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Dynamic resettlement as a mechanism of phase transitions in urban configurations
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We study formation and growth of human settlements as thermodynamic phenomena and focus on critical
regimes associated with these processes. In doing so we develop a common thermodynamic perspective
on modeling urban structures driven by “fast” and “slow” underlying dynamics of human resettlement and
infrastructure development. The unifying perspective is illustrated by a comparative analysis of two qualitatively
and quantitatively different models of dynamic resettlement. We demonstrate that the considered urban systems
undergo phase transitions, irrespective of the particular details of the dynamic models. This suggests that the
observed critical behavior is intrinsic to resettlement process.
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I. INTRODUCTION

Development of a tractable quantitative theory explaining
and predicting formation and growth of human settlements,
as well as the associated critical phenomena, is an active
challenge [1,2]. Identifying conditions under which a sudden
change (i.e., critical behavior) in residential settlement pat-
terns may occur in response to a redistribution in employment
opportunities or labor market is a valuable practical and
scientific knowledge. Interpreting these insights in terms of
key socioeconomic parameters may inform a more effective
urban policy. At the same time, an increasing amount of high-
resolution data on modern urban and regional (re)settlement
motivates construction of more accurate models which take
into account stochastic nature of human interactions [3–6].
Some of these models draw on statistical mechanics in an
attempt to produce a rigorous description of coupled social
and economic dynamics [7–9].

The apparent need for quantification of social phenomena
has led to the emergence of econophysics and sociophysics
[8,10], comprising a fairly broad spectrum of rigorous meth-
ods and novel insights into quantitative description of social
systems, inspired by physics. In resolving several important
questions, these fields have expanded beyond the reach of
conventional methodologies offered by social sciences [8,10].
Successful applications of the methodology of physics to
social sciences include the analysis and modeling of financial
market microstructure [11,12], the financial market ecosystem
[13,14], the evolution of cooperation [15–20], opinion forma-
tion [21,22], traffic flows and pedestrian behavior [23–25],
and urban structure dynamics [3,26], among others. All of
these examples share similar traits, deviating from the perfect
rationality hypothesis, which is normally accepted in the
traditional economic models. Instead, typical sociophysical
models assume that the individual human decisions resem-
ble the stochastic behavior of particles in physical systems
[3,7,14,25]. These decisions, however, are not completely
random as they take into account the attractiveness of different
alternatives, in order to define the probability distribution
over the decision space. In particular, many sociophysical

models consider interactions between individuals and assume
that these interactions affect the process of decision making.
Abstracting away the perfect rationality often enhances the
analysis of bubbles and long-term inefficiencies manifested in
different financial and commodity markets [7,13].

Considering individual decision making is also valuable
in modeling the altruistic human behavior and cooperation,
which are explicitly represented in evolutionary game theory
[15,17,20]. Some notable examples include modeling vacci-
nation behavior in epidemiological settings [27–29], as well
as driving behavior in traffic flows [20,30–32].

Modeling urban structures dates back to the book by von
Thünen, The Isolated State [33], which demonstrated that
purely economical reasons can lead to the emergence of a
unique monocentric town surrounded by a rural area. Impor-
tantly, such pattern emerges as a result of decentralized self-
organization based on the competition between attractiveness
of the living place with respect to the working place. Fur-
ther research revealed the importance of spatial interactions
between individuals, households, and firms—placing these
interactions as a focal point of study in complex systems
theory and sociophysics [7]. Some of the prominent examples
of the so-called “spatial externalities” which take into account
transportation costs demonstrated phase transitions and crit-
ical behavior (e.g., transition between monocentric and poly-
centric cities [9,34,35], as well as symmetry breaking [36]).

In this paper we follow the common sociophysical ap-
proach and consider the resettlement process as a collective
result of human individual decisions, who are driven by
the spatial attractiveness of their choice of residence and
the transportation cost between the residence and the work
place [3,34,35,37]. The exact interpretation of these driving
factors in the literature depends on the specific modeling
framework, hindering attempts to derive a systematic generic
theory. Therefore there is a need to develop a unifying
statistical-mechanical perspective to model dynamic resettle-
ment based on residential attractiveness and transportation
costs. We address this question and base our approach on
two methodologies which analyze human resettlement from
different perspectives, examining their respective impacts on
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urban development and, in particular, on formation of resi-
dential suburbs. One of the models combines the equilibrium
thermodynamic principle of maximum entropy and the dy-
namic Lotka-Volterra mechanism [38–40]. The other model is
based on the concepts of the driving force in nonequilibrium
thermodynamics [21].

The paper is organized as follows. In Sec. II we review
the two methodologies, Boltzmann-Lotka-Volterra (BLV) and
demographic balancing equation (DBE). We then extend them
by providing a unifying framework to model dynamic reset-
tlement for a given spatial structure of the employment. In
particular, we assume that the resettlement activity is driven
by two factors: attractiveness of the residential location and
the cost of commute between the place of residence and
employment. In Sec. III we analyze the stationary population
of a hypothetical city which consists of two or three suburbs.
The results show that irrespective of the particular model
used we observe phase transitions between different urban
configurations. Finally, in Sec. IV we discuss possible reasons
for this universality in the thermodynamic context and their
applied significance.

