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Concepts of statistical mechanics as well as other typical tools of physics have been largely used in the analysis
of several aspects of social systems, for instance, in politics. In this work, we examine parliamentary presence
utilizing data from the sessions of the 49th–54th Brazilian Chambers of Deputies (24 years, 1991–2015). For
each federal deputy, we construct a random walk by considering their presence in a session as a step of unitary
length and their absence as one of zero length. By using this approach, we put in evidence a quantitative
description of the dynamics of the system. More specifically, we identify an anomalous diffusive process that
corresponds to a robust superdiffusion, well identified with a ballistic regime. In addition, for each legislature and
encompassing all its sessions, the system is modeled by a beta probability distribution, where the parliamentary
presence scales with the number of sessions.
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I. INTRODUCTION

Ordered structures in several levels are common in natural
and social systems. Considering the latter, quantitative aspects
of such structures have been investigated via typical tools of
physics. Notably, a growing number of studies that deal with
data have been facilitated by the increasing ease of accessing
databases. Politics is an example of a social context that
contains large databases and manifests a hierarchical complex
structure, as parties, elections, and executions of activities by
those elected. For instance, allometric (power-law) behaviors
have been used to analyze party affiliations [1], candidature
for council and mayor [2], and financial support to political
campaign [3].

Focusing on parliamentary elections in several countries, a
series of advances related to distribution of votes have been
punctuated, including power laws, generalized Zipf’s law,
and log-normal distributions [4–10]. In this context, models
such as Sznajd [11–15] and entropic and correlation aspects
[16–19] were also studied.

Vote distributions were also investigated concerning polls
[20–22] and presidential [23–25] and mayoral [26] elections.
Other aspects of plurality voting were conducted using turnout
rate statistics [27]. Referenda and government approval rat-
ings have also been analyzed [28–30]. Moreover, consider-
ing political scandals, empirical investigations were made to
identify fraud in elections [31–33] and networks of corruption
[34].

Concerning the executions of activities in politics, several
analysis can be conducted. In this work, we are going to
consider one basic feature of a democratic state: the pres-
ence in parliamentary sessions, where laws and projects are
discussed and voted on. Here, we employ a random walk
approach to investigate empirical diffusive-like aspects of
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the parliamentary presence in the sessions of the Brazilian
Chamber of Deputies.

The organization of the article is as follows: Section II
gives details about the data on parliamentary presence, Sec. III
explains the random walk constructed from the data, Sec. IV
shows the results of our analysis, and, finally, our conclusions
are given in Sec. V.

II. DATABASE

The National Congress of Brazil is bicameral, composed of
the Chamber of Deputies (513 seats) and the Federal Senate
(81 seats). Federal deputies are elected to four-year terms,
coinciding with a legislature, whereas senators are elected
every eight years. In order to investigate diffusive aspects of
the parliamentary presence, we restrict our attention to the
Brazilian Chamber of Deputies. We focus on six legislatures
(49th–54th), corresponding to 24 years (1991–2015). The data
were freely obtained from the official site of the Brazilian
Chamber of Deputies [35]. In this investigation, for each
parliamentary session, the presence or absence of each federal
deputy is computed. Figure 1(a) illustrates the number of
deputies that were present in each one of the 659 sessions of
the 53rd legislature. Instead of employing the dates to refer
to the sessions along our analysis, we use the ordering they
occurred over time to enumerate them.

It is common that several federal deputies discontinue their
participation in a legislature. Reasons for this include leaving
to take up executive positions, cessation, and resignation of
the mandate. In such cases, federal deputies are replaced to
maintain all the 513 seats occupied. Thus, the number of
federal deputies exceeds 513. The 49th–54th legislatures had
respectively 396, 470, 426, 585, 659, and 707 sessions and
595, 725, 720, 616, 608, and 734 distinct federal deputies.

