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The eigenstate thermalization hypothesis (ETH) implies a form for the matrix elements of local operators
between eigenstates of the Hamiltonian, expected to be valid for chaotic systems. Another signal of chaos is a
positive Lyapunov exponent, defined on the basis of Loschmidt echo or out of time order correlators. For this
exponent to be positive, correlations between matrix elements unrelated by symmetry, usually neglected, have
to exist. The same is true for the peak of the dynamic heterogeneity length χ4, relevant for systems with slow
dynamics. These correlations, as well as those between elements of different operators, are encompassed in a
generalized form of ETH.
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I. INTRODUCTION

In recent years there has been a renewal of interest in
chaotic systems within a quantum mechanical description.
A characterization of wave functions is the eigenstate
thermalization hypothesis (ETH), an assumption that leads
to a form for the matrix elements of local operators in the
energy eigenbasis and can be viewed as an extension of
ideas borrowed from random matrix theory. On the other
hand, the Lyapunov exponent, a fingerprint of chaoticity in
classical systems describing the sensitivity of the system’s
dynamics to a small perturbation [1], has been considered
also for quantum systems based on the definition of suitable
four-point correlation functions. Both the applicability of the
ETH to chaotic systems and the emergence of a Lyapunov
exponent in their dynamics are subjects of active current
research. The simultaneous consideration of these two
aspects for nonintegrable systems raises the question of how
high-order correlation functions are described within the ETH
ansatz, the subject of this paper.

In the following, we consider a Hamiltonian H which we
assume is not integrable, and its eigenvalues ei. We assume
that there is a parameter (e.g., h̄ or the number of degrees
of freedom N) that controls the level spacing δe. Because
timescales and energy are inversely related, tδe ∼ h̄, this
also defines the Heisenberg time 2π h̄/δe, the longest in the
system’s evolution (“a theoreticians’s time” [2]). Between the
smallest microscopic time and the Heisenberg time are phys-
ical times where some correlations are nonzero [3]. Because
the level density is ∼h̄N in the semiclassical limit, both small
h̄ and large N may be cases where the separation of correlation
and Heisenberg times is large, and we are thus allowed to
consider an energy scale � that contains many levels, but is
much smaller than the energy corresponding to the inverse of
all interesting physical times.

The eigenstate thermalization hypothesis, as applied to
expectation values [2,4–6], is usually stated as follows: For
the matrix elements of a smooth observable A in the energy

eigenbasis, putting e+ ≡ (ei + e j )/2,

Ai j = a(e)δi j + Ri jF (e+, ei − e j )e
−S(e+ )/2, (1)

where both a(e) and F (e+, ω) are assumed to be smooth
functions of their arguments. For macroscopic systems, as
we shall mostly consider here, we may assume that a(e) is
a smooth function of the energy density. The origin of the
factor e−S(e+ )/2 comes from the spreading of weights over
many levels, and is the only one compatible with F (e+, ω) of
order one, as we shall see. The |Ri j | have expectations of order
unity. Here, we may consider A’s that are real or complex
Hermitian. We have

Ri j = Rji real, for A real,

Ri j = R∗
ji complex with random phase, for A complex.

(2)

Now, the off-diagonal elements Ri j are usually considered
as independent random variables and therefore their product,
apart from the obvious symmetries above, average to zero.
Does this assumption, together with (1), contain everything
that is necessary to calculate n-point functions? Clearly not,
as this would ultimately mean that all higher correlation
functions are obtainable as model-independent functionals
of the one- and two-point functions, i.e., all models would
be Gaussian. In particular, the correlations that determine
the Lyapunov exponent [1,7–12], as well as the dynamic
heterogeneities χ4, are not fully included—and the most
important physical part is indeed absent—in (1).

Let us now be more clear on what ensemble we have in
mind when we say “random.” We may consider (i) energies
averaged over windows of extension in energy � as above, (ii)
a perturbation H → H + �Hr , where Hr is a local random
Hamiltonian and the coupling is strong enough to couple
nearby levels but sufficiently weak so as to not affect cor-
relation functions at physical times (see Deutsch [4]), and
(iii) a set of transformations U over physical observables
described below (“typicality”) (see Refs. [13–16]). Denoting
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with an overbar averages over any of these ensembles, we may
write

Ai1i1 = F(1)
e+ , Ai1i2 Ai2i1 = e−S(e+ )F(2)

e+

(
ei1 − ei2

)
for i1 �= i2,

(3)

where we have defined F(2)
e+ (ei1 − ei2 ) = |F (e+, ei1 − ei2 )|2.

In the following sections we introduce and justify an
ansatz for higher correlations, and we show how it ap-
plies to the calculation of the out of time order correla-
tors (OTOCs). We also give numerical support to the con-
tention that the correlations between matrix elements are not
negligible.

A. A convenient time axis

Here, we show how working on the shifted time axis (and
correspondingly, a split Gibbs measure in the trace) is the
natural strategy [8,17]. A way to introduce this construction is
to consider two-point functions. The correlations and response
functions are defined as (see, e.g., Ref. [18])

C(t, t ′) = 1

2
Tr[[A(t ), A(t ′)]+e−βH ]/Z,

R(t, t ′) = i

h̄
Tr[[A(t ), A(t ′)]−e−βH ]�(t − t ′)/Z, (4)

where we have made explicit h̄. For t1 > t2,{
C − ih̄

2
R

}
(t1 − t2) = Tr[A(t1)A(t2)e−βH ]/Z. (5)

It is easy to derive the so-called Kubo-Martin-Schwinger
(KMS) condition [19], the quantum version of fluctuation-
dissipation relations, which in the time domain may be ex-
pressed as a symmetry property,[{

C− ih̄

2
R

}(
τ − iβ h̄

2

)]∗
=
{

C− ih̄

2
R

}(
τ − iβ h̄

2

)
, (6)

for all τ . This strongly suggests that the situation becomes
simpler if one displaces the t axis by iβ h̄

2 and defines

Oβ (t, t ′) = Tr[A(t )e− β

2 H A(t ′)e− β

2 H ]/Z. (7)

The KMS condition (6) is now the statement that Oβ (t, t ′)
is real, which is immediate from Hermiticity and the cyclic
property of the trace,

Oβ (t, t ′) = [Oβ (t, t ′)]∗ = [Oβ (t ′, t )]∗. (8)

We shall see the generalization of this below.

