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Melting of a two-dimensional monodisperse cluster crystal to a cluster liquid
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Monodisperse ensembles of particles that have cluster crystalline phases at low temperatures can model a
number of physical systems, such as vortices in type-1.5 superconductors, colloidal suspensions, and cold atoms.
In this work, we study a two-dimensional cluster-forming particle system interacting via an ultrasoft potential.
We present a simple mean-field characterization of the cluster-crystal ground state, corroborating with Monte
Carlo simulations for a wide range of densities. The efficiency of several Monte Carlo algorithms is compared,
and the challenges of thermal equilibrium sampling are identified. We demonstrate that the liquid to cluster-
crystal phase transition is of first order and occurs in a single step, and the liquid phase is a cluster liquid.
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I. INTRODUCTION

Melting of two-dimensional (2D) crystals is a fundamen-
tally interesting problem that attracted interest for decades.
Within the celebrated Kosterlitz-Thouless-Halperin-Nelson-
Young (KTHNY) theory [1,2], the melting is a two-stage
process occurring with an intermediate hexatic phase of quasi-
long range orientational order separating the crystal from the
fluid. In this scenario, the two phase transitions (crystal-to-
hexatic and hexatic-to-fluid) are predicted to be of second
order, driven by the unbinding of different types of topolog-
ical defects (dislocations and disclinations) [2,3]. However,
after many decades of experimental and numerical research,
evidence was collected that several 2D systems fall outside
KTHNY theory, melting in a single first order transition, or
in a two-step process by one first order and one continu-
ous transitions [4–6]. While the characterization of melting
transitions of 2D crystals is a long-standing problem that has
received great attention, almost all the effort has been focused
on simple potentials forming simple crystals, with only a few
numerical studies available on the generalized exponential
model [7,8].

Monodisperse systems, in which particles are all of the
same type, can nonetheless exhibit very complex hierarchical
structure formations such as lattices of clusters and exotic
phases such as glasses [9–15]. The wide array of behav-
iors, including rich self-organizing patterns, dynamics, and
the thermodynamic equilibrium phases in such systems, are
far from understood [16–19]. Particles with cluster-forming
interactions emerge in various contexts ranging from soft
matter, complex molecules, to cold atoms and vortices in
superconductors [20,21]. The problem is also relevant for
the physics of multicomponent superconductors where a rich
variety of vortex cluster solutions have been found [13,22,23].

For non-cluster-forming systems, the ordered phase con-
sists in a normal crystal with a single particle located at each
lattice site. On the other hand, for cluster-forming potentials
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the particles arrange in a cluster crystal, in which each lattice
site is occupied by a cluster of more than one particle. Under
the above conditions, there is a simple criterion by Likos et al.
relating the cluster-forming ability of the interactions to the
sign of its Fourier transform [24,25]. Namely, if the Fourier
transform of the interaction potential is positive-definite, the
system is non-cluster-forming, and it is cluster-forming other-
wise.

Since the ordered states of cluster-forming particles in
principle allow more types of defects, this raises the question
of the nature of the melting transition of cluster-crystals in 2D,
and to what extent the KTHNY theory applies. In this work,
we focus on a cluster-forming ultrasoft potential that has
attracted considerable attention as a model for colloidal sus-
pensions and ultracold atoms [13,20]. Recently, a similar kind
of cluster-forming interaction potential was found to arise
between the vortices in type-1.5 superconductors. In the bulk,
intervortex forces are long-range attractive and short-range
repulsive; see, e.g., Refs. [26–29]. For thin films, an additional
repulsive interaction arises due to magnetic stray fields that
gives rise to vortex cluster crystals [13,23]. We present a
simple mean-field analysis of the ordered cluster-crystalline
ground state. In particular, our analysis captures a number
of interesting properties, such as the existence of an onset
density for the cluster formation, the density dependence of
the lattice constant, and also that the triangular lattice is more
stable than the square lattice at all densities. We corroborate
our results with a number of Monte Carlo simulations, finding
a qualitative and also reasonable quantitative agreement.

To ensure the proper equilibration of the system and also
for comparison of the efficiency of different Monte Carlo
algorithms, we go beyond temperature annealing schemes
here, exploring a number of different Monte Carlo methods.
We also use these methods to identify the most challenging
factors involved in the thermal equilibration. The algorithms
we have implemented are widely used in spin glasses [30–32],
where systems are highly disordered and frustrated, and equi-
libration is usually essential for progress. They include simu-
lated annealing [33] for optimizations, and parallel tempering
[34–36] for equilibrium sampling. One more recent but less
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known algorithm is the population annealing [37–44]. Both
population annealing and parallel tempering are extended
ensemble methods with similar efficiency for spin glasses. We
find, however, that parallel tempering can be more efficient
than population annealing for our less frustrated model. Using
our equilibrium sampling to generate energy histograms for
a series of system sizes, we find a single first-order phase
transition, from cluster liquid to cluster crystal, featuring
a double-peak structure in the histograms. In addition, we
studied the case of particles moving in a harmonic trap. Also
here we obtain a cluster crystal phase, notably with a lattice
spacing approximately independent of the distance to the trap
center and similar to the unconfined case. However, the oc-
cupation number of the clusters decreases with the distance
to the center. Accordingly, the melting temperature becomes
position-dependent with more stable highly populated clusters
located at the center of the trap, generating an interesting
inhomogeneous melting.