Figure 1(b) illustrates the accumulated presence of some
federal deputies in the sessions of the 53rd legislature. Each
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(a)

(b) (c)

FIG. 1. Data aspects. Panel (a) shows the number of federal deputies of the 53rd legislature present in each session (t). Panel (b) illustrates
the accumulated number of attendances of some federal deputies, which are represented by numeric labels. Panel (c) displays the rank
distribution according to the frequency of the federal deputies present for the 49th–54th legislatures.

federal deputy is represented by a numeric label. We note from
Fig. 1(b) that the federal deputy 100 was present in almost all
sessions whereas deputies 32, 108, 141, 146, and 157 missed
a significant number of consecutive sessions. Cases like these
in which federal deputies do not participate in many sessions
are common to the 49th–54th legislatures. Figure 1(c) shows
the rank of the federal deputies of the 49th–54th legislatures
according to their presence in the sessions. The fact that some
federal deputies missed a significant number of consecutive
sessions is manifested in Fig. 1(c) by the presence of two
regimes: one approximately before 400 and another after this
value.

In order to study the presence of federal deputies that reg-
ularly attended the sessions of a legislature, we will classify
them according to their maximum fraction of missed sessions
in a row. In this direction, the federal deputy 100 in Fig. 1(b)
has a low maximum fraction of missed sessions in a row
and, consequently, can be considered as a regular member of
the 53rd legislature, after establishing a reasonable threshold.
In contrast, for instance, the federal deputy 146 could not
be considered as a regular member of the 53rd legislature
because he (she) was absent more than 400 sessions in a row.

We will essentially consider a threshold for the maxi-
mum fraction of missed sessions in a row at 1/16, which
corresponds approximately to three consecutive months of
absence. Thus, only the regular federal deputies that were
absent for continuous periods during at most three months are
considered in our study. For instance, from the 608 federal
deputies of the 53rd legislature, only 426 will be considered

as regular members of this legislature, which also corresponds
approximately to the position of the knee in Fig. 1(c). We
remark that the choice of the threshold at values close to 1/16
produces similar results.

III. RANDOM WALK

In our empirical investigation, we employ x( j)
t as the num-

ber of parliamentary sessions the jth federal deputy attended
in the first t sessions of a legislature. Thus, x( j)

t = η
( j)
0 +

η
( j)
1 + · · · + η

( j)
t−1, with η

( j)
i−1 being equal to 1 (0) if the jth

federal deputy was present (absent) in the ith session. In this
way, one can also write

x( j)
t+1 = x( j)

t + η
( j)
t , (1)

with

η
( j)
t =

{
1 if present
0 if absent (2)

and the initial condition x( j)
0 = 0. Note that Eqs. (1) and (2)

can be formally viewed as a random walk of a particle, where
x( j)

t and η
( j)
t represent, respectively, its position and random

step at time t [36].
An advantage of using a random walk approach is that

it has proven to be very helpful to reveal several dynamic
aspects in the most diverse contexts, for instance, in sports
[37–39], in macroeconomics [40], to distinguish between
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(a) (b)

FIG. 2. Mean value and standard deviation. The dynamics of the accumulated mean presence of the federal deputies (μt ) for the 49th–54th
legislatures is presented in panel (a). Panel (b) exhibits the dynamics of the corresponding standard deviations (σt ). The curves in both panels
were vertically shifted for better visualization. The black dashed lines represent the fits. Both panels reveal a linear dependency of μt and σt

on t for all the legislatures. The maximum fraction of missed sessions in a row considered is equal to 1/16.

autism disorders [41], and in applications to overstretched
DNA [42].

IV. RESULTS

A. Average parliamentary presence

The average number of presences of the federal deputies
until the t th session of a legislature is given by

μt = 1

N

N∑
j=1

x( j)
t , (3)

where N is the number of federal deputies considered in
the legislature, which are essentially the ones that have a
maximum fraction of missed sessions in a row not greater than
1/16 (see the end of Sec. II).