B. From matrix elements to correlations

Let us calculate for times small compared to the Heisenberg
time the correlator Eq. (7), using the ansatz (1). We shall do
this quickly here, and will justify the averaging involved in
much more detail in the sections below:

Oβ (t, t ′) =
∑

i

a2(ei )e
−βei/Z +

∑
i j

e−β(ei+e j )/2−S(e+ )|Ri j |2|F (e+, ei − e j )|2eit (ei−e j )/Z. (9)

We may hence change variables e+ = (ei + e j )/2 and ω = ei − e j . Replacing sums by integrals (see, e.g., Refs. [2,6]),∑
i

• →
∫

de eS(e)•, (10)

and performing a saddle point integration for e+ (we are assuming a thermodynamic system), we obtain

Oβ (t, t ′) =
∫

de a2(e)e−βe+S(e)/Z +
∫

de+dω e−βe++S(e+ )|F (e+, ω)|2eitω/Z

= [
F(1)(eβ )

]2 +
∫

dωF(2)
eβ

(ω)eitω, (11)

where eβ is the canonical energy at temperature β.
We first observe that the diagonal term must be of order

one if limt→∞ O(t ) = a is finite, while the scale e−S(e+ ) is
necessary so that the result is of order one, as it should. In
conclusion, we find that the function |F |2(ω) = F(2)

eβ
(ω) is

the Fourier transform of the correlation (7) which is defined
along the shifted time axis. The usual correlation and response
are obtained by shifting back the time axis, and in so doing
collecting a factor cosh(h̄βω/2) and sinh(h̄βω/2), respec-
tively [6]. Indeed, splitting the Gibbs measure gives a much
simpler relation between time correlators and correlations
between matrix elements, and this will be even more so in the
sequel.

II. MATRIX ELEMENTS AND MANY-TIME
CORRELATION FUNCTIONS

In Sec. III, we shall show, using typicality considerations,
that the expectations of the products of matrix elements in
which the indices are not repeated vanish. In this section, we
shall also argue that if an index is repeated more than twice,
then the expectation breaks into a product of expectations.
All in all, for the purposes of computing physical correlation
functions, we shall only need to discuss the following gener-
alization of (3) for different i1, . . . , in,

Ai1i2 Ai2i3 · · · Ain,i1 = e−(n−1)S(e+ ) F(n)
e+

(
ei1 − ei2 , . . . , ein−1 − ein

)
,

(12)
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where e+ = (ei1 + ei2 + · · · + ein )/n and F(n)
e+ (ei1 −

ei2 , . . . , ein−1 − ein ) is a smooth function of the energy
differences and a(e+) is a smooth function of the average
energy density e+/N . The factor

N (n) ≡ e−(n−1)S(e+ ) (13)

guarantees that F(n) is of order one. The averages are as above.
Expression (12) contains (3) as a particular case for n = 1, 2.
A similar expression may be expected to hold if the matrices
are different (e.g., Ai jB ji), with an appropriate function F(n)

dependent on the operators involved.
Note that the usual ETH assumes an absolute value of

the A’s of the order e−S(e+ )/2, while the part contributing to
higher correlations is much smaller, ∼e− n−1

n S(e+ ) per factor.
These correlations between n > 2 matrix elements are indeed
smaller, but enter all expressions for n-point time correlations
through sums with many more terms, so that their contribution
to physical correlation functions is of the same order—just
as what happens between diagonal and off-diagonal terms
in (3). Indeed, as we shall see explicitly below, a sum over
n indices of the average (12) picks up a factor ∼enS from
the density of levels, while we may estimate the sum of the
(larger) fluctuating parts as being only a factor ∼enS/2, due to
random signs.

We have restricted ourselves to different indices. In fact,
when there is a repetition, one can see that what dominates are
products of lower-order expectations under some assumptions
on the fluctuating parts. Consider, for example, the case in
which ir = i1, and all other indices are different,

Ai1,i2 Ai2i3 · · · Air−1,i1︸ ︷︷ ︸Ai1,ir+1 · · · Ain,i1︸ ︷︷ ︸ ≡ CD

= Ai1i2 Ai2i3 · · · Air−1i1 Ai1ir+1 · · · Ain,i1 + C̃D̃, (14)

where we have split into average and fluctuating parts C =
C + C̃ and D = D + D̃. We assume that the average of fluc-

tuating parts C̃D̃ scales at most as (12) (i.e., as the result
without index repetitions). We wish to compare this with the
product of averages, which contain (r − 1) and (n − r + 1)
terms, respectively. Put ea = ei1 +···+eir−1

(r−1) and eb = eir +···+ein
(n−r+1) ,

so that ne+ = (r − 1)ea + (n − r + 1)eb. The size of the
estimate (12) is the exponential of

−(n − 1)S(e+)

= −(n − 1)S

[
(r − 1)ea + (n − r + 1)eb

n

]

� −(n − 1)

[
(r − 1)

n
S(ea) + (n − r + 1)

n
S(eb)

]
, (15)

where in the inequality we have used the convexity of S (itself
a consequence of the positivity of specific heat). This is to be
compared with the estimate for the logarithm of the product,

ln(N (r−1)N (n−r+1)) = −(r − 2)S(ea) − (n − r)S(eb). (16)

Using the fact that n − r + 1 and r − 1 are non-negative, we
check that the product form always dominates,

Ai1,i2 Ai2i3 · · · Air−1,i1 Ai1,ir+1 · · · Ain,i1

∼ Ai1i2 Ai2i3 · · · Air−1i1 Ai1ir+1 · · · Ain,i1 . (17)

FIG. 1. Products corresponding to three-point functions (an al-
ternative representation to Fig. 5): a loop and two cacti.

