site is occupied, it creates a particle at one of its
first neighbors with a probability p1 = λ1/W or at one of
its second neighbors with a probability p2 = λ2/W . Here
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FIG. 3. Mean-field densities φ (solid curves) and ρ (dashed) for
λ1 = 0.1 and μ = 2.0 with asymmetric disorder, �A �= �B. Inset:
Detail of the data close to the absorbing transition (linear scale).

FIG. 4. Typical configurations observed on the bipartite lattice
for λ1 = 0.1 and λ2 = 0.1 for clean � = 0.0 and disordered system
� = 0.2. Green, inert sites; blue, occupied sites; black, empty sites.
Linear system size L = 80 and μ = 2.0.

W = (1 + λ1 + λ2 + μn2
1) is the sum of the rates of all possi-

ble events. With a complementary probability 1 − (p1 + p2),
the site is vacated. To improve the efficiency, we choose
the sites from a list containing the currently Nocc occupied
sites; accordingly, the time is incremented by �t = 1/Nocc

after each event. For simulations in the subcritical and critical
absorbing regime, we sample the quasistationary (QS) regime
using the simulation method detailed in Ref. [29]. In order to
draw a comparison with the results from MFT, in all cases we
take μ = 2.0.

B. Symmetric disorder

We begin by analyzing the symmetric case, where �A =
�B = �. In Fig. 4, we show typical configurations observed
on the bipartite lattice for λ1 = 0.1 and λ2 = 0.1, for clean
� = 0 and disordered system � = 0.2.

Figure 5 shows the densities of ρ and φ on a square lattice
with linear system size L = 80. As expected, the absorbing
phase transition occurs at a higher value of λ2 when disorder
is introduced. We also observe that increasing the fraction of
disorder reduces the possibility of an AA phase, since the
values of φ reduces when we increase the fraction of disorder.

In order to clarify the effects of disorder on the stability
of the AA phase, we analyze the dependence of the order
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FIG. 5. Order parameters ρ and φ for distinct (symmetric) �′s
vs. λ2 for μ = 2 and λ1 = 0.1. Linear system size L = 80.
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FIG. 6. Quasistationary densities φ and ρ vs. λ2, for μ = 2
and λ1 = 0.1, for the clean system (a) and for � = 0.1 (b). Scaled
variance χ of the order parameter φ vs. λ2 for μ = 2 and λ1 = 0.1,
for the clean system (c), and for � = 0.1 (d).

parameter φ with the linear system size L. In Fig. 6, we
compare the clean model with the disordered system, with
� = 0.1. Figures 6(a) and 6(b) show the order parameter ρ

and φ versus λ2 for distinct systems sizes. While for the clean
version the the AA phase and the reentrant phase transition
are observed for all system sizes [see Fig. 6(a)], the disordered
system shows a remarkably different picture, in which the sub-
lattice occupations become equivalent for large L. Therefore,
we conclude that φ vanishes when L → ∞ and the AA phase
is suppressed by the disorder. Such behavior is reinforced by
analyzing the order parameter variance χ = L2(〈φ2〉 − 〈φ〉2),
as shown in Figs. 6(c) (clean) and 6(d) (disordered). In
contrast to the clean system, in which χ diverges nearby the
transitions AB-AA and AA-AB as L → ∞, no divergence is
verified in such case. So, in contrast to the MFT predictions,
we observe that symmetric disorder forbids the stability of
AA phase and therefore the disordered system does not show
symmetry breaking.

One important point to mention is that the random dilution
locally breaks the symmetry between the sublattices even in
this case, where �A = �B. Therefore, the dilution acts as a
“random-field” disorder for the symmetry breaking between
the sublattices. Recently, it was shown that nonequilibrium
phase transitions persists in the presence with random-field
disorder that locally breaks the symmetry between two ab-
sorbing states [30–32]. In this contrast, our results reveal that
random-field disorder destroys the phase transition if it breaks
the symmetry between two active states. This behavior is
analogous to that observed in low-dimensional equilibrium
systems, where random-field disorder is known to prevent
spontaneous symmetry breaking [33,34].