II. METHODOLOGY

Consider an isolated city consisting of N suburbs. We
assume that each individual working in the suburb j can freely
choose a location to settle in, based on the attractiveness Wi of
the location i itself and the travel-to-work cost ci j . At every
moment we can identify the number of people working at j
and living at i, which is represented by the fraction of the
population ρi j (

∑
i, j ρi j = 1). We will also refer to ρi j as the

density distribution. The occupation of the agents is assumed
to be fixed (which means that the nj ≡ ∑

i ρi j , the number
of people working in the suburb j, is constant) whereas the
place of residence may vary and the agents can change it
without any restrictions. While agents may change the place
or residence, the matrix ci j of the travel-to-work costs for
the entire city remains fixed: the agents optimize their own
travel-to-work route by choosing the most efficient location i.
The urban configuration is determined by a coevolution of the
main variables, attractiveness Wi(t ), and transport flow ρi j (t ).
Each of the approaches mentioned above provides its own
model for this evolution, which is discussed below.

A. BLV model

The Boltzmann-Lotka-Volterra methodology arose from
the idea to estimate a wide class of urban socioeconomic dy-
namics, including transport flows, distribution of retails cen-
ters, etc., using the Maximum Entropy principle, coupled with
the Lotka-Volterra model of population dynamics [3,38,41]
[in this paper we follow the original naming convention [3,40]
and call Eq. (6) the Lotka-Volterra component despite the
apparent distinction from the classical Lotka-Volterra model
[42]. For instance, in the study of retail system redistribution
[38], it was assumed that retail centers are growing (or declin-
ing) with rates which are proportional to the amount available
for investment, while being constrained by the dependence of
traffic distribution on attractiveness and travel costs. Although
this analysis contained important insights about critical phe-
nomena in urban systems, the technique treated the exterior
of the system as an infinitely large reservoir that already

reached its equilibrium. Nevertheless, the BLV formalism
attracted a lot of attention, including the investigation of the
equilibria stability using Poincare-Hopf index theorem [39],
which demonstrated a variety of equilibria. Yet, because of
the internal complexity of the model, the most interesting
results were proven for a two-location setup only. Overall,
many qualitative properties of the most general BLV model
remain underexplored, except for some particular cases (see,
e.g., Ref. [40], where bifurcations were analytically derived
for the racetrack economy). Modification of the BLV model
can also accommodate stochastic noise in the settlement
process [4], which employs stochastic differential equations.
This modified model has the advantage that it predicts a
distribution of urban configurations, rather than a particular
one, which is more convenient for model calibration and
analysis of real data. There have been several attempts to
connect this approach with real data [43–46]. It was shown
that this model can, in general, demonstrate critical behavior
depending on the parameters of the rent cost function and level
of attractiveness of the retail objects size for consumers, which
leads to the phase transitions between (1) retail system with
large dispersed retail objects in peripheral locations and (2)
small clustered objects located in central areas. Furthermore,
it was demonstrated that the BLV model could be useful in
optimization of the network structure of bank branches. Apart
from that, there were attempts to place the BLV model into
the discourse of conventional economic literature [40,47].

Originally, the BLV approach [3] was applied to the spatial
distribution of retail activity. Here we use it to describe a
resettlement process. The model consists of two components.
The first one defines the traffic flows distribution for a given
structure of economic activity, transportation costs, and at-
tractiveness of suburbs. These traffic flows are determined by
the maximum entropy argument which results in a Boltzmann
distribution. The second component determines the dynamics
of the attractiveness of the residential suburbs competing for
the attention of the agents using the analogy with biological
species competing for the same resource.

The main physical part of the BLV approach is the max-
imum entropy principle, which states that stationary prob-
ability distribution of a thermodynamic system maximizes
its entropy under certain constraints. Following the above
approaches we view a city with its population as a thermo-
dynamic system, so that the distribution of human settlement
satisfies a similar principle. In particular, we assume that the
traffic flows ρi j maximize the “resettlement entropy,”

H[{ρi j}] = −
N∑

i=1

N∑
j=1

ρi j log ρi j, (1)

subject to the set of constraints
N∑

i=1

ρi j = n j, (2)

N∑
i=1

N∑
j=1

ρi j logWi = logW tot, (3)

N∑
i=1

N∑
j=1

ρi jci j = ctot, (4)
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where W tot and ctot can be interpreted as the average values
of the attractiveness and transportation cost, respectively.
Equation (2) is a normalization constraint which ensures that
number of people working at suburb j is constant. The second
and the third constraints are analogous to the energy constraint
in the thermodynamic canonical ensemble.