In short, Ai1i2 Ai2i3 · · · Air−1i1 and Ai1ir+1 · · · Ain,i1 are stochastic
variables whose expectations factorize up to exponential ac-
curacy if their covariances scale as (12). Their variances are
always large, but contribute subdominantly to the sums over
indices involved in the calculation of correlation functions.

Proceeding this way, one may use this argument to gen-
eralize (17). In particular, the fact that the ansatz (12) is all
we need to calculate n-point correlations may be argued as
follows. Consider a product Ai1 j2 · · · Ain jn . We may represent
it as a diagram by using as vertices all the different indices
among the set {i1, . . . , in, j1, . . . , jn}. Each factor Ai j is then
represented by an arrow (for complex Ai j , real Ai j are rep-
resented by a simple edge) going from i to j. We consider

FIG. 2. Diagrams corresponding to four-point functions. All the
diagrams are cacti apart from (f).
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the following: (i) The simplest nonzero expectation, the one
involved in ansatz (12), corresponds to a diagram with all
distinct vertices lying on a single loop. (ii) Next, we consider
a tree of loops, joined to one another at single vertices: a
“cactus” diagram [a two-leaf cactus is (17)]. The entropic
argument (15) may be generalized (see Appendix B) to argue
that the expectation of such a product is dominated by a prod-
uct of its constituent loops, each obtained from (12), under
the assumption that the covariances scale as (12). This is the
generalization of (17). (iii) Finally, we have products that are
“non catctus,” for example, Ai jA jkAkiAikAk jA ji. These prod-
ucts may be decomposed in loops in more than one way [for
example, (Ai jA jkAki )(AikAk jA ji ) = (Ai jA ji )(AkiAki )(AjkAk j )].
For these we make the assumption that their order in e−S is the

same as the one of the decomposition in loops that dominates.
These expectations may be large in order, but they have less
free indices that the corresponding cactus, and hence pick up
less factors eS and their contribution to the n-point correlation
functions is subdominant. In Figs. 1 and 2 we show examples
of loops, cactus, and noncactus products. We shall not discuss
the averages of noncactus products here, but let us note that
we need to calculate them if we wish to determine the whole
probability distribution P(|Ai j |), through expectations of the
moments 〈|Ai j |n〉.

Correlations

The functions F(n) are closely related to the time
correlations [8],

Oβ (t1, . . . , tn) = Tr[A(t1) · · · e− β

n H A(tn)e− β

n H ]/Z=
{∑

i1,...,in

e− β

n (ei1 +···+ein )Ai1i2 Ai2i3 · · · Ain,i1 eit1(ei1 −ei2 )+it2(ei2 −ei3 )+···itn (ein −ei1 )

}/
Z,

(18)

which clearly depend only on time differences. (From here onwards we set h̄ = 1.) Time correlations are invariant with respect to
cyclic permutations of indices, a translation of all times Oβ (t1, . . . , tn) = Oβ (t1 + τ, . . . , tn + τ ), and satisfy the KMS condition
[the generalization of (8)],

Oβ (t1, . . . , tn) = [Oβ (tn, . . . , t1)]∗. (19)

The ordinary n-point correlations and responses can be obtained by analytic continuation. Shifting the various times by a suitable
imaginary amount,

Oβ (t1 − iβ/n, t2 − 2iβ/n, t3 − 3iβ/n, . . . ) =
{∑

i1,...,in

e−βei1 Ai1i2 Ai2i3 · · · Ain,i1 eiei1 (t1−tn )+···+iein (tn−tn−1 )

}/
Z. (20)

Let us consider, for the moment, the partial sum of (18),

Dβ (t1, . . . , tn) =

⎧⎪⎨
⎪⎩
∑
i1 ,...,in

different

e− β

n (ein +···+ei1 )Ai1i2 Ai2i3 · · · Ain,i1 eit1(ei1 −ei2 )+it2(ei2 −ei3 )+···itn(ein −ei1 )

⎫⎪⎬
⎪⎭
/

Z. (21)

Equation (19) clearly implies also that Dβ (t1, . . . , tn) = [Dβ (tn, . . . , t1)]∗ and

Dβ (t1 − iβ/n, t2 − 2iβ/n, t3 − 3iβ/n, . . . ) =

⎧⎪⎨
⎪⎩
∑
i1 ,...,in

different

e−βei1 Ai1i2 Ai2i3 · · · Ain,i1 eiei1 (t1−tn )+···+iein (tn−tn−1 )

⎫⎪⎬
⎪⎭
/

Z. (22)

We also consider the Fourier transform,

D̂β (ω1, . . . , ωn−1) = 1

(2π )(n−1)

∫
dt1, . . . , dtn−1 Dβ (t1, . . . , tn−1, 0)e−i(ω1t1+···+ωn−1tn−1 ), (23)

which may be written as

ZD̂β (ω1, ..., ωn−1) =
∑
i1 ,...,in

different

e− β

n (ei1 +···+ein )Ai1i2 Ai2i3 · · · Ain,i1δ
(
ei1 − ei2 − ω1

)
δ
(
ei2 − ei3 − ω2

) · · · δ(ein−1 − ein − ωn−1
)
. (24)

Equation (24) describes a function D̂β made of many deltas of random amplitudes, a “comb.” The definition implies no
assumption. If we now perform an average of the operators in the spirit of a typicality argument (see the next section) we
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obtain, assuming (12),

D̂β (ω1, . . . , ωn−1) =
∑
i1 ,...,in

different

e− β

n (ei1 +···+ein )Ai1i2 Ai2i3 · · · Ain,i1δ
(
ei1 − ei2 − ω1

)
δ
(
ei2 − ei3 − ω2

) · · · δ(ein−1 − ein − ωn−1
)
/Z,

(25)∑
i1 ,...,in

different

N (n)(e+)e−βe+ F(n)
e+ (ω1, . . . , ωn−1)δ

(
ei1 − ei2 − ω1

)
δ
(
ei2 − ei3 − ω2

) · · · δ(ein−1 − ein − ωn−1
)
/Z.