Figure 2(a) displays the evolution of μt for the 49th–54th
legislatures. This figure reveals that μt linearly depends on t ,
i.e.,

μt = μ̄1 t . (4)

This result directs to a rate μ̄1 of parliamentary presence
that does not depend on t . In general, the goodness of the
fits, measured by R2, is substantial for the 49th–54th legis-
latures (R2 > 0.999). We stress that these results are robust,
since small variations of the considered number N of federal
deputies of a legislature yield the same results. However, μ̄1

decreases as we consider more federal deputies as regular
ones. This occurs because the number of deputies with less
attendence increases with the value of the threshold for the
maximum fraction of missed sessions in a row.

B. Standard deviation of the parliamentary presence

The following step in our investigation of the parliamentary
presence is to analyze the fluctuation around the mean value

μt . For this, we will employ the standard deviation

σt =
⎡
⎣ 1

N − 1

N∑
j=1

(
x( j)

t − μt
)2

⎤
⎦

1/2

. (5)

A particular but important case occurs when the steps η
( j)
t are

uncorrelated, leading to

σt = σ̄1 tα, (6)

with α = 1/2 and σ̄1 constant. A common practice in the
study of random walks is to classify them according to the
dependence of σt on t [43]. If σt obeys Eq. (6) with α = 1/2,
there is a normal behavior as in the usual Brownian motion. In
contrast, if σt is not proportional to t1/2, we are dealing with
an anomalous behavior and the correlations among the η

( j)
t

play a significant role. Also, in a collection of objects (in our
case an ensemble of federal deputies), it is common to use su-
perdiffusive (subdiffusive) behavior to refer to instances with
α > 1/2 (α < 1/2). In particular, if α = 1, the superdiffusive
regime is referred as ballistic.

Figure 2(b) focuses on the behavior of the standard devia-
tion σt of the accumulated presence of the federal deputies of
the 49th–54th legislatures. This figure indicates a superdiffu-
sive regime with α ≈ 1 for all the legislatures, i.e., the parlia-
mentary presence dynamics can be viewed as an anomalous
diffusive process consistent with a ballistic behavior (R2 >

0.99). As in the case of the mean presence μt , our results
involving σt are robust, in the sense that small variations of the
considered number of federal deputies of a legislature yield
the same results.

However, in contrast to the mean presence, the slope co-
efficient, σ̄1, increases with the threshold for the maximum
fraction of missed sessions in a row. Independent of this fact,
the linear forms for μt and σt lead to coefficients of variation
(σt/μt , the relative standard deviation) that are constant and
equal to σ̄1/μ̄1. This feature points toward a scaling relation-
ship.
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C. Probability density function of the parliamentary presence

The previous findings can be put in a more embracing
framework by considering a probability density function
(PDF) p(x, t ) to model the parliamentary presence of all fed-
eral deputies. In this direction, when we restrict our analysis
to federal deputies that participated in a full legislature, we
verify that practically none of them had presence equal to
zero, x( j)

t = 0. Thus, considering t is not so small, it seems
feasible to consider that p(x, t ) ∝ xa−1 (with a > 1) for small
x. In addition, the maximum presence is t and it is very
improbable federal deputies attended all sessions; therefore,
it is also suitable to employ p(x, t ) ∝ (t − x)b−1 (with b > 1)
for x close to t . Note that we are considering x and t large
enough to be adopted as continuous variables.

A direct way to accomplish the above reasoning is to
suppose that p(x, t ) is proportional to the product of the
two limiting behaviors, i.e., p(x, t ) ∝ xa−1(t − x)b−1. This
approach leads to the PDF

p(x, t ) = 1

B(a, b)

xa−1

t a

(
1 − x

t

)b−1
, (7)

where a > 1, b > 1, B(a, b) is the beta function, and 0 �
x � t . A first consequence of this choice for p(x, t ) is
that x scales with t , since p(x, t ) = h(x/t )/t , where h(y) =
ya−1(1 − y)b−1/B(a, b) (with 0 � y � 1) is the standard beta
PDF [44]. The PDF given in Eq. (7) leads to a mean value
and standard deviation of x proportional to t and to a constant
coefficient of variation for all t , hence recovering our previ-
ous results. In the same direction, note also that the mode,
obtained from the condition d p(x, t )/dx = 0, leads to x ∝ t .