The paper is structured as follows. First we introduce our
model, observables, simulation methods, and the mean-field
analysis in Sec. II. The algorithms and numerical results are
described in Sec. III. Finally, a summary of the main findings
and a discussion of their implications are presented in Sec. IV.

II. MODEL, OBSERVABLES, AND METHODS

A. Model and observables

The two-dimensional system of monodisperse particles
interacting via an ultrasoft potential is described by the
Hamiltonian

H =
∑
i< j

U0

1 + (ri j/rc)6
. (1)

Here the indices i, j run from 1 to the number of particles
N . The particles are placed on an L×L square with periodic
boundary conditions, and the density of particles is n = N/L2.
In Sec. III D we study the effect of confinement by adding an
external potential V (r) = �2r2/2, and in this case periodic
boundary conditions are not applied. We take U0 = rc = 1
without loss of generality, thus measuring temperature in units
of U0, length in units of rc, and density in units of 1/r2

c . When
computing the distance ri j = (x2

i j + y2
i j )

1/2 and the potential
energy, we define xi j = min(|x j − xi|, L − |x j − xi|) and sim-
ilarly for the y direction. The phase diagram of this model has
been presented in Refs. [13,19] in the range 0.8 � n � 2.2,
along with the mean number of particles per site. This model
can describe, e.g., clustering of vortices in thin films of type-
1.5 superconductors, or layered structures sharing important
features with the intervortex forces there [13]. The soft core
potential is also relevant for cold atom physics. For Rydberg
states in 87Rb the interaction parameters correspond to about
6 nK and 1 μm [20].

Our main observables are the orientational order parameter
φ6 quantifying the ordering of the triangular cluster-crystal
phase, and the specific heat CV = β2×var(E ), where E is
the total energy of the system. The calculation of φ6 for
a given configuration is based on the cluster positions, and
we now discuss how to compute it in detail. We first use a
hierarchical clustering technique [19,45] that groups particles

into clusters deterministically. Each particle starts as a single
cluster, and the two closest clusters are joined together if their
center-of-mass distance is smaller than a chosen cutoff. We
used a cutoff of 0.7 ≈ a/2, but the outcome is not sensitive
to this value, and 0.6 or 0.8 works equally well. When two
clusters are joined, the new center of mass is updated. The
process repeats until no further grouping is possible. Note
that the process works for both the cluster crystal phase and
the liquid phase. In summary, the process takes a particle
configuration {�ri, i = 1, 2, . . . , N} and outputs the centers
of mass of C clusters {�Ri, i = 1, 2, . . . ,C}. The clustering
process is followed by a further Voronoi decomposition to
identify neighboring clusters. The φ6 is finally defined as

φ6 =
∣∣∣∣∣∣

1

C

C∑
j=1

⎛
⎝ 1

Nj

Nj∑
�=1

ei6θ j�

⎞
⎠

∣∣∣∣∣∣
, (2)

where θ j� is the angle defined from an arbitrary direction
(often the x̂ axis) and the vector �R� − �Rj , and Nj is the number
of neighbors of the jth cluster. Note that only neighboring
pairs are summed. If the system is a perfect triangular lattice,
then φ6 = 1, and if the system has no orientational long-
range order, then φ6 = 0. Note that this quantity characterizes
cluster ordering, not particle ordering. We also calculate the
2D radial correlation function defined as

g(r) = 1

N

δn(r)

2πrδr
, (3)

where δn(r) is the number of particles in the shell 2πrδr,
with reference to an arbitrary particle. Note that the function
is normalized as

∫ ∞
0 g(r)2πr dr = 1. The function shows a

peak at the lattice constant when applied to a cluster crystal
configuration, and we use this peak to extract the lattice
constant of the crystals.

B. The Monte Carlo methods

We have studied the system using three different Monte
Carlo methods: simulated annealing (SA), population anneal-
ing (PA), and parallel tempering (PT). The major and common
component for each algorithm is a Monte Carlo sweep. We
use the Metropolis algorithm in this work. Each Monte Carlo
sweep is a sequential update of all the N particles. For each
update, we propose to shift a particle randomly within a
square box of length 2

√
1/n centered on the particle. We as-

sume readers are familiar with the single-temperature Markov
chain, and the SA for sequential cooling through a series
of single-temperature Monte Carlo following an annealing
schedule. We additionally use PT for multiple Markov chains
with exchange of replicas between different temperatures. The
PA method is, however, relatively new, and we discuss this
algorithm in some detail here.