The problem of maximizing the entropy H given the con-
straints (2)–(4) results in the Boltzmann distribution. Specif-
ically, the number of people ρi j working at the zone j and
living at the zone i is determined by the attractiveness of the
destination Wj and transportation costs ci j as follows:

ρi j = n j

Z j
W α

i e−βci j , (5)

where Zj = ∑N
i=1 W α

i e−βci j is the normalizing factor.
The parameters α and β are the Lagrange multipliers of the

maximization procedure. In the context of urban configuration
they are interpreted as the intensity of attractiveness and the
intensity of the transportation costs respectively. The values
of these parameters determine the actual urban configuration.

Equation (5) needs to be complemented by an evolution
equation for the attractiveness Wi of a suburb. Typically,
more populated suburbs have better chances to become more
attractive. We adopt the original model [38], which states
that the evolution of the attractiveness is governed by Lotka-
Volterra-like equations:

dWi

dt
= ε(ρi − KWi )Wi, (6)

where ε and K are the parameters of the evolution and ρi =∑N
j=1 ρi j is the total population of the suburb i.

B. Demographic balancing equation approach

An alternative approach is based on a form of demographic
balancing equation (DBE) and describes the migration flow
explicitly. It is analogous to the mass balance equation (or,
in general, the continuity equation) in fluid mechanics [48]
and expresses the idea that the corresponding quantity of the
entire system (total mass in the case of flowing fluid and the
total population in our case) is conserved. It has been adopted
and widely used in physics and chemistry [49], in particular,
in nonequilibrium thermodynamics [50] and chemical engi-
neering [51].

From the physical perspective, the fluid flow is the result
of the concentration inhomogeneity, which is due to the
inhomogeneity in the chemical potential. The system tends to
the equilibrium state with uniform chemical potential, which
results in the net molecular flow from the regions with high
chemical potential to the region with low chemical potential.
A similar perspective can be adopted in the case of pop-
ulation redistribution. Interpreting people as molecules, we
allow their “chaotic” movement, which can be identified with
daily home-to-work travels. If these travels are costly, people
will tend to redistribute their residential (or work) place to
minimize their costs. The state of minimal costs corresponds
to the equilibrium state with uniform chemical potential, and
residential redistribution corresponds to the net people flow
from the regions with high “demographic” potential to the
regions with the low “demographic” potential. In this paper

we use the notation of “attractivenes,” which can be identified
with the negative of this “demographic” potential.

The demographic balancing equation formulates the bal-
ance of the population for every region: change (increase or
decrease) of the population in a region happens due to its
migration to and from the other regions. In our approach
we do not model births and deaths, so the total popula-
tion of all regions together is conserved. In the context of
population redistribution, this approach has also been used
extensively [52]. In particular, Weildlich and Munz [26] in-
troduced a consistent model of an isolated social system
consisting of different groups of people engaged in different
occupations. The attractiveness of each particular job is a
function of population density, so the employees can change
their occupation and migrate depending on the profitability.
The complexity of the flow structure makes an analytical
investigation of these models very difficult, and the research
in this direction has been sparse [53]. Numerical simulations
demonstrate that the model is able to reproduce such spatial
patterns as agglomeration of industrial activities, clustering of
industrial towns and attraction of agricultural activities to the
boundaries of industrial towns [26]. A microlevel description
used in this approach also demonstrates critical behavior and
is quite conventional in population dynamics [54–56], as well
as in agent-based simulations [57]. Similar techniques were
used [58] to provide microlevel justification for the migration
processes in the baseline model [59] from the new economic
geography.

Our analysis extends the original approach based on the
transition rates [26,60,61]. Unlike the original model, we dis-
tinguish between the locations of employment and residence.
In particular, we assume that each individual chooses their
residence randomly but the probability to relocate from a
suburb k to a suburb i depends on i’s relative attractiveness
and its advantage in terms of travel-to-work cost. Following
the physical analogy, we assume that resettlement described
by the dynamics of population structure ρi j (t ) follows the
deterministic transition rate equation:

dρi j

dt
=

∑
k �=i

[rk→i, jρk j − ri→k, jρi j]. (7)

This means that the net change of transport flow (dρi j/dt)
between the suburbs i and j is represented by the difference
between the overall migration rate to (rk→i, j) and from (ri→k, j)
the residential suburb i among people who work in j.