Other theoretical discussions related to the PDF (7) are given
in the next subsection.

In order to verify that the PDFs given in Eq. (7) is robust
in our study for all t and x, we need to compare it with the
empirical PDF’s, adjusting the parameters a and b from the
data. A way to proceed in this direction is to calculate the
mean value and standard deviation of x using p(x, t ) and to
enforce that they are equal to the empirical μt and σt . This
procedure leads to the following condition:

a(μt , σt , t )

μt
= b(μt , σt , t )

t − μt
= μt t − σ 2

t − μ2
t

σ 2
t t

. (8)

By using the calculated values for μt and σt [as the circles in
Figs. 2(a) and 2(b)] to obtain the parameters a and b above, we
verify a good agreement among the PDF’s for different values
of t . In addition, by applying the Kolmogorov-Smirnov test
[45], a measure of this goodness is the fraction of sessions
that have p values greater than 0.01. We verified that this
fraction is greater than 0.7 for the 49th–54th legislatures.
Similar values are obtained for other choices of the threshold
for the maximum fraction of missed sessions in a row close
to 1/16.

Since μt and σt are well adjusted by Eqs. (4) and (6) with
α = 1, we can utilize these relationships to fix the values of a
and b independently of the t values in each legislature. Thus,
by using these two equations in Eq. (8), the parameters a and
b are obtained via

a

μ̄1
= b

1 − μ̄1
= μ̄1 − σ̄ 2

1 − μ̄2
1

σ̄ 2
1

. (9)
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FIG. 3. Probability distribution. Panels (a)–(f) illustrate the agreement between the empirical PDF (colored ones) and the beta one (black
dashed) given by Eq. (7), using a and b given by Eq. (9). Observe that the same parameters, for each legislature, adjust the distributions as the
number of parliamentary sessions increase (p value � 0.01). Here, it was also used 1/16 as the maximum fraction of missed sessions in a row.
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Considering the fraction of missed sessions in a row equal to
1/16, the values of these parameters are displayed in Fig. 3,
for some sessions within each legislature. This figure also
illustrates how well the PDF (7) adjusts the data. The behavior
of μ1, σ 1, a, and b as a function of the fraction of missed
sessions in a row is displayed in Fig. 4. Note, in particular, that
the results presented in Figs. 4(a) and 4(b) are consistent with
Fig. 1(c) and the comments in the end of Subsecs. IV A and
IV B. Observe also that if 1/16 � ξ � 1/4 the parameters μ1,
σ 1, a, and b can be seen in a first approximation as constants,
where ξ is the fraction of missed sessions in a row. For ξ �
1/4 (one year or more of continuous absence), it is difficult to
affirm that a deputy participated in a full legislature.

D. Modeling the parliamentary presence PDF

The distribution of presences plays a central role in our
analysis. Here we are going to revisit it in connection with
Bernoulli trials; we consider, in a first approximation, that the
presence of each deputy is independent of the others in any
session. In this context, let SN

t be the number of accumulated
presences of the N deputies in the first t sessions. Then, if
the probability of any deputy being present at a session were
q, the probability of having k presences until the t th session

would be given by a binomial distribution [46]

wt (q, N, k) =
(

Nt

k

)
qk (1 − q)Nt−k . (10)

The hypothesis that all deputies have the same probability
of being present in a session is quite unlikely. Thus, we
consider that q is a random variable distributed according to a
probability density h(q). In this case, the probability of having
k presences until the t th session is

P
(
SN

t = k
) =

∫ 1

0
wt (q, N, k) h(q) dq. (11)

As a consequence,

P
(
SN

t � Ntx
) =

∫ 1

0

[�Ntx�∑
k=0

wt (q, N, k)

]
h(q) dq. (12)

In Eq. (12), the term within brackets can be interpreted
as P(T N

t � Ntx), where T N
t is a sum of Nt independent

variables that have a Bernoulli distribution with parameter q.
Consequently, the weak law of large numbers [46] implies that

lim
N→∞

�Ntx�∑
k=0

wt (q, N, k) =
{

1 if q < x
0 if q > x.