Like PT, PA is an extended-ensemble algorithm for thermal
equilibrium sampling. It is also similar to SA but with a large
population of R replicas. It is often the case, also in this work,
that replicas are initialized randomly at β = 0 and cooled to
a target temperature Tmin = 1/βmax. The replicas traverse an
annealing schedule with NT temperatures by slowly lowering
the temperature. The population is, however, resampled at
each temperature step to maintain thermal equilibrium, with a
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self-consistent reweighting process. When the temperature is
lowered from β to β ′, the population is resampled. The mean
number of copies of replica i with energy Ei is proportional
to the appropriate reweighting factor, exp[−(β ′ − β )Ei]. The
constant of proportionality is chosen such that the expectation
value of the population size at the new temperature is R. In
practice, the number of each replica is rounded to the floor
or ceiling of the expectation value with the right probability,
called nearest integer resampling. The resampling is followed
by NS sweeps to each replica of the new population, and
the cycle of resampling and sweeps repeats until the target
temperature is reached.

Note that PA and SA have a similar structure. Turning
off resampling, PA becomes SA of R independent runs. PA
has been found to be similar in efficiency to PT for spin
glasses, but it has a number of additional useful features such
as having intrinsic equilibration measures (see below), giving
direct access to free energy using the free-energy perturbation
method, and it is massively parallel.

The equilibration measure of PA in this work is based on
the family entropy S f and the entropic family size ρs [40,41].
These quantities are, respectively, defined as

S f = −
∑

i

νi ln νi, (4)

ρs = lim
R→∞

R/eS f , (5)

where νi is the fraction of the population that has descended
from replica i in the initial population. Intuitively, exp(S f )
characterizes the number of effective surviving families or
the diversity of the population, and ρs characterizes the av-
erage effective surviving family size. A large S f ensures
accurate sampling of the equilibrium distribution. On average,
S f decreases with β with a rate that depends on the free-
energy landscape and the simulation parameters. We use S f �
ln(100) in this work, which has been used in many systems
[40,41]. If this condition is not fulfilled at the final tempera-
ture, the simulation is restarted with a larger initial population.
In addition to providing an equilibrium measure, S f is also
useful for identifying bottlenecks of the equilibration.

C. Mean-field analysis of the cluster crystal ground state

In this section, we develop a mean-field analysis to capture
quantitative features of the cluster crystal phase. For sim-
plicity, we focus on the ground state which has no thermal
fluctuations. In particular, we are interested in how the mean
cluster size cs and lattice constant a change as a function
of the particle density n. It is interesting to see whether the
mean-field treatment can catch the onset of particle cluster-
ing. Finally, we also compare the triangular lattice and the
square lattice. We emphasize that comparing average energy
per particle for different lattices has been a well-established
practice; see, e.g., Refs. [15,17]. Nevertheless, the application
to cluster-forming particles provides some interesting insights
into the clustering features.

Let the area of the unit cell be A. Then n = cs/A by
definition, and A = √

3a2/2 for the triangular lattice and A =
a2 for the square lattice. Note that the optimum cs and a are
hence related for a given density n. We define a single-particle
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FIG. 1. The cluster crystal lattice constant a, single-particle in-
teraction energy ε, and mean cluster size cs as a function of density n
for both the triangular lattice (TL) and the square lattice (SL) under
the mean-field approximation. Note that the lattice constant is essen-
tially independent of the density once the clustering occurs (cs > 1)
at about n ≈ 0.53. Therefore, the mean cluster size grows linearly
with n in the clustering regime. The single-particle interaction energy
for the triangular lattice is always lower than the square lattice at any
finite density, and is also asymptotically linear with density.

interaction energy for a particle sitting at the origin without
loss of generality as

ε(cs) = (cs − 1)U (0) +
∑
i �=0

csU (ri), (6)

=
∑

i

csU (ri) − U (0), (7)

where the summation is over lattice sites, and ri denotes the
distance from the lattice site i to the origin or the lattice site 0.
The first and second terms of Eq. (6) are the intracluster and
intercluster interaction energies, respectively. Minimization of
ε with respect to cs gives the optimum cluster size cs and
lattice constant a. In summary, for a given density n, we aim
to find the global minimum of ε(cs). For each cs, we first
compute the lattice constant a and then numerically sum the
single-particle interaction energy ε. We run this procedure for
both the triangular lattice and the square lattice.

The optimum single-particle interaction energy, lattice
constant, and mean cluster size for both lattices are shown
in Fig. 1. First, the single-particle interaction energy for the
triangular lattice is always smaller than the square lattice,
and the difference increases with increasing density. Both
converge to zero in the zero-density limit. Second, the mean
cluster size has the following onset density of particle cluster-
ing at nc ≈ 0.53. When the density is lower than nc, clustering
is not favored. When n � nc, clustering occurs in the ground
state. Once clustering occurs, the lattice spacing remarkably
settles down and becomes independent of the density. As a
result, the mean cluster size grows linearly with density in
the clustering regime. This is compatible with the numerical
results of Ref. [19]. The single-particle interaction energy is
hence also asymptotically linear with density from Eq. (7).
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FIG. 2. Evolution of the order parameter φ6 upon slow cooling
using simulated annealing. Each thin line is an independent run,
and the thick black curve is the mean of these runs, which is also
highlighted for clarity in the inset panel. Only 10 temperatures are
shown for the mean, although there are 1000 temperature steps.
Note that not all runs go toward φ6 = 1, showing that the ground
state is a global minimum but not a global attractor. These are 1000
independent runs for N = 1000 at density n = 1.1 from β = 0 to
T = 0. We cool the system quite slowly with a total of 1000 steps,
with 100 sweeps at each temperature. Half of the temperatures are
linear in β up to β = 10, and the other half are linear in T to T = 0.
This demonstrates that SA can be used for optimization, but it is not
fully reliable for thermal sampling.