Now let us characterize the absorbing phase transition
in the disordered system. For locating the critical creation
rate λ2,c, we study the time evolution of the number of
active particles n(t ) starting from an initial configuration
the simulation with one pair of neighboring active particles.
The critical value λ2,c can be estimated as the threshold λ2

100 101 102 103 104 105 106 107

t

4

8

16

n(
t)

λ2 = 2.483
λ2 = 2.486
λ2 = 2.489
λ2 = 2.490
λ2 = 2.491
λ2 = 2.493
λ2 = 2.494

0 1 2
ln(ln(t))

-4

0

ln
(P s)

FIG. 7. Number of active particles n for � = 0.3, μ = 2, and
λ1 = 0.1. Inset: Survival probability for λ2 = 2.489, 2.490, and
2.491.

separating asymptotic growth from the decay toward the
absorbing phase.

Figure 7 exemplifies the results for � = 0.3 in which
λ2,c = 2.490(1). We observe that, analogously to the diluted
CP, the critical behavior presents activated dynamic scaling,
with

n(t ) ∼ ln(t/t0)θ (5)

and the survival probability

Ps ∼ ln(t/t0)−δ. (6)

From the data in Fig. 7, we estimate ln(t0) = 3.0(5), and θ =
0.21(4), in agreement with the value θ = 0.15(3), obtained in
Ref. [24]. From the data shown in the inset of Fig. 7, we find
δ = 2.1(3), very close to the value δ = 1.9(2) observed for
the usual CP with random dilution, indicating that the critical
behavior of the disordered model belongs to the universality
class of the diluted CP [24,35].

Combining the activated scaling relations for n(t ) and
Ps(t ), Eqs. (5) and (6), we find that

n ∼ P−δ/θ
s (7)

at criticality. This relation does not depend on t0 and is useful
to check our estimate of the critical point. In Fig. 8, we
plot n as function of Ps and observe a power law that at
λ2 = 2.490, while the curves for λ2 = 2.491 (λ2 = 2.489)
veers up (down), thus confirming the accuracy of our estimate
for the critical point. At criticality, we found the exponent
ratio δ/θ = 0.09(2), in coherence with with the values of δ

and θ obtained from the data in Fig. 7. This value is also
in agreement with the value δ/θ = 0.075(5) obtained for the
diluted contact process in Ref. [35].

In the active-dynamical scenario, the lifetime of the process
follows,

ln τ ∼ Lψ, (8)

where ψ is a universal exponent. From the data in the inset of
Fig. 8, we found ψ = 0.44(5), close to the value ψ = 0.51(6)
obtained for the diluted CP [24].
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simulations. Inset: Finite-size scaling of the lifetime of the QS state
τ for � = 0.3, μ = 2, and λ1 = 0.1.

Finally, another important effect that disorder can induce
in absorbing phase transitions is the emergence of Griffiths
phases [36]. A Griffiths phase is a region inside the subcritical
phase where the long-time decay of ρ toward the extinc-
tion is algebraic (with nonuniversal exponents) rather than
exponential. In Fig. 9, we present results from initial decay
simulations, where the system starts its dynamics from a fully
occupied lattice. We observe the existence of a range of values
of λ2 in the subcritical regime where the long-time behavior
of the density decays as a power law,

ρ(t ) ∼ t−2/z′
, (9)

with the nonuniversal dynamical exponents z′ following

z′ ∼ |λ2 − λ2,c|−ψν⊥, (10)

where λ2,c is the critical value of the control parameter λ2

[24]. In the inset of Fig. 9 we observe that z′ diverges when λ2
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FIG. 9. Initial decay simulations: Particle density ρ vs. t for μ =
2 and λ1 = 0.1 for symmetric disorder case, with � = 0.3 (linear
system size L = 2000). Inset: Dynamical exponent z′ as a function
of λ2.
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approaches λ2,c = 2.490. From these data, we obtain ψν⊥ =
0.60(1), in good agreement with the value ψν⊥ ≈ 0.61 re-
ported in Ref. [24] for the diluted CP.

To summarize, our results for the effects of symmetric
disorder are in agreement with the predictions from the Harris
criterium, since ν⊥ = 0.734(4) for d = 2 in the clean sys-
tem, and therefore the disorder is relevant for the absorbing
phase transition [23]. Similar trends have been observed for
lower values of �, although larger crossover times toward the
infinite-random behavior are expected in such cases [23,24].