(13)
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FIG. 4. Parameters values. Considering all sessions of each legislature, panels (a)–(d) illustrate all the rates μ1 and σ 1 and parameters a
and b, obtained via Eq. (9), for all fractions of missed sessions in a row. The solid lines are the values while the bands in the curves are the
intervals of confidence of 95%.
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Because the number N of deputies under analysis is finite,
Eq. (13) holds as a first approximation.

It follows from Eqs. (12) and (13), after using the domi-
nated convergence theorem [46], that

lim
N→∞

P
(
SN

t � Ntx
) =

∫ x

0
h(q) dq. (14)

Thus,

lim
N→∞

P

(
SN

t

N
� y

)
=

∫ y

0

h(x/t )

t
dx, (15)

i.e., the accumulated number of presences in t sessions per
number of deputies converges weakly to a random variable
with PDF p(x, t ) = h(x/t )/t . Note that if h(q) is not heavily
concentrated in some value [i.e., h(q) = δ(q − q0)], this result
recovers the empirical linear dependence of mean value and
standard deviation with t , previously discussed in this section.

A well-known distribution with support in [0,1] which can
assume a huge set of different shapes is the standard beta PDF
[44]. This justifies the use of h(q) = qa−1(1 − q)b−1/B(a, b).
By considering this choice for h(q), it follows from Eq. (15)
that Eq. (7) is the PDF of the limiting distribution of SN

t /N .
As a further remark, we would like to point out that

although we obtained the PDF given in Eq. (7), it can also
be connected with a phenomenological nonlinear anomalous
diffusion equation. As a guide in this direction, we start
considering the function

f (x, t ) = M

t1/(1+θ+ν)

(
1 − A |x|θ+2

t (θ+2)/(1+θ+ν)

)1/(ν−1)

, (16)

whose form resembles Eq. (7) except for the factor xa−1. This
f (x, t ) is known [47] to be a solution of equation

∂ f

∂t
= D ∂

∂x

(
x−θ ∂ f ν

∂x

)
. (17)

The constants A and the normalization one M depend on the
parameters θ , ν, and D.

Equations (16) and (17) describe a unified scenario of
diffusive processes. In fact, if θ = 0 and ν = 1, we have the
usual diffusion equation and it can be verified that Eq. (16) re-
duces to its well-known Gaussian solution in the limit ν → 1.
Another particular case occurs when θ �= 0 and ν = 1, leading
to the oldest anomalous diffusion equation, the Richardson
one [48]. In this case, the expression (16) yields a stretched
Gaussian solution in the limit ν → 1. For θ = 0 and ν �= 1,
the porous media equation and its fundamental solution are
recovered [49,50]. For general values of θ and ν, we obtain
an interpolation of the phenomena described by these limiting
cases. Thus, Eqs. (17) and (16) cover a rich class of normal
and anomalous of diffusive phenomena.

A further generalization of a diffusion equation can be
quickly obtained by incorporating a time dependence in the
diffusion coefficient, e.g., proportional to tβ . For instance, we
may use this proportionality for D in Eq. (17). In this case, the
new equation can be reduced to the one with D constant if we
employ τ ∝ tβ+1 as a new time variable. Hence, the solution
of the new equation will be given by Eq. (16), replacing t by τ .

Concerning the distribution we dealt with in this paper, i.e.,
Eq. (7), we observe that its structure resembles the one in

Eq. (16), except for the factor xa−1. The presence of this extra
term demands a further modification of Eq. (17). Since this
term is a power of x, we expect that the required modification
should also involve a power of x, e.g., xγ . Aiming at an effec-
tive modification of the solution (16) that might incorporate
the factor xa−1, we ought to put xγ under the influence of the
inner spatial derivative. Thus, we consider

∂ f

∂t
= D

∂

∂x

[
x−θ tβ ∂

∂x
(xγ f ν )

]
. (18)

Finally, we can verify that the PDF given in Eq. (7) satisfies
Eq. (18) if θ = −a, D = [B(a, b)]1/(b−1)/b, β = a/(b − 1),
γ = b(1 − a)/(b − 1), and ν = b/(b − 1). The reader who is
interested in certifying that Eq. (7) is a solution of Eq. (18) is
referred to the Appendix.