III. NUMERICAL RESULTS

This section has two main parts. We first present a com-
parison of different MC algorithms, and the bottlenecks for
thermal sampling. Then we present results for equilibrium
properties of the system, including a comparison with the
mean-field results, the order of the phase transition, and
cluster crystals in a parabolic trap.

A. Algorithms

We start by showing that procedures based on simulated
annealing cannot easily maintain full thermal equilibration
throughout all temperatures even for the clean system. It
might be tempting to expect otherwise, especially considering
that after a deep quench from a random configuration, the
system can reasonably restore the order parameter close to
the transition temperature [13,46]. When the system is cooled
slowly, one might find the crystal lattice easily, while further
lowering the temperature would only suppress lattice fluctu-
ations. However, running a simulated annealing, the system
does not always find a perfect lattice, but may contain defects
such as grain boundaries near the transition temperature TC .
Here, TC can be estimated as the temperature at which φ6

departs from zero or from the peak of the specific heat. Once
they have formed, it may be difficult to remove such defects
using local updates. See Fig. 2 for an example of a reasonably
careful annealing of 1000 independent runs for N = 1000
particles at density n = 1.1. While some fraction of the runs
find pretty good lattice structures, the majority of them do
not, and some fail badly with little long-range order. The
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FIG. 3. Specific heat (a) and family entropy (b) as a function
of β in two representative scenarios, with and without the low-
temperature bump. In both cases, the first-order phase transition is a
generic bottleneck, which requires more work near the transition for
an efficient sampling. For example, spending 100 sweeps near the
transition (40 sweeps at other temperatures) is even more efficient
than doubling the system size keeping 40 sweeps at all temperatures.
See text for more details. However, there could be an additional
bottleneck associated with the anomalous peak at low temperatures,
such as for n = 1.25. Careful inspection shows that this is due to
lattice reorganization: there are 86 clusters at higher temperatures
below the bump and 90 above. Such bumps at very low temperatures
pose even greater equilibration challenges, as shown by the sharp
decrease of the family entropy. Furthermore, spending more sweeps
here does not help much, in contrast to the phase transition. The
shoulder peaks at small β are not generic but occur only for small
sizes. We use a small size here as we traverse a wide temperature
range to β = 60, which is hard for large sizes.

mean, shown by the black curve, is systematically below the
topmost curve, which runs toward one when T = 0. Simple
Monte Carlo running at a single temperature, as in quenching
dynamics for glass formations, would only be worse.

Nevertheless, comparing the onset of the ordered phase
with the peak of the specific heat in Fig. 3, it seems reasonable
that SA captures the transition temperature TC reasonably
well. Furthermore, SA remains a valuable tool for optimiza-
tion to reach very low temperatures (including T = 0) as
thermal equilibration down to very low temperatures could be
rather difficult even for small sizes, as we will discuss. SA has
been used previously to study phase diagrams for other cluster
crystal forming potentials [47,48].

Population annealing and parallel tempering, unlike sim-
ulated annealing, are both designed for thermal sampling.
We first use the family entropy of population annealing to
identify bottlenecks in the simulations. As might be intuitively
expected, we find that the phase transition (which we will
demonstrate is first order in a later section) is a generic bottle-
neck. This is reflected as a sharp decrease of family entropy
near the transition. Clearly, increasing the number of sweeps
near the transition can improve equilibration significantly.
See Fig. 3 for an example with n = 1.1 (solid lines), where
we have used an annealing schedule with 100 temperatures
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linear in β up to TC and 100 temperatures linear in T in the
low-temperature part. Notice that if we spend 100 sweeps
per replica near the phase transition (β ∈ [8, 16]), the family
entropy drops much less compared with 40 at all temperatures.
Furthermore, this is even more efficient than simply doubling
the population size keeping NS = 40, which involves more
total work. Therefore, we conclude that the phase transition
requires more work (either more sweeps or equivalently more
temperatures) for efficient thermal sampling.

Note also that from the family entropy of n = 1.25 (dashed
lines) in Fig. 3, the phase transition may not be the only
bottleneck in thermal sampling, which is accompanied by an
anomalous peak in the specific heat at low temperatures. For
this harder case, we have used an annealing schedule with
100 temperatures linear in β up to TC and 200 temperatures
linear in T in the low-temperature part. We have again spent
100 sweeps per replica near the phase transition (β ∈ [8, 12])
compared with 40 at other temperatures such that the tran-
sition is not a significant bottleneck. In this example, the
anomalous peak is the major bottleneck. While this is not a
generic peak for different sizes and densities, it occasionally
shows up, and since temperatures are very low, spending more
sweeps around this peak does not help much, in contrast to the
transition bottleneck. By careful inspection, we find that the
nature of the bump is due to a subtle lattice reorganization, not
in the lattice form but in the number of clusters. There are 86
clusters at higher temperatures before the bump but 90 clusters
at lower temperatures after the bump, and between the two
the population has a mixture of replicas of both kinds. Note
that both lattices are the same triangular crystals, and there
are no glassy states here as the replicas are kept in thermal
equilibrium. This is clearly a balance of energy and entropy
of the two finite lattices. While we believe this is probably a
finite-size effect, fitting a lattice in a finite space, it certainly
suggests that equilibration below and much below TC for finite
systems may involve subtle differences. For example, if one is
running SA for a limited number of independent runs, the true
ground state might be missed.