Unlike the BLV approach, in this model we assume that
attractiveness of a suburb i depends explicitly on the pop-
ulation of this suburb ρi = ∑N

j=1 ρi j . It reflects the idea
that people avoid both underpopulated (which usually means
poor infrastructure) and overpopulated (which usually means
overloaded infrastructure) areas [61]. Formally, this implies
that there exists a certain population of a suburb at which
its attractiveness reaches its maximum value. The particular
shape of the function Wi(ρi ) is not important for this study, and
we choose this function following the original approach [61]
to be a Gaussian function, centered around a certain nonzero
value ρ0 of the population (which is the same for all suburbs):

Wi = exp[−(ρi − ρ0)2]. (8)
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Furthermore, we assume that people working at the suburb
j and living at the suburb k move to another suburb i to
resettle with intensity rk→i, j which depends on the difference
in transportation costs and relative attractiveness of the suburb
i over the suburb k:

rk→i, j = μ

(
Wi

Wk

)α

e−β(ci j−ck j ). (9)

The parameters α and β have the same meaning as in the BLV
model, although here they do not come from a maximization
procedure. If the transportation costs is zero, the transition rate
in Eq. (9) has exactly the same functional form with respect
to the population levels as the one in the original model [61].

Similarly to the BLV model, the concurrent evolution of
ρi j (t ) and Wi(t ) is defined by two equations: a dynamic
equation (7) and a static equation (8). The dynamic equation
can also be formulated in terms of Wi:

dWi

dt
= ∂Wi

∂ρi

N∑
j=1

∑
k �=i

[rk→i, jρk j − ri→k, jρi j]. (10)

However, unlike (6), in general case, the dynamics of Wi

depends on population distribution ρi j but not on the total
number of residents ρi (i.e., the occupation of residents has
an impact on Wi which is not the case in the BLV model).

C. Common perspective

From the perspective of statistical mechanics each of these
two approaches can be interpreted as a combination of “fast”
and “slow” dynamics of the underlying human resettlement.
However, the interpretation of which process is fast and which
one is slow is not the same in these approaches. One of
the purposes of this paper is to reveal the role of “fast” and
“slow” processes in the statistical mechanical description of
the dynamic evolution of human resettlement.

In particular, the use of the maximum entropy principle
together with the Lotka-Volterra dynamics can be interpreted
as a combination of “fast” and “slow” dynamics in the fol-
lowing way. Building transportation infrastructure is typically
a slow process, which happens over years. The evolution of
the infrastructure depends both on the existing infrastructure
and the population distribution. This process is described by
the Lotka-Volterra model and is responsible for the “slow”
dynamics. In contrast, people choose the place of living based
on the apparent attractiveness of the place and transportation
infrastructure. Because of their mobility they can accom-
modate the changes in the attractiveness and transportation
and relocate almost immediately. It can be said that at ev-
ery moment in time the population distribution is such that
it maximizes some gain function, following the maximum
entropy principle. As this happens almost instantaneously, the
maximum entropy principle can be said to be responsible for
the “fast” dynamics.

The use of a demographic balancing equation brings differ-
ent perspective on the “fast” and “slow” processes. In partic-
ular, human reaction to economic incentives is considered to
be instantaneous, and the attractiveness of a place for living is
determined by its population. It can be argued that the devel-
opment of the infrastructure is governed by “fast” dynamics.

In contrast, the actual migration of population is determined
by the relative differences within the infrastructure and takes a
longer time. It makes the process of resettlement analogous to
a relaxation process, which is governed by “slow” dynamics.

Below we identify common elements of the mathematical
framework, so that they could be analyzed under the same
perspective. We next reveal that our approach leads to exis-
tence of different phases of urban configuration. In particular,
depending on the combination of the attractiveness of a living
place and costs of transportation between the living and the
working place, the population density can be either low or
high. In particular, a small change of the control parameters
may lead to abrupt changes in the density configuration, which
is an indication of a phase transition. This can be seen as
a surprising result, since the underlying “fast” processes of
each of the approaches do not imply phase transitions. In
particular, the principle of maximum entropy in physics is
formulated for homogeneous systems only. It suggests that
it is the combination of “fast” and “slow” dynamics, which
leads to existence of different phases. Further discussion on
these aspects concludes the paper.

To illustrate our comparison we use the stability diagrams
for a typical suburb of an infinitely large city presented
in Fig. 1 in the original paper [38]. Here we use them as
an illustration only and consider the most interesting case
with multiple equilibria only, but the same analysis could
be performed for the other cases as well. Our comparison is
conducted for the case of zero transportation costs only and
is depicted in Fig. 1. The solid curve represents the state of
the suburb, which is described by a relation between W and
ρ for each suburb [Eq. (5) in the BLV model, Eq. (8) in the
DBE model]. Curve (5) has a vertical asymptote ρi = 1 [38].
The dashed curve represents the stationary condition, which
is described by

dWi/dt = 0 (11)

in the BLV (see the original paper [38] for explanation of the
shape) and dρi/dt = 0 in the DBE [which is derived in the
following paragraph; see Eq. (14)].