C. Asymmetric disorder

Now we investigate the effects of asymmetric disorder
in which disorder strengths is different in each sublattice.
Here the asymmetric disorder explicitly breaks the symmetry
between the two sublattices. Therefore, the active state always
exhibit different densities in both sublattices. This is exempli-
fied in Fig. 10 for �1 = 0 and distinct values of �2. We note
that even a very small asymmetric disorder (�2 = 0.05), the
AS phase is suppressed and only less disordered sublattice
is populated. Therefore, only a phase transition between the
inactive and the asymmetric phase is presented, whose critical
behavior is ruled by the less disordered sublattice. In all these
cases, we observe that at criticality, ρ ∼ L−β/ν⊥ and the life-
time τ ∼ L−z. For example, for �2 = 0.2, shown in Fig. 11,
we find β/ν⊥ = 0.81(2) and z = 1.75(3), in agreement with
the DP values β/ν⊥ = 0.797(3) and z = 1.7674(6). The in-
set shows the moment ratios of the order parameter, m =
〈ρ〉2/〈ρ2〉 goes to a universal value m = 1.33(1) at criticality,
in comparison to the known DP value m = 1.3264(5) [13].

D. Phase diagrams

Our simulation results for the effects of disorder are re-
sumed in the phase diagrams shown in Fig. 12. In Fig. 12(a),
the clean system exhibits, besides the absorbing phase, a
reentrant active asymmetric phase (with φ > 0) inside the
active symmetric phase. In Ref. [13], it was shown that the
active-absorbing phase belongs to the DP universality class,
while the AA-AS symmetry-breaking phase transition is
Ising-like.
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The effects of asymmetric disorder in the phase diagram
are shown in Figs. 12(b) and 12(c). We note that the AS phase
vanishes, and there are only two phases, the absorbing and the
AA phases. The universality class of the transition between
these phases is governed by the less-disordered sublattice. So,
while in Fig. 12(b), the phase transition belongs to the DP
universality class, in Fig. 12(c) it belongs to the universality
class of the diluted CP.

Finally, if the disorder is symmetric, as Fig. 12(d), we
note that the AA phase vanishes, and the absorbing-AS phase
transition belongs to the class of the diluted CP. This system
exhibits activated scaling and Griffiths phases as shown in
detail in Sec. III B.
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2 in all cases).

IV. CONCLUSIONS

In this work, we have investigated the effects of quenched
disorder in the phase diagram of the competitive contact
processes on sublattices. Through mean-field analysis and
Monte Carlo simulations, we have studied distinct types
of disorder, (i) a random homogeneous deletion of sites
(ii) an asymmetrical disorder, in which the disorder strength
is different in each sublattice. Interestingly, each one of the
above disorder prescriptions yields different outcomes.

We observe that in case (i), the disorder destroys the
asymmetric active phase and therefore the symmetry-breaking
phase transition. So there are only two phases, the ab-
sorbing and the active (symmetric) phases. The absorbing-
active phase transition exhibited belongs to the universality
class of the disordered contact process. Effects related to
an infinite randomness fixed point are observed, such as
activated dynamics and Griffiths phases in the subcritical
regime.

A distinct behavior is observed if each sublattice has a dif-
ferent disorder strength. In such a case, the symmetrical active
phase is not stable, and we observe a phase transition directly
from the active asymmetric phase to the absorbing phase. The
critical behavior in this case is governed by the sublattice
with less disorder; for instance, if one of the sublattices has
no disorder, then the phase transition will fall in the DP
class.

One important point to mention is that, in both cases
above, there is no symmetry-breaking phase transition. The
dilution works as a “random-field” disorder for the symmetry
breaking between the sublattices, since it locally breaks the
symmetry between the sublattices even when the disorder is
globally symmetric (i.e., when �A = �B). When the disorder
is asymmetric, it explicitly breaks the symmetry between the
two sublattices. Therefore in the present work the random-
field disorder suppresses the phase transition between the
active phases, since it breaks the symmetry between them.
This is in contrast to the behavior observed in the presence
of random-field disorder that locally breaks the symmetry
between two absorbing states [30–32], where nonequilibrium
phase transitions persist.

A natural extension of the present work would be the study
of the effects of temporal disorder [37–40] on the robustness
of the symmetry-breaking phase transition and in its critical
behavior. It is important to mention that, besides the theoret-
ical interest in the field of nonequilibrium phase transitions,
suppression of activity at the nearest neighbors of active sites
resembles biological lateral inhibition, known to be important
in the visual system of many animals [41]. Also, our work
can be useful to understand the effects of heterogeneities in
extended systems showing checkerboard pattern distributions
such as mutually exclusive species co-occurrences [42].
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