We now focus on the efficiency of population annealing
and parallel tempering. Even though the two algorithms are
similarly efficient in spin glasses that are highly disordered, it
appears that population annealing is not as efficient as parallel
tempering for the clean system. We have also found similar
results in our recent simulations of the three-dimensional
Ising model. If one is interested in the phase transition
regime or below, we think the following factor is limiting the
power of population annealing for clean systems: population
annealing is a sequential Monte Carlo and requires us to
start the population at a high temperature. But resampling is
only meaningful when the population size R is sufficiently
large, hence population annealing necessarily requires many
efforts in the high-temperature regime before reaching the
transition temperature. No initial equilibration is needed if
the simulation starts from β = 0, but it takes a number of
steps to get close to TC . One can also choose to start at a
high but finite temperature directly, but this would require
population annealing to equilibrate initially a large number
of replicas. In contrast, parallel tempering can equilibrate fast
for clean systems (short thermalization times and correlation
times) directly near the transition for a much smaller number

of replicas, and therefore good or reasonable statics can be
obtained more quickly for a fixed computational effort. In
summary, we think the sequential preparation is slowing down
PA, compared with PT. Our results are, however, not in dis-
agreement with the similar efficiency in disordered systems.
In that scenario, both the thermalization times and the corre-
lation times of PT are much longer, driving the efficiencies of
PA and PT together. Nevertheless, PA has been very useful
in our studies, e.g., in identifying simulation bottlenecks.
It provides both sharper and more quantitative information
than the exchange probabilities of parallel tempering. For
equilibrium sampling of monodisperse particles in disordered
potentials where equilibration is slow, we expect that the
massively parallel PA would again become relevant.

Finally, there is an intrinsic complexity in the model itself:
the long-range interactions and the associated O(N2) com-
plexity for one sweep. While it is an option to introduce a
cutoff to the potential, the efficiency necessarily decreases
with increasing density and is less relevant when the system
size is not exceptionally large. Therefore, this is a significant
limiting factor on the sizes accessible to equilibrium simu-
lations. We have managed to fully equilibrate about 1000–
2000 particles around TC in this work, using state-of-the-
art computing resources. In contrast, for clean systems with
short-range interactions such as the Ising ferromagnets, one
can reach orders of magnitude larger sizes.

In summary, the long-range interactions and the phase
transition are generic bottlenecks, and extra bumps at low
temperatures when present are often a significant bottleneck if
one is interested in the low-temperature regime. Increasing the
number of Monte Carlo sweeps near the phase transition usu-
ally improves efficiency. We find that SA is not sufficient for
maintaining full equilibration throughout the annealing, and
parallel tempering is more efficient than population annealing
for clean systems, although for disordered and frustrated
systems the efficiency becomes similar.

B. Equilibrium properties

We first check the mean-field results and present the phase
diagram, followed by a demonstration that the liquid to cluster
crystal phase transition is first order, using energy histograms.
Our results for thermal sampling are studied mainly using PT,
but some PA results are also presented when relevant. We find
ground states using simulated annealing in the same way as
was discussed in the previous section, down to T = 0 with at
least 1000 independent runs. The simulation parameters are
summarized in Table I.

The TC is estimated from the peak of the specific heat. We
extract from the ground state the lattice constant and the mean
cluster size to compare with the predictions of the mean-field
theory. Ideally, we should find well ordered ground states with
φ6 � 0.99. While this is readily achievable for large densities,
it turns out to be quite a difficult task for low densities where
the transition temperatures are very low and particles interact
only very weakly. We therefore require this criterion only
for densities of n � 1. Nevertheless, we find that the states
still have reasonably good local order in spite of the poor
global order. Remarkably, we find that the location of the first
nontrivial peak of the correlation function does not depend
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TABLE I. Simulation parameters of some representative exam-
ples of the Monte Carlo methods. Here n is the density of particles,
N is the number of particles, R is the number of replicas, NT is
the number of temperatures, NS is the number of sweeps for each
replica at each temperature, βmin and βmax are the minimum and
maximum inverse temperatures, respectively, and M is the number
of independent runs.