(26)

Smoothing over a scale of many eigenvalues, but small energy difference �, replacing sums by integrals (see, e.g., Refs. [2,6])∑
i • → ∫

de eS(e)•, and performing saddle point integration for e+, we obtain

D̂β (ω1, . . . , ωn−1)|� = F(n)
eβ

(ω1, . . . , ωn−1), (27)

where eβ is the canonical energy at temperature 1/β, associated with the partition function Z . This justifies the choice made for
N (n), that precisely cancels the level density. In going from (10) to (27) we have used that

S
(
ei1

)+ · · · + S
(
ein

)
= S

(
e+ + ei1 − e+

)+ · · · + S(e+ + ein − e+)

= nS(e+) + β
[(

ei1 − e+
)+ · · · + (

ein − e+
)]+ S

′′
(e+)

[(
ei1 − e+

)2 + · · · + (
ein − e+

)2]/
2 + · · · ∼ nS(e+), (28)

where we have used that the quadratic and higher terms in (ei − e+) become negligible—see the argument leading to (210)
in Ref. [6]. Note the simplifying role of using a split Gibbs-Boltzmann factor, guaranteeing the cancellation of terms linear in
(ei − e+).

We can also write

Dβ (t1, . . . , tn−1, 0) ∼
∫

dω1, . . . , dωn−1 ei(ω1t1+···+ωn−1tn−1 )F(n)
eβ

(ω1, . . . , ωn−1), (29)

where the ∼ sign means that the approximate equality holds for times t � �−1, so that the Fourier transform implicitly smooths
the amplitudes of the delta peaks in Eq. (24) and we may replace D̂ by F: This allows us to write the equation for Dβ without
any other averaging.

In order to reconstruct the complete time correlation (18), we need to consider all the different possible ways in which indices
may coincide. We shall do this in detail for three- and four-point functions below; let us state here the basic principle. Suppose
we are calculating

D(•)
β (t1, . . . , tn) =

⎧⎪⎨
⎪⎩
∑
i1 ,...,in

different

e− β

n (ei1 +···+ein ) Ai1i2 Ai2i3 · · · Air−1i1︸ ︷︷ ︸Ai1ir+1 · · · Ain,i1︸ ︷︷ ︸ eit1(ei1 −ei2 )+it2(ei2 −ei3 )+···itn (ein −ei1 )

⎫⎪⎬
⎪⎭
/

Z

=

⎧⎪⎨
⎪⎩
∑
i1 ,...,in

different

e− β

n (ei1 +···+ein ) Ai1i2 Ai2i3 · · · Air−1i1︸ ︷︷ ︸Ai1ir+1 · · · Ain,i1︸ ︷︷ ︸ eiei1 (t1−tn )+···+iein (tn−tn−1 )

⎫⎪⎬
⎪⎭
/

Z, (30)

as in (14). We may replace this by the product average (17) and compute everything in terms of lower correlation functions.
Another way of doing this is to observe that if we add in (18) to the times (t1 + s, t2 + s, . . . , tr−1 + s, tr, . . . , tn−1, tn), this
produces a modification only in a factor eis(eir −ei1 ). Letting s → ∞ will produce a rapidly oscillating factor whose contribution
will cancel through random phases—the usual argument for the diagonal approximation. Hence, we may make the association
lims→∞ eis(ei1 −eir ) ↔ δir i1 , and

lim
s→∞ Oβ (t1 + s, t2 + s, . . . , tr−1 + s, tr, . . . , tn) =

{∑
i1,...,in

δir i1 e− β

n (ei1 +···+ein )Ai1i2 Ai2i3 · · · Ain,i1 eit1(ei1 −ei2 )+it2(ei2 −ei3 )+···itn (ein −ei1 )

}/
Z.

(31)
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As a final remark, let us mention that if A is an observable satisfying ETH, consistently, An should also be. Let us here only argue
that the n-element correlations of A contribute to 〈An〉,∑

i

(An)ii e−βei/Z = Oβ (−iβ/n,−2iβ/n,−3iβ/n, . . .) = Dβ (−iβ/n,−2iβ/n,−3iβ/n, . . . ) + other

∼
∫

dω1, . . . , dωn−1 e−i[iβω1/n,+2iβω2/n···+i(n−1)βωn−1/n]F(n)
eβ

(ω1, . . . , ωn−1) + other, (32)

so we see that F(n)
eβ

definitely has a contribution to the diagonal part of a power of matrices. The full closure of the forms of
expectations under matrix products is an interesting question to check in detail, but we shall do this in a future work.

III. “TYPICALITY” OF OPERATORS

In this section we use “typicality” arguments to justify the
claim made above, that only expectations with every index
repeated are nonzero.

A. Two-point functions

Consider a situation where A would be a full M ∗ M com-
plex Hermitian matrix, in the basis of the Hamiltonian (i.e.,
the function F would be a constant). A notion of typicality
that goes back to Von Neumann [13], and further discussed
in Refs. [14,16] (here we follow Ref. [15]) is to assume
that A may be replaced by Au = UAU †, with U a Gaussian
random matrix, without altering results such as correlations.
The group associated with U depends on the symmetry of A: If
it is a complex Hermitian, the U is a unitary matrix, while if A
is real, it is orthogonal. We shall here restrict ourselves to the
unitary case; the generalization to orthogonal or symplectic
cases is straightforward.