Assuming that β = 0, i.e., the occupation of residents does
not matter, Eq. (7) is reduced to

dρi

dt
= μ

∑
k �=i

[
ρk

(
Wi

Wk

)α

− ρi

(
Wk

Wi

)α]
. (12)

Assuming, in addition, that the number of suburbs is very
large and the impact of each particular suburb is negligible,
Eq. (12) can be written as

dρi

dt
= μ

[
ρ∞

(
Wi

W∞

)α

− ρi

(
W∞
Wi

)α]
, (13)

where W∞ and ρ∞ are in general functionals of the entire
distribution {ρk}, which may be considered constant for suf-
ficiently large systems. It yields that the steady-state solution
satisfies set of equations ρ∞(Wi/W∞)α = ρi(W∞/Wi )α . Since
ρ∞ and W∞ are the same for each i, it is straightforward to
obtain an equation describing the set of possible steady states
with respect to both ρi and Wi:

ρi = 1

Z
W 2α

i , (14)
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FIG. 1. Stability diagram for (a) the BLV [38] and (b) the DBE
models with zero transportation costs. The solid lines are defined
by Eqs. (5) and (8), respectively. The dashed lines are defined by the
steady-state condition dWi/dt = 0 in the BLV model and dρi/dt = 0
in the DBE model. The dotted lines are vertical asymptotes ρi = 1.

where Z = ∑N
k=0 W 2α

k = W 2α
∞ /ρ∞ is the normalizing factor.

Hence, the curve dρi/dt = 0 has the same shape as the solid
curve (5) in the BLV model whose shape is explained in the
original paper [38].

As the suburb evolves, the point, which represents its state,
moves along the state curve. The direction of this motion
is shown by the arrows and is determined by the sign of
the right-hand side of the equation representing the “slow”
dynamics [Eq. (6) for BLV and Eq. (7) for DBE]. In particular,
for the BLV system, if the state curve is above the stationary
curve, then the suburb moves down, and otherwise moves up.
Similarly, for the DBE system, if the state curve is above
the stationary curve, then the suburb moves to the right, and
otherwise to the left.

The points where the state curve crosses the stationary
curve are the equilibrium points. Depending on relative po-
sition of the curves each model may have either one or two
stable equilibria. In the BLV model the amount of equilibria
depends on α and K [38]: if α < 1 there are two steady states

(only one of them is stable); if α > 1 and K is below the
certain threshold, there are three equilibria (two of which are
stable and one is unstable); and if α = 1 and K is below
the certain threshold there are two steady states (only one of
them is stable). There might be a degenerate situation with
a single trivial steady state ρi = 0, Wi = 0 if the curves do
not intersect: in this case this analysis is not applicable as it
means that there exists a particular suburb i whose influence
on others must not be neglected, which contradicts the main
assumption of this analysis. In the DBE model the amount of
equilibria depends on ρ0: if ρ0 is moderate, there are three
equilibria (two of them are stable). Otherwise, for sufficiently
small or large ρ0, there is only one stable equilibrium. The
exact range of conditions depends, in turn, on the value of
α. Here we consider the most interesting case with multiple
equilibria (Fig. 1) although our comparison remains legitimate
for the single equilibrium case.

The case of three steady states is depicted in Fig. 1 for
both models. Two of those three states are stable (full circles)
and one (empty circle) is unstable. Despite this similarity,
there are two significant differences between the qualitative
behavior of BLV and DBE systems. First, nonmonotonicity of
attractiveness curve (8) in the DBE model allows decrease of
the population when the attractiveness of the suburb increases,
which is not the case in the BLV model. This happens because
the steady-state condition for the BLV model, dWi/dt = 0,
could be reduced to a linear equation with respect to ρi and Wi

and, hence, Eq. (6) does not accommodate saturation effect
captured by the curve (8) in the DBE model. Second, in the
BLV model the first stable steady state is ρi = 0 and Wi = 0
regardless of the value of α and other model parameters,
which is not the case in the DBE model. This is the case for
any number of suburbs, in particular, when there are only two
suburbs as will be evident in Sec. III A.

The differences in qualitative behavior of the BLV and
DBE models suggest that these two approaches are not re-
ducible to each other. Despite these differences, the above
analysis suggests that it is still possible to see a common
perspective in the BLV and DBE models. In particular, both
models comprise the static, or “fast” [Eq. (5) in the BLV
model and (8) in the DBE model], as well as dynamic,
or “slow” [Eq. (6) in the BLV model and (7) in the DBE
model] components. In particular, we see that both the “fast”
dynamics in the BLV approach and the “slow” dynamics in
the DBE approach have a thermodynamic meaning. As we
will see in the following section, the results produced by the
two approaches are nevertheless comparable. This suggests
that both approaches are parts of a larger framework, which
considers thermodynamics of the urban evolution at different
levels.

III. RESULTS

Here we present the numerical solutions of the models
for different values of the control parameters. These are the
stationary values of the population densities, which solve the
corresponding system of differential equations when t → ∞.
The system to solve is the set of equations for each suburb:
Eq. (6) together with Eq. (5) for the BLV model, and Eq. (7)
together with Eq. (8) for the DBE model. To analyze the
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typical behavior we start with the number of suburbs N = 2,
extending further the analysis to N = 3.