Method n N R NT NS βmin βmax M

SA 1.1 1000 100 1001 100 0 ∞ 10
PA 1.1 200 106 201 40 0 60 6
PA 1.25 200 2×106 301 40 0 60 2
PA 1.5 200 106 201 60 0 60 6
PA 1.75 200 106 201 40 0 60 2
PA 2 200 106 201 60 0 60 6
PA 2.5 200 106 201 40 0 60 2
PA 3 200 106 201 40 0 40 2
PT 1.1 200 64 2.2×106 5 20 2
PT 1.1 400 64 3.3×106 10.5 11.5 2
PT 1.1 800 64 3.3×106 10.5 11.5 2
PT 1.1 1200 64 3.3×106 11 11.5 2
PT 1 1000 64 3.3×106 10 16 2
PT 1.5 1000 64 3.3×106 4 8 2
PT 2 1000 64 3.3×106 2 6 2
PT 2.5 1000 64 3.3×106 1 5 2
PT 3 1000 64 3.3×106 0.5 4 2

significantly on whether the system is in the true ground state
or just a low-energy state, and often even a glassy state.

Our results are summarized in the top panel of Fig. 4.
We find that the mean-field analysis is in reasonably good
agreement with the numeric results. The system has an onset
density, and the lattice constant is independent of density
in the cluster-crystal region. Below the onset density, the
MFT is trivially exact as cs = 1. The MFT, however, does
not find the critical onset density exactly. The numerical
onset density appears to be between 0.6 and 0.7, while the
MFT predicts 0.53. The asymptotic lattice constant a = 1.495
found in the simulations at the two largest densities shows
a very good agreement with the MFT result a = 1.473. The
small discrepancy is due to neglecting correlations in our
MFT approximation. For example, clusters of different sizes
are likely not randomly distributed [13]. There is also place
for finite-size effects on the Monte Carlo side, as we cannot
exclude that for large sizes the MC results will get closer
or even converge to the MFT prediction. Nevertheless, the
results are reasonably close, and from our MFT analysis we
can clearly see that the onset of particle clustering is a process
of minimization of the lattice energy at low temperatures.

The phase diagram is summarized in the bottom panel of
Fig. 4. We have identified TC as the location of the maximum
peak of the specific heat. This again works well for high
densities n � 1. There are small finite-size effects as the peaks
of N = 200 and 1000 are not at the same temperature, but
they are sufficiently close to get an estimate of the phase
boundaries. Our results regarding the melting temperature are
in good agreement with those obtained from the evolution of
φ6 using simulated annealing [13,19].
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FIG. 4. Top panel: Comparison of the mean-field and simulated
annealing results characterizing the ground states (a). Bottom panel:
Phase diagram estimated from the specific-heat peaks of the equi-
librium MC simulations, and the estimation of simulated annealing
using molecular dynamics and φ6 [13] (b). Error bars of MC results
are smaller than the symbols.

A region of phase coexistence can be present at a first-order
melting of an ordinary particle crystal, where the density
jumps discontinuously at the transition when simulated in an
NV T ensemble. For a cluster crystal, on the other hand, the
lattice spacing can readjust without changing the total density
by changing the cluster occupation numbers, and for this rea-
son it is not clear that a phase coexistence region necessarily
exists. In fact, our simulation results do not clearly indicate
a coexistence regime in the phase diagram, suggesting that
such a region might be very narrow or absent in the model
investigated here.

It is interesting to know to what extent the lattice pa-
rameters apply to finite temperatures. It is clear that the
identity and hence counting of clusters is less precise at
finite temperatures, due to particle hopping among clusters.
However, we can still look for a trend and study if there is
an obvious change in the size of the clusters following our
clustering method. Such results are particularly relevant in the
low-temperature limit. Therefore, we go back to the examples
in Fig. 3, and the temperature evolution of the mean cluster
size cs is shown in Fig. 5. We see clearly that the fluctuations
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FIG. 5. The corresponding mean cluster size cs as a function
of temperature for Fig. 3. The density n = 1.25 shows clearly a
change of cs at the anomalous peak. Other than this finite-size effect,
the cluster size does not depend on the temperature in the crystal
phase for this ultrasoft model. The error bar here is for the spread of
the distribution with each point estimated from 100 configurations,
not the error bar of the mean of cs, which is smaller by a factor of√

100 = 10. Note, however, that the clustering procedure or counting
of clusters is most reliable only at low temperatures. See the text for
more details.

of the mean cluster size from configuration to configuration
are essentially zero in the T → 0 limit, and other than the
finite-size effect at the anomalous peak, the mean cluster size
approximately does not depend on the temperature in the
low-temperature limit. This even holds close to the transition
temperature, though one should be cautious about the defini-
tion and counting of clusters in this regime. Nevertheless, this
clearly shows that the ground-state lattice constant remains
a relevant length scale throughout the solid phase. We show
that this is actually true even beyond the phase transition in
the liquid phase, using pair correlation functions in Sec. III C.

The order of this phase transition between the fluid and the
cluster-crystal region has not been conclusively investigated
previously. It has been reported that this transition occurs
in a single step for the generalized exponential model of
index 4 (GEM4), where the transition was encountered to be
first-order in nature [7]. Using density functional theories and
simulations, a transition in the ordering of clusters but not
for particles was found. Here we use equilibrium sampling to
generate energy histograms of our model (similar to GEM4)
to directly demonstrate the discontinuous nature of the transi-
tion. Our conclusion is therefore in agreement with Ref. [7].