This typicality cannot apply for rotations in the entire
Hilbert space in reality, because they would destroy the band
structure given by F that determines the time-correlation
functions, but let us ignore this for the moment. We can then
evaluate the correlation function as an average over U using

Au
i jA

u
ji = aδi j + b, (33)

where a, b are related to the invariants of the matrix, M(a +
b) = Tr A and M(a + b)2 + M(M − 1)b2 = Tr A2.

Clearly, one may generalize this to n-point functions [15],

Au
i1 j1

· · · Au
in jn

= Ui1 ī1 · · ·UinīnU
∗
j1 j̄1

· · ·U ∗
jn j̄n

Aī1 j̄1 · · · Aīn j̄n , (34)

where we assumed implicit summation over repeated indices.
For the unitary group [15,20],

Ui1 ī1 · · ·UinīnU
∗
j1 j̄1

· · ·U ∗
jn j̄n

=
∑
σ,σ̄

C(σ, σ̄ )δi1σ ( j1 ) · · · δinσ ( jn )δī1σ̄ ( j̄1 ) · · · δīnσ̄ ( j̄n ), (35)

where σ, σ̄ are all permutations and C(σ, σ̄ ) known combina-
torial numbers. Therefore,

Au
i1 j1

· · · Au
in jn

=
∑
σ,σ̄

C(σ, σ̄ ) Aσ̄ ( j̄1 ) j̄1 · · · Aσ̄ ( j̄n ) j̄n δi1σ ( j1 ) · · · δinσ ( jn )

=
∑

σ

A(σ ) δi1σ ( j1 ) · · · δinσ ( jn ). (36)

The matrix A then enters in the average only through its in-
variants A, implicitly defined above. Terms which are not in-
variant under rotation would be in fact modified by averaging.
For n = 2, for instance, there are two terms proportional to
δi1 j1δi2 j2 and δi1 j2δi2 j1 which for the particular case of Eq. (33)
reduce to δi j ∗ δi j = δi j and to δii ∗ δ j j = 1.

In our case, we have to deal with averages of the particular
kind,

Au
i1i2

Au
i2i3

· · · Au
ini1

=
∑

σ

A(σ )δi1σ (i1 ) · · · δinσ (in ), (37)

where the A(σ ) are functions of the invariants of the matrix
A. Clearly, the product δi1σ (i1 ) · · · δinσ (in ) impose the equalities
of indices in groups. For example, δi1i2δi2i3 · · · δini1 imposes
the equality of all indices, while δi1i1δi2i2 · · · δinin = 1 imposes
nothing.

Now, suppose we wish to compute using the typicality of
operators a quantity such as (21), for the moment still for the
case of a “full” M ∗ M random matrix. We should inject (37)
into (18),

ZOβ (t1, . . . , tn) →
∑

i1,...,in

∑
σ

A(σ )δi1σ (i1 ) · · ·

δinσ (in )e
it1(ei1 −ein )+it2(ei2 −ei1 )+···itn (ein −ein−1 )− β

n (ei1 +···+ein ). (38)

For the case n = 2, Eq. (38) reads

Oβ (t, t ′) = A1

∑
i �= j

ei(t−t ′ )(ei−e j )e−β(εi+ε j )/2 + A0, (39)

where we have explicitly put all diagonal contributions in the
second term.

It is clear then, comparing with (1), what we are missing
in this first typicality approach: We need to impose the fact
that local operators may be typical with respect to rotations
between eigenstates associated with nearby levels, but “in the
large” they have a band structure given by F (e+, ω), which
so far is absent. One way to accomplish this [4] has already
been mentioned above: It is to add to the Hamiltonian a
small [O(�)] random perturbation that will effectively mix
the level within a range of energy �. We follow here a slightly
different route [15]. Let us then consider a realistic system,
where there is a concentration of matrix elements near the
diagonal. Imagine, for example, we wish to estimate which of
the products Ai jAkl have a nonzero expectation value. We first
introduce an energy scale � such that it contains many levels,
but is small in the thermodynamic limit (or, in a semiclassical
one). A modified form of typicality may be introduced as
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FIG. 3. A rotation group with three independent � ∗ � unitary
transformation matrices.

follows: Consider the energy intervals{
ei − �

2
, ei + �

2

}
,

{
e j − �

2
, e j + �

2

}
,{

ek − �

2
, ek + �

2

}
,

{
el − �

2
, el + �

2

}
, (40)

and let us first assume that they are disjoint. We now define
a group of unitary matrices of the form shown in Fig. 3,
where U (i),U ( j),U (k),U (l ) are independent � ∗ � matrices.
We now assume that there is typicality within this group, i.e.,

Au
i jA

u
kl = Ai′ j′Ak′l ′U

(around i)
ii′ U (around j)∗

j j′ U (around k)
kk′ U (around l )∗

ll ′ .

(41)
The average is clearly zero, because each rotation is indepen-
dent. In order to have the possibility of a nonzero average,
we need that a matrix U (a) appears at least twice, once conju-
gated. For this to happen, we need that the indices (i, j, k, l )
be at most in two intervals. Consider the case when (i, l )
belong to an interval, and ( j, k) to another, and the rotations
associated with these two sets are U and V , respectively. We
have then

Au
i jA

u
kl = Ai′ j′Ak′l ′Uii′V ∗

j j′Vkk′U ∗
ll ′ = A1(intervals)δ jkδil . (42)

Here and in the following, the argument “(intervals)” makes
explicit the fact that the constant is dependent on where
the intervals considered by the rotations are located, i.e., a
function of the energies defining (up to a small uncertainty
�) the two intervals. The other possibility is that (i, j) belong
to an interval, and (k, l ) to another. Then, we have

Au
i jA

u
kl = Ai′ j′Ak′l ′Uii′U ∗

j j′Vkk′V ∗
ll ′ = A0(intervals)δi jδkl , (43)

a product of diagonal terms. This means that the nonzero
expectation is

Au
i jA

u
ji = A0(intervals)δi j + A1(ei, e j )

= A0(εi )δi j + N (2)F(2)
e+ (ei − e j ). (44)

The normalization N (2) is for the moment arbitrary. We set
it to N (2) = e−S(e+ ) so that F(2) remains of order one. For the
first term we assume that A0 = a2 may be at most of order

one, corresponding to an operator A having a finite limit for
its large-time two-point function.