As we will see below, even in this simplest case of a het-
erogeneous city, we observe several phases of urban structure.
For the city of two suburbs we have two densities ρ1 and ρ2,
which satisfy the normalization condition ρ1 + ρ2 = 1, so it
is sufficient to trace only one independent density ρ ≡ ρ1.

In all simulations (except in Sec. III C) the working config-
uration was fixed as n1 = 0.6, n2 = 0.4, so that the first suburb
has 60% of all work places and the second suburb has 40% of
all work places. For the BLV model we used K = 1 and ε = 1,
while for the DBE model we used ρ0 = 1 and μ = 1.

A. Typical urban configurations

We illustrate typical dependencies of the stationary popula-
tion ρi on the attractiveness intensity α in Figs. 2 and 3 for the
BLV and DBE models respectively. The three subfigures on
each of the figure differ in the values of transportation cost
intensity β and the initial living configuration with respect
to working configuration. In particular, despite the working
configuration being fixed, the relative living configuration
determines the effect of transportation costs.

A qualitative behavior of the solution can be illustrated in
the case of zero transportation costs [case (a) in both figures],
when we look at the variation of the stationary attractiveness
or density with respect to the variation of the attractiveness
intensity α, provided the transportation cost intensity β = 0. If
α is less than some critical value α∗, the solution is symmetric,
ρ1 = ρ2 = 1/2, so the density distribution is homogeneous.
For large α, the symmetry breaks, and the stationary popula-
tion density ρ1 depends on the value of α. In the BLV model
the critical level of α∗ = 1 [39]. In the DBE model the critical
value α∗ depends on the saturation parameter ρ0 measured in
the units of the total population as

α∗ = 1

2ρ0 − 1
. (15)

In other words, for low values of α, the neighborhoods are
moving towards the same level of population and attrac-
tiveness. But if α is large, the symmetry between suburbs
breaks and the initially large suburb becomes larger while
initially small suburb becomes smaller. It is worth noting that
BLV model suggests that the smaller suburb becomes com-
pletely depopulated, while according to the the DBE model
the smaller suburb retains nonzero population. This behavior
reflects the qualitative analysis in Sec. II C. There we also
saw that one of the stable solutions of the BLV model implies
zero population of one of the suburbs, while the corresponding
stable solution of the DBE model is nonzero and depends on
the values of the parameters. Because of this when α = α∗ the
stationary population experiences a jump in the BLV model,
while it remains continuous in the DBE model.

In the case where transportation costs do matter [cases (b)
and (c) in each figure] the quantitative pattern becomes more
complicated. First, we note that no homogeneous distribution
of the population is possible: one suburb will always be larger
than the other one, regardless of the attractiveness intensity
α. This is a consequence of the “interactions” between the
suburbs by means of nonzero transportation cost. Second, we

FIG. 2. Density of both suburbs as a function of the attractiveness
intensity, as produced by the the BLV model for different initial
configurations: (a) W (0) = (0.6, 0.4), β = 0; (b)W (0) = (0.6, 0.4),
β = 1; (c) W (0) = (0.4, 0.6), β = 1.

observe two different modes of the stationary density distri-
bution. In case (b), the distribution of the initial attractiveness
(or the population) of the residential suburbs correlates with
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FIG. 3. Density of both suburbs as a function of the attractiveness
intensity, as produced by the the DBE model for different initial
configurations: (a) ρ(0) = (0.4, 0.6), β = 0; (b) ρ(0) = (0.6, 0.4),
β = 1.0; (c) ρ(0) = (0.4, 0.6), β = 1.0.

the distribution of the work place. In contrast, in case (c),
the distribution of the initial attractiveness (or the population)
of the residential suburbs anticorrelates with the distribution

of the work place. If the distributions correlate, then the
urban configuration reminds the one observed in case (a):
the initially large suburb becomes larger while the initially
small suburb becomes smaller. The value of α determines
how far the populations of the suburbs diverge: for α < α∗
the divergence is small, while for α > α∗ it is large. Similarly
to case (a), the behavior of the solution is different at α = α∗:
dρi/dα experience jumps at his point in the BLV model, while
they are continuous in the DBE model. Similarly to case (a),
the reason for this is the fact that one of the stable solutions in
the BLV model is exactly zero when α � α∗.

The most interesting behavior happens in case (c). Here
we observe the second threshold value α∗∗, which determines
which particular suburb will get most of the population. For
α < α∗∗ the largest residential suburb is the one with more
jobs, while for α > α∗∗ the largest residential suburb is the
one which was larger initially. This illustrates the competition
between the residential attractiveness and the cost of trans-
portation from living to working place.

B. “Attractiveness-transportation” phase diagram

We next investigate the urban configuration when both the
attractiveness intensity and the transportation cost intensity
vary. The results are presented in Figs. 4–7 in the form of
a phase diagram, where the color indicates the density of
the first suburb. The cases studied in the previous section
correspond to the vertical lines on the diagrams.