The energy histograms for several sizes near TC at density
n = 1.1 are shown in Fig. 6. We have refined our temperature
set to find symmetric distributions, which require a very fine
temperature spacing. While there is still a bit of asymmetry, a
clear trend can be observed in the energy histograms, where
a double-peak structure appears with a growing free-energy
barrier for increasing system size. This is a strong signature of
a first-order phase transition. In addition, we have measured
the maximum value of CV /N , shown in Fig. 7. We see that
after an initial transient at small sizes, the function develops an
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FIG. 6. Top panel: Energy histogram at the phase transition for a
series of sizes N = 200, 400, 800, and 1200, respectively (a)–(d) at
density n = 1.1. There is a double-peak structure emerging with an
increasing free-energy barrier with increasing size N , suggesting that
the liquid to cluster-crystal phase transition is first order. Bottom
panel: Energy histogram for four selected temperatures before and
after the phase transition of N = 1200. The selected temperatures
are β = 11.0806, 11.1774, 11.2419, and 11.3347 (e)–(h), where the
critical temperature βc = 11.2097.

approximately linear behavior, compatible with a first-order
phase transition. Again, CV /N does not include any cluster
parameter, so we conclude that the liquid to cluster-crystal
phase transition is first order, in contrast to the KTHNY
theory. While there is no theoretical basis to exclude the
possibility of two transitions (either two second order or two
first order, or one first order and one second order), we do
not see any evidence that this occurs in our simulations of the
ultrasoft potential.

C. Cluster liquids

The clustering of particles in the cluster crystals remark-
ably persists to the liquid phase, and hence here we propose
the concept of cluster liquids associated with melted cluster
crystals. It is relatively straightforward to recognize cluster
liquids from some typical configurations shown in Fig. 8.
Despite this clarity in our present case, a generic definition
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FIG. 7. Maximum of the specific heat per particle max(CV )/N as
a function of N at the density n = 1.1. We see after an initial transient
at small sizes that the function develops approximately into a linear
function, compatible with a first-order phase transition. Error bars
are smaller than the symbols.

turns out to be difficult due to the rich phase diagrams of
various potentials. Here, we discuss this only qualitatively and
restrict our discussions to simple cases in which the associated
crystal phases are simple crystals like the triangular lattice,
excluding more exotic ones such as stripes. The counterpart of
corresponding concepts such as stripe liquids can be realized.

To have a well-defined cluster liquid, the liquid phase
should preserve some of the cluster order of the solid phase.
The configurations in Fig. 8 motivate us to look at the pair
correlation function. If the particles are indeed clustering

FIG. 8. Typical cluster liquid dynamics for the ultrasoft potential
at density n = 1.1 and β = 10 (a)–(h). The clusters can oscillate
and diffuse for a relatively long time before a particle hops between
clusters. In this example, five particles are highlighted. From t = 0 to
300, they form two clusters. At about t = 400, the blue cluster loses
a particle and forms a single-particle cluster. This cluster later on at
about t = 600 joins the green cluster. The times are in units of Monte
Carlo sweeps. See the relevant movie and comparison with a particle
liquid in Ref. [49].
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FIG. 9. Top panel: The first few peaks of the pair correlation
function occur at the same locations for cluster liquids and cluster
crystals (a). Bottom panel: These peaks in cluster liquids are density-
independent, like the density-independent lattice constant of cluster
crystals (b). Note that the second peak from the left is the cluster
lattice constant peak; its height grows when T is lowered (a) or when
n is increased at fixed N (b). The figure demonstrates that clustering
occurs already in the liquid phase and not at the phase transition. In
all cases, β = 4, 10, 11.21, 12, 11, 10, 6, and 4, respectively.

in the liquid phase, the first few relevant crystal peaks and
in particular the cluster lattice constant peak should appear
in the correlation function due to the short-range order of
liquids. This is indeed the case, as shown in Fig. 9, where the
correlation functions for density n = 1.1 are shown near the
phase transition. The second peak from the left is the lattice
constant peak, which is almost temperature-independent. This
peak persists deep into the liquid phase but becomes less
pronounced. This indicates that particles are clustering before
solidification to cluster crystals, and clustering does not ap-
pear suddenly at the phase transition. Since the lattice constant
is independent of density for cluster crystals, we expect that
this peak in the liquid phase is also density-independent,
which is the case as shown in Fig. 9. Therefore, the cluster
liquid is well-defined.