B. Three-point functions

Consider first a term such as Au
i1, j1

Au
i2, j2

· · · Au
in, jn

or, in par-

ticular, Au
i1,i2

Au
i2,i3

· · · Au
in,i1

. The energies ei1 , ei2 , . . . , ein may
be contained in at most n intervals of size �. If we proceed
as before, with rotation along at most n intervals around the
indices, we find as before that in order to have a nonzero
average, a rotation must appear at least twice, one affecting
a first and one affecting a second index. This means that we
need to restrict ourselves to j indices such that the e j are
contained in the same intervals. In order to see how these
averages work, let us develop in detail the case n = 3.

Our unitary matrix ensemble is as in Fig. 3. In the
left-hand column of Fig. 4 we show the combinatorics of
the energy intervals. Next, averaging over the independent
transformations for every interval, we obtain a number of delta
functions imposing some equalities of indices. The diagrams
on the right have a solid line if the indices coincide, a dashed
line if they do not coincide but are in the same energy block,
and no line when they are in different blocks.

(1) If two indices are different k �= l , but they belong to the
same interval, this means that |ek − el | → 0+: They are very
close in terms of the parameters of the problem h̄, 1/N , but do
not coincide.

(2) If two indices are at different intervals, we assume that
the average over the combined rotations depends smoothly on
the energies ek, el .

Typicality with respect to a random unitary transformation
of this kind implies that matrix element products involving
eigenstates associated with eigenvalues that are neighbors or
differ by a few level separations may be completely differ-
ent from matrix element products containing the diagonal
elements. This is already so in the original ETH ansatz,
where the diagonal elements Aii scale differently (have a large
expectation value) from the off-diagonal elements Ai j , i �= j.

Going back to the diagrams in Fig. 4, the situation is
summarized as follows. Putting e+ = (ei + e j + ek )/3:

(1) (i1, i2, i3) in different blocks [Fig. 4(a)], then

Au
i1,i2

Au
i2,i3

Au
i3,i1

= N (3)F(3)
e+

(
ei1 − ei2 , ei2 − ei3

)
, (45)

where N (3) is a smooth function of e+ fixed so that F is of
O(1). We shall determine it below.

(2) Whenever two energies are different but are in the same
block, we assume that the corresponding matrix element is
simply given by a limit of Eq. (45). For example,

(b1): Au
i1,i2

Au
i2,i3

Au
i3,i1

= N (3) lim
(ei2 −ei3 )→0+

F(3)
e+

(
ei1 − ei2 , ei2 − ei3

)
,

(e1): Au
i1,i2

Au
i2,i3

Au
i3,i1

= N (3) lim
(ei1 −ei2 )→0+

lim
(ei2 −ei3 )→0+

F(3)
e+

(
ei1 − ei2 , ei2 − ei3

)
.

(46)

This is natural, since the size � of the intervals is many level
separations but otherwise arbitrary.
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FIG. 4. A dotted line in the diagram on the left column means that the indices are in the same energy interval, and in a diagram on the
right column that they are in the same interval but are not equal. In the diagrams of the right columns a solid line stands for a Kronecker
delta, imposing the equality of indices. A double line imposes the same equality twice (e.g., δi jδ ji), while a blue dot a delta with equal indices
(e.g., δii): They are indicated only for counting purposes, to show that there are three Kronecker symbols in each diagram.

(3) If two indices coincide—there is a solid line in the diagram—then the elements may scale in a different way, and their
form is not obtained as a limit of F(3)

e+ (ei1 − ei2 , ei2 − ei3 ).
All in all, the situation is reduced to Fig. 5, with a scaling function for each set of indices that differ. We can now write, for

times that are smaller than the Heisenberg time, so that we may replace the matrix products by their averages,

Oβ (t1, t2, t3) = Tr
[
A(t1)e− β

3 H A(t2)e− β

3 H A(t3)e− β

3 H
]/

Z

=
{∑

i1,i2,i3

e− β

3 (ei1 +ei2 +ei3 )Ai1i2 Ai2i3 Ai3,i1 eit1(ei1 −ei3 )+it2(ei2 −ei1 )+it3(ei3 −ei2 )

}/
Z

=
{∑

i1,i2,i3

+
∑

i1,i1,i1

+
∑

i1,i2,i2

+
∑

i1,i2,i1

+
∑

i1,i1,i3

}/
Z

∼ Dβ (t1, t2, t3) + D(b)
β (t1, t2, t3) + D(c)

β (t1, t2, t3) + D(d )
β (t1, t2, t3) + D(e)

β (t1, t2, t3), (47)

in direct correspondence with the diagrams of Fig. 5 [we have not made explicit the supraindex (a) for the function corresponding
to all indices different: It will be understood by default]. Here and in what follows, a bar over

∑
means that the sum is

unrestricted, while a
∑

without a bar assumes all indices are different, unless they have explicitly the same name.
As mentioned above, to clarify the role of the sum over repeated indices in the time domain, consider the limit of times larger

than the Heisenberg time, lims→∞ Oβ (t1, t2 + s, t3). From Eq. (18) we see that the rapidly oscillating factors eis(ei2 −ei3 ) will cancel
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everything by random phases, except for the diagonal terms with i2 = i3. Hence

lim
s→∞ Oβ (t1, t2 + s, t3) =

{∑
i1,i2

e− β

3 (ei1 +2ei2 )Ai1i2 Ai2i2 Ai2,i1 ei(t1−t3 )(ei1 −ei2 )