V. CONCLUSIONS

We have investigated aspects of the parliamentary presence
for the 49th–54th Brazilian Chambers of Deputies, concerning
a period of 24 years, from 1991 to 2015. In general, by
analyzing the presence of each federal deputy, we observed
two distinct groups: the ones that were present in most of
the sessions and the ones that barely attended the sessions
[Figs. 1(b) and 1(c)]. Our analysis was focused on the former
group, comprising about 400 federal deputies [see Fig. 1(c)].
We observed universal behaviors for statistical quantities such
as mean value and standard deviation, where both displayed
linear trends (see Fig. 2). In particular, the dependence of
the standard deviation with the number of sessions implied
that an anomalous diffusive process, with the ballistic regime,
governs the parliamentary presences.

Among the 3243 parliamentary sessions, some sessions
had fewer than ten federal deputies, three of which had only
one deputy present, while only one session had all the 513
seats occupied. Motivated by the fact that the probability of
a federal deputy being present in none or all the sessions of a
legislature is essentially null, we proposed that the distribution
of presence of all deputies is actually a beta distribution
[Eq. (7)]. Employing this PDF and the fact that its coefficient
of variance is constant, we calculated its parameters utilizing
the empirical data and compared each other, for all sessions,
via the Kolmogorov-Smirnov test. We observed that numerous
sessions accept the null hypothesis (p-value � 0.01) that they
can be drawn from a beta distribution with the same parame-
ters. This suggests a consistency of how federal deputies who
were present in most of the sessions attend the sessions: A
few are always present, a few go sometimes, and most of
them go regularly (see Fig. 3). In addition to the fact that
the beta distribution appears naturally with our arguments, we
also verified that it satisfies an anomalous diffusion equation
[Eq. (18)]. As a last concern, we remark that future studies
considering other parliaments and other models would be
important in order to verify the degree of universality of these
findings.
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APPENDIX: DERIVATION OF EQ. (18) FROM EQ. (7)

From Eqs. (16) and (17), we can conclude that a function

f (x, t ) = C

t

(
1 − x

t

)b−1
, (A1)

where C > 0 and b > 0 are constants, is a solution of the
equation

∂ f

∂t
= 1

bC1/(b−1)

∂

∂x

[
xt1/(b−1) ∂

∂x
f b/(b−1)

]
, (A2)

which is essentially Eq. (17) with a diffusion coefficient that
depends on time. Now, let us consider the problem of finding
a diffusion equation for the function

g(x, t ) = C
xa−1

t a

(
1 − x

t

)b−1
. (A3)

We note immediately that g(x, t ) = (x/t )a−1 f (x, t ). Hence,
we have

∂

∂t

[(x

t

)1−a
g

]
= tν−1

Cν−1b

∂

∂x

{
x

∂

∂x

[(x

t

)1−a
g

]ν}
, (A4)

where ν = b/(b − 1). Employing the product rule of differ-
entiation in the first spatial derivative of the right-hand side
of this equation and after simplifying and rearranging the
resulting terms, we can obtain

a − 1

t
g + ∂g

∂t
= C1−ν

b
(1 − a)t a(ν−1)xa−1 ∂

∂x
(x1−ag)ν

+ C1−ν

b

∂

∂x

[
xata(ν−1) ∂

∂x
(x1−ag)ν

]
. (A5)

By using Eq. (A3), we can verify that the first term on the
left-hand side of Eq. (A5) is equal to the corresponding one
on the right-hand side. Therefore, the function g satisfies the
equation

∂g

∂t
= C1−ν

b

∂

∂x

[
xata(ν−1) ∂

∂x
(x1−ag)ν

]
, (A6)

which is Eq. (18) with an appropriate choice of the parame-
ters.
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