Having defined cluster liquids, we discuss the major dif-
ferences of such liquids and particle liquids in terms of their
typical dynamical processes. In particle liquids, the dominant
processes are particle oscillations in the potential formed by
the neighbors and the eventual diffusion of the particles. These
two processes also occur in cluster liquids for the centers of
mass of clusters. However, due to the clustering, the potential
well is much stronger and remarkably particles in a cluster
can undergo many oscillations within the cluster diameter
before the cluster occupation number changes. The diffusion
of clusters is also much harder than single particles as the
diffusion of a cluster is now the center of mass of several
particles. This might be related to our observation of a single
first-order phase transition. Note that many such oscillations
are necessary for well-defined cluster liquids. This is because
particles may also “cluster” together by chance for particle
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liquids. However, such “clusters” break almost immediately
after forming, and as such they are different from the clusters
in cluster liquids. In addition to the two processes above,
cluster liquids have also particle exchanges among clusters
or the constant dynamical breaking and forming of clusters.
There are two typical elementary processes: a cluster may
emit or absorb a particle, or two emitted single particles may
form a new cluster. The combination rate of the latter depends
strongly on the density of the system. For low densities such
as n = 1.1, a single particle may be relatively long-lived as a
single-particle cluster. Nonetheless, such single particles are
the most “reactive” in the liquid, having higher mobilities
and strong tendencies to form clusters. For higher densities
such as n = 2, an emitted particle joins another cluster much
faster, which appears effectively as a particle hopping among
clusters.

Next we present typical dynamics of a particle liquid and
a cluster liquid. We use here a Gaussian potential (GEM2)
and the ultrasoft potential for the two cases, respectively. We
have used N = 1000 particles at the same density n = 1.1 and
β = 10 for comparison, and an updating length scale for a
particle ±0.2 for reasonable time scales of the dynamics. Note
that this length scale is still relatively small compared with
the lattice constant. In Fig. 8, cluster oscillations along with a
particle emission and a subsequent combination are shown for
cluster liquids. For more details of both liquids, we refer to a
movie comparing the two cases [49]. In both cases, the times
are in the unit of sweeps. Finally, it should be emphasized
that for MC dynamics to be realistic, our dynamics is mostly
relevant to experimental settings where inertia effects are
negligible, i.e., the dynamics is heavily overdamped similar
to the molecular-dynamics simulations of Refs. [13,19].

D. Confinement effects

Finally, we have also studied cluster-forming particles in
the presence of a global parabolic trap, motivated by magnetic
trap experiments of the atomic Bose-Einstein condensates
[50,51]. More specifically, the particles interact with each
other and also with an external trap of the form V (r) =
�2r2/2. We have explored values from � = 0.1 to 2, and
we obtain triangular cluster crystals for � � 0.4 at low tem-
peratures. Note that density as well as periodic boundary
conditions are no longer relevant in this setting, as particles
are confined by the external trap. The trapping frequency �

controls the density and size of the system.
Interestingly, the lattice spacing is again robust in this

setting for the range of trapping frequencies studied here. As
� increases, the lattice constant does not change significantly
as in non-cluster-forming systems [52,53], but rather particles
form larger, more populated clusters, and hence a smaller
lattice for the same number of particles. See Fig. 10 for
typical equilibrium states at four representative temperatures
for � = 1. The lattice constant of about 1.465 is very similar
in all cases. The cluster sizes are no longer uniform due
to the trap. Instead they are larger at the center of the trap
and smaller at the edge. The problem is also related to the
intervortex potentials with long-range attraction and multiple
intermediate repulsive length scales, which is expected in
layered systems [21].
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FIG. 10. Monodisperse particles in an external harmonic trap of
strength � = 1 with 400 particles (a)–(d). Note the same lattice
structure as the free case, but with very uneven cluster sizes. The
clusters are larger at the center of the trap and smaller at the edge
of the lattice. The broad range of cluster sizes leads to nonuniform
crystallization or melting, as larger clusters order first followed by
smaller clusters upon further cooling. In particular, at intermediate
temperatures such as T = 0.68, the system remarkably has a solid
core with a shell of liquid fluid around it.

As a consequence, the system has many energy scales.
Upon a slow cooling, the particles order first at the center
of the trap and then gradually in smaller clusters at the
edge; cf. with a discussion of melting of ordinary vortex
lattices in a trap [54,55]. This can be understood from the
phase diagram shown in Fig. 4. For intermediate temperatures
such as T = 0.68, the system can remarkably have a solid
cluster-crystalline core surrounded by a cloud of fluid. This
inhomogeneous melting is an interesting phenomenon that
can be experimentally realized.

IV. CONCLUSIONS

In this work, we studied a system of monodisperse particles
interacting via an ultrasoft potential in two dimensions. We
find that simulated annealing is not effective to reach ther-
mal equilibrium even for this clean system without disorder,
while it is still a useful tool for optimizations. Under these
conditions, parallel tempering is shown to be more efficient
than population annealing. We have presented a simple mean-
field characterization of the ground states and compared its
predictions with Monte Carlo results, finding reasonably good
qualitative and quantitative agreement.

With the resolutions that we can achieve, the cluster liquid
to cluster crystal phase transition is first order and occurs in
a single step. We do not find indications for the formation
of an intermediate hexatic phase, which in contrast is the
case for non-cluster-forming systems. Our analysis is based
on equilibrium energy histograms near the transition, without
using any cluster-related parameter. The results are relevant
for the problem of melting transitions in systems of soft

042140-9



WENLONG WANG et al. PHYSICAL REVIEW E 99, 042140 (2019)

particles and the problem of a vortex melting phase transition
in superconductors with multiscale cluster-forming intervor-
tex forces [13,21,29].
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