}/
Z = D(c)

β (t1, t3) + D(b)
β . (48)

C. Four-point functions

We shall consider also the four-point function, as it is the one that is used to define the Lyapunov exponent and the dynamic
heterogeneity length χ4 [21],

ZOβ (t1, t2, t3, t4) = tr
[
e− β

4 H eit1H Ae−it1H e− β

4 H eit2H Ae−it2H e− β

4 H eit3H Ae−it3H e− β

4 H eit4H Ae−it4H
]

=
∑
i jkl

e− β

4 ei ei(t1−t4 )ei Ai je
i(t2−t1 )e j e− β

4 e j A jkei(t3−t2 )ek e− β

4 ek Akle
i(t4−t3 )el e− β

4 el Ali. (49)

We now wish to express (49) as a sum of terms with all possible index contractions, i.e., corresponding to the diagrams in Fig. 6.
Let us first consider the sum with all indices different, corresponding to Fig. 6(a),

ZDβ (t1, t2, t3, t4) =
∑
i jkl

e− β

4 ei ei(t1−t4 )ei Ai je
i(t2−t1 )e j e− β

4 e j A jkei(t3−t2 )ek e− β

4 ek Akl e
i(t4−t3 )el e− β

4 el Ali, (50)

or its Fourier transform D̂β (e12, e23, e34),

D̂β (e12, e23, e34) ≡
∑
i jkl

δ(ei − e j − e12)δ(e j − ek − e23)δ(ek − el − e34)e− β

4 ei Ai je
− β

4 e j A jke− β

4 ek Akl e
− β

4 el Ali/Z. (51)

Again, the difference between D̂β (e12, e23, e34) and
F(4)

β (e12, e23, e34) is that D̂β (e12, e23, e34) is a “comb” of

delta functions, while F(4)
β (e12, e23, e34) is a version that has

FIG. 5. The final situation: Products as in diagram (a), diagrams
(c)–(e), and diagram (b) have different scaling functions.

been smoothed either by averaging over an energy window or
by averaging over unitary transformations as described above.
Equation (12) is, for the case of four different indices,

Ai jA jkAklAli = F(4)
e+ (ei − e j, e j − ek, ek − el )e

−3s(e+ ). (52)

Other types of contributions to the four-point correlation
function, corresponding to the diagrams in Fig. 6, are listed in
Appendix A.

IV. THE LYAPUNOV EXPONENT AND THE OUT
OF TIME ORDER CORRELATOR

The Lyapunov exponent is derived from the OTOC
Oβ (t, 0, t, 0) by assuming [8] that there is a time regime,
larger than the correlation time, such that

Oβ (t, 0, t, 0) ∼ Co − h̄2C1

Na
eλt + · · · ∼ Co − eλ(t−te ), (53)

for times te  t  1/λ, where te = a ln N/h̄2C1

λ
is (an estimate

of) the Ehrenfest time, the time taken for a minimal packet
to spread throughout phase space [8,22,23] (for a detailed
discussion of the connections between the fidelity decay and
the Lyapunov exponent, see Refs. [1,12]). The quantum ex-
ponent extracted from the OTOC coincides with the classical
one in some instances of the semiclassical limit [22], but this
is not necessarily the case [24]. It should be also noted in
passing, as implicitly stated in Ref. [24], that the Lyapunov
exponent so defined corresponds to an average taken before
the logarithm, and not after as is the normal definition: In the
language of disordered systems it is an “annealed” rather than
a “quenched” average.

The terms contributing to the OTOC can be sepa-
rated in those resulting from different sums over indices,
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FIG. 6. Products corresponding to four-point functions.

corresponding to the diagrams of Fig. 6. As we have seen
above, the only term that is not directly deducible, with a
model-independent [25] formula (see below) from two- or
three-point correlation functions [26], is the sum with all
indices different, so we expect that the exponential growth is
given by this term,

Dβ (t, 0, t, 0) = 1

Z

∑
i jkl

ei(ei−e j+ek−el )t

× Ai jA jkAkl Alie
− β

4 (ei+e j+ek+el ), (54)

a real, even function of time. In Fourier space it reads

G̃β (ω) =
∫

dte−iωt Dβ (t, 0, t, 0)

= 1

Z

∑
i jkl

δ(ei − e j + ek − el − ω)e− β

4 ei Ai je
− β

4 e j

× Ajke− β

4 ek Akl e
− β

4 el Ali. (55)

The smoothed version of this reads

Gβ (ω) = G̃β (ω)|� =
∫

F(4)
β (ω − ω′, ω′′, ω′)dω′dω′′. (56)

What can we expect of the general features of (56)? First
of all, because Dβ (t, 0, t, 0) is expected to be nonzero for
times smaller than the Ehrenfest time, this means that Gβ (ω)
should be smooth on a scale δω � 1/te (by which we mean
that convoluted with a Gaussian having a width smaller than
that, it remains unaltered). We expect, however, oscillations
of δω ∼ 1/te, if D extends to te. The information we seek is in
the envelope of these oscillations.

FIG. 7. The function Ĝβ (ω) for a system of size N = 12 and
where we took � = 0.3 and β corresponding to ε+ in the middle
of the spectrum.

A rapidly oscillating function suggests that one has to
study it for complex variables, which leads us to compute the
Laplace transform,

G(s) =
∫ ∞

0
dt e−tsDβ (t, 0, t, 0) =

∫
dω

∫ ∞

0
dt e−ts+iωt G̃β (ω)

=
∫

dω
sG̃β (ω)

s2 + ω2

= s

Z

∑
i jkl

e− β

4 ei Ai je− β

4 e j A jke− β

4 ek Akl e− β

4 el Ali

(ei − e j + ek − el )2 + s2
(57)

=
∫

dω
sGβ (ω)

s2 + ω2
. (58)

In the last equality we have substituted the function for the
smoothed version, a safe thing to do for s much larger than
the level spacing.