The diagrams are built for the initial configurations, which
anticorrelated with the fixed work configuration, i.e., for the
BLV model W (0) = (0.4, 0.6) and for the DBE model ρ(0) =
(0.4, 0.6). In this case we can distinguish three different
phases with respect to density configuration.

For the BLV model these phases are (1) nearly homo-
geneous distribution, (2) monocentric residence with center
in suburb 1, and (3) monocentric residence with center in
suburb 2. The transitions between these phases are sharp and
correspond to the threshold values α∗ and α∗∗. We point
out that while α∗ ≈ 1 and is independent of β, the value of
α∗∗ varies with β. This is expected because the transition at
α∗∗ is a result of the competition between attractiveness and
transportation cost intensity, with the latter being controlled
by β.

For the DBE model the three phases are (1) nearly ho-
mogeneous distribution, (2) intermediate distribution, and (3)
monocentric residence with center in suburb 2. We observe
that the transition between phase 1 and phase 2 in this case is
smooth, while the transition between phase 2 and phase 3 is
still sharp.

If the initial configurations correlate with the fixed work
configuration, we observe only two phases (not shown here),
which correspond to phases 1 and 2 in the case of anticorre-
lated initial configuration.

C. Correlation between residential and working configuration

Here we investigate how the residential activity varies with
respect the employment activity, varying the proportion of
work places in the suburbs. As we have only two suburbs,
this variation is controlled by a single parameter n1, referring
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FIG. 4. Density of the first suburb as a function of the attractive-
ness intensity and the transportation cost intensity, as produced by
(a) the BLV model and (b) the DBE model.

to the fraction of work places in suburb 1. In both models
the critical transition happens only if the initial residential
distribution anticorrelate with the fixed distribution of em-
ployment activity. This means that if n1 > n2 then ρ1(0) <

ρ2(0) and vice versa, if if n1 < n2 then ρ1(0) > ρ2(0). The
phase diagrams for both BLV and DBE models are shown
in Fig. 5, and both reveal a critical point. Furthermore, both
diagrams feature a phase transition between the phases of
monocentric residence in suburb 1 and suburb 2 (either black
or white areas) for high values of attractiveness intensity.
The discontinuous jump between tho phases is present only
if n1 > n2 [and correspondingly ρ1(0) < ρ2(0)]. The point
n1 = n2 is the critical point.

Another perspective on the phase transitions is shown in
Fig. 6. First, a discontinuous transition happens only if the
initial residential attractiveness distribution does not correlate
with the distribution of the business activity. Second, the

FIG. 5. Stationary population of suburb 1 in (a) BLV model and
(b) DBE model as a function attractiveness intensity and the fraction
of population working in suburb 1; β = 1.

threshold value α∗∗ goes to infinity as the initial residen-
tial attractiveness is homogeneously distributed. Third, the
asymptotic behavior at the vicinity of zero is different and if in
the BLV model the initial attractiveness of the neighborhood
is small, the population tends to zero regardless of the level of
α which is not the case in the DBE model.

D. “Attractiveness-total population” phase diagram

Another important distinction between the models is
shown in Fig. 7. Since DBE model takes into account sat-
uration effect in the relation between ρi and Wi, it is fairly
intuitive that the DBE solution demonstrates certain symmetry
around the saturation point, which is not the case in the BLV
model. This is basically the main difference in qualitative
results of the considered model. However, it is not a feature
of the modeling framework but is a consequence of the
difference in the domain-specific assumptions.
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FIG. 6. Stationary population of of suburb 1 in (a) BLV model
and (b) DBE model as a function of attractiveness intensity and the
initial residential configuration.

E. Three suburbs

Although the outcomes of both models are qualitatively
very similar in two-dimensional setup, it is not the case
anymore if the number of suburbs is larger than two. In
particular, in the case of three suburbs the DBE model may
have multiple critical transitions (depending on the initial
conditions) whereas the BLV model does not. An example
is given in Fig. 8 where the heat maps depict stationary
population of the first neighborhood in the DBE and BLV
models with respect to changes in α and β.

IV. DISCUSSION

In general, the significance of the presented results is
threefold. First, we have developed a common perspective
on two different models formalizing an evolution of urban
structure. Although both models are based on thermody-
namic arguments, they have not been shown to be mutually

FIG. 7. Stationary population of suburb 1 in (a) BLV model and
(b) DBE model as a function of attractiveness intensity and the total
population.

interchangeable, focusing on different aspects of the urban
evolution. We demonstrated an analogy between the two
models and identified the thermodynamic roles of their com-
ponents. Second, we highlighted the importance of the dy-
namics in the urban structure. In particular, we discussed the
role of the slow and fast processes which contribute to the
evolution of the residential structure. Finally, we have shown
that the models developed under the common thermodynamic
perspective may produce abrupt changes in the residential
structure, i.e., phase transitions. Specifically, small changes in
the intensity of either residential attractiveness or transporta-
tion cost may result in a large swing of the actual residence.
Both these intensities represent the city as a whole rather than
at the level of specific suburbs.