The function G(s) is analytic outside the imaginary s axis
[cf. Eq. (57)] for te finite. However, in the limit of diverging
Ehrenfest time, a form (53) implies that G(s) has a pole in zero
(rounded off at a scale s ∼ 1/te) and a pole in s = λ of residue
∼e−teλ, rounded off at a scale (s − λ) ∼ 1/te. The rounding
off of poles reestablishes analyticity for te finite.

The bound to Lyapunov [8] means that limte→∞ este [G(s) −
Co/s] is analytical for s > 2π

β
.

A. Numerical results

Following Ref. [6], we compute the correlation functions
of a one-dimensional model of hard-core bosons with the
Hamiltonian

Ĥ = −J
L−1∑
j=1

(b̂†
j b̂ j+1 + H.c.) + V

∑
j<l

n̂ j n̂l

| j − l|3 + g
∑

j

x2
j n̂ j .

(59)

The number of bosons was set to be L/2. The three terms in
this Hamiltonian describe, from left to right, hopping, dipolar
interactions, and a harmonic potential. Here, x j is the distance
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FIG. 8. The function Gβ (t ) for a system of size N = 10 and
where we took � = 0.3 and β = 0.

of site j from the center of a trap. For V �= 0, this model is
nonintegrable.

Figure 7 shows the function Ĝβ (ω) computed for a system
of size N = 12 where we considered as an observable the
site occupation at the center of the chain, and Fig. 8 shows
its Fourier transform. The sizes are small, but we clearly
see correlations that are absent in the usual assumption of
independence of matrix elements unrelated by symmetry.
Figure 9 shows the contribution of the all terms except the
ones in Fig. 7: We see a behavior very close to that of the
two-point function computed in Ref. [6].

V. CONCLUSIONS

We have argued that the matrix elements of local operators
in the basis of a chaotic Hamiltonian retain correlations that
are small but contribute to higher correlation functions. The

FIG. 9. The contribution to the OTOC of all terms except the one
with all the indices different, the Fourier transform of Oβ (t, 0, t, 0) −
Dβ (t, 0, t, 0). The curve is very similar to the two-point curve, and
is hence unimportant for the Lyapunov times. The system of size
N = 12 and we took � = 0.3 and ε+ in the middle of the spectrum.

set of nonzero expectations of the products of matrix elements
is in a one-to-one relation with the set of connected correla-
tors. Even if the ETH ansatz with independent elements may
be shown to close under products [2,6], so that, for example,
the square of an operator of the ETH form is also of the ETH
form, the neglected correlations between elements contribute
and disregarding them may lead to incorrect results. A simple
argument to convince oneself of this is that, if expectations
of diagonal and variances of off-diagonal elements sufficed to
determine all n-time correlations, then all could be written as
model-independent functionals of one- and two-time correla-
tions, which is for general models obviously not the case. An
interesting generalization of the present work is to derive ETH
forms for the joint distribution of various operators, under the
same assumptions of this paper.
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APPENDIX A: CONTRIBUTIONS
FROM OTHER DIAGRAMS

The other contributions to Oβ (t, 0, t, 0) associated with the
diagrams in Fig. 6 derive from the two-point function within
the standard ETH or its extension for the three-point function,

D(b)(t ) = 1

Z

∑
i, j,k

e−β(2ε j+εk+εi )/4ei(εi−ε j )t ei(ε j−εk )t Ai jA j jA jkAki

∼
∫

dε1dε2eβ(ε1+ε2 )/12ei(ε1−ε2 )t F(3)
εβ

(ε1, ε2)F(1)

× (εβ + 3ε1/4 − ε2/4), (A1)

where we made the change of variables ε1 = εi − ε j , ε2 =
εk − ε j ,

D(c)(t ) = 1

Z

∑
i, j,k

e−β(2εi+εk+ε j )/4ei(εi−ε j )t ei(εi−εk )t Ai jA jiAikAki

∼
[∫

dε1e−βε1/4eiε1t F(2)
εβ

(ε1)

]2

, (A2)

with ε1 = εi − ε j, εi − εk ,

D(d )(t ) = 1

Z

∑
i, j

e−β(3εi+ε j )/4ei(εi−ε j )t AiiAiiAi jA ji

∼
∫

dε1e−βε1/2eiε1t F(2)
εβ

(ε1)[F(1)(εβ + ε1/4)]2,

(A3)

with ε1 = εi − ε j ,

D(e)(t ) = 1

Z

∑
i, j

e−β(εi+ε j )/2Ai jA j jA jiAii

∼
∫

dε1F(2)
εβ

(ε1)F(1)(εβ + ε1/2)F(1)(εβ − ε1/2),

(A4)

with ε1 = εi − ε j .
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Figure 6(f) corresponds to a diagram that is not a cactus
and therefore does not contribute (see the comment in Sec. II).
Finally, one has

D(g)(t ) = 1

Z

∑
i

e−βεi A4
ii ∼ [F(1)(εβ )]4. (A5)

APPENDIX B: COUNTING ARGUMENT

Let us consider a loop with repetitions characterized by
E = ε1 + ε2 + · · · + εn. This is partitioned in k subloops of
sizes na and energies Ea = εi1 + · · · + εina

with a = 1, . . . , k.
We define λa = na/n, with 0 � λa � 1,

∑k
a=1 λa = 1, and

xa = Ea/na. It holds,

(n − 1)S(ε+) = (n − 1)S

(
k∑

a=1

λaxa

)

� (n − 1)
k∑

a=1

λaS(xa) �
k∑

a=1

(na − 1)S(xa),

(B1)

where in the first inequality we have used the convexity of
the entropy and in the second the fact that λa � 1. Therefore,
if we assume that the covariances of such loops (and their
generalization to multipoint functions) scale as e−(n−1)S(ε+ ),
we see that the expectation of the maximal contraction in
loops dominates the expectation of the diagram.
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