The two considered approaches produced similar results
in terms of the temporal evolution of the urban structure
as well as its phase diagram. In particular, the numerical
simulations demonstrated that both models exhibit similar
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FIG. 8. Stationary population of the first neighborhood in
(a) BLV model and (b) DBE model for different levels of α

and β: (a) n = (0.667, 0.167, 0.167), W (0) = (0.2, 0.6, 1.0), K = 1,
ε = 1; (b) n = (0.667, 0.167, 0.167), ρ1(0) = 0.2, ρ2(0) = 0.6,
ρ3(0) = 1.0, ρi j (0) = njρi(0). Distance matrix is formed as follows:
cii = 0, ci j = 1 if i �= j.

phase diagrams, despite being not reducible to each other and
the reliance on different domain assumptions. This suggests
that the evolution of a real city may be governed by fundamen-
tal sociophysical principles which are model-independent. A
proper validation of this hypothesis is the subject of further
research.

Both models contain two different concepts of equilibrium,
a thermodynamic one and an economic one, and both equilib-
ria are reached if system is in its steady state. In other words,
if the system is in its steady state, it does not matter whether
the thermodynamic evolution is slow and the economic one is
fast or vice versa. It then can be argued that thermodynamics
is essential for both models.

Another important observation is that the discontinuous
transition in both models is generated in presence of a dy-
namic component (or “slow” dynamics). In both models the

fast dynamics generate a manifold matching attractiveness,
transportation costs, and population, while the slow dynam-
ics generate a movement along this manifold. Crucially, the
direction of motion (as well as the point of convergence)
depends on the combination of suburb attractiveness and
transportation cost between the suburbs. In particular, when
the attractiveness of a suburb is large, the preferential suburb
or residence depends mainly on the attractiveness. In contrast,
when the transportation cost is high, people tend to reside
close to work, minimizing the transportation cost, as expected.
An interesting dependence is also observed with respect to
the distribution of the initial population, since the population
depends on the attractiveness of the suburb. In particular, if
the initial population distribution correlates with the employ-
ment distributions, then depending on the transportation costs
intensity the stationary population distribution may correlate
or anticorrelate with the employment.

It is worth noting that similar phenomena were described
in Ref. [35] in the context of polycentric transition. In our
case, we could interpret a configuration as polycentric if
the residents are evenly distributed among the suburbs, and
monocentric if only one neighborhood is populated. Such a
transition appears in both of the considered models as well,
but characteristics of those transitions do not coincide: in
Ref. [35] the number of activity subcenters increases as the
total population goes up, which is not the case either in
the BLV model or in the DBE model (see Fig. 7). In the
BLV model monocentricity or policentricity is independent
of the total population, while in the DBE model, if α is
sufficiently large, the configuration is duocentric for small
and large values of the total population, and monocentric
if the total population is at the vicinity of saturation point.
However, it is natural to hypothesize that this contradiction
is not caused by the difference in the modeling framework but
by the difference in the assumptions made about attractiveness
and transportation costs. While the model in Ref. [35] reflects
the saturation with respect to a particular traffic flow, the DBE
model reflects the saturation with respect to the population in
a particular suburb, and in the BLV model both phenomena
are neglected. Resolving this hypothesis remains a subject of
future research.

The presented results may have applied significance. De-
spite the fact that a typical city has a rich structure, consisting
of multiple suburbs and complex transportation network, in
many cases it can be viewed as an agglomeration of two large
regions, which are separated due to geographical or historical
reasons. The examples of such pairs include central business
district (or downtown) and all residential suburbs (Sydney,
Melbourne, Los Angeles, Oslo), left and right banks of a
city divided by a river (Sydney, Budapest, Paris, London,
Seoul), and island and mainland (Hong Kong, New York, San
Francisco). The numerical simulation performed in this paper
shows that abrupt changes in the urban population structure,
given small changes in preferences of the residents of such
cities, may happen even in a simple two-region layout (for
some important examples of similar vulnerabilities in other
real ecological, technological, and socioeconomic systems,
see Refs. [62–65]). Furthermore, our modeling suggests a
clear insight into how to make such a transition smooth,
while avoiding negative consequences of the abrupt transition
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such as an overloaded transport system, abandoned objects
of infrastructure, housing crises. For example, a possible
response to a critical regime could be to make the areas with
low business activity more attractive for doing business. This
insight is a straightforward consequence of Fig. 5: if urban
planners expect a decline in residential attractiveness intensity
(parameter α in the model), the best response is to change the
employment structure by increasing the number of jobs in one
suburb (parameter n2 in the model) and decreasing them in
the other suburb (parameter n1 in the model) using available
incentivizing mechanisms. Such decisions could help to avoid

depopulation of the residential neighborhoods and preserve
local infrastructure.
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