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Transient response of an electrolyte to a thermal quench
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We study the transient response of an electrolytic cell subject to a small, suddenly applied temperature increase
at one of its two bounding electrode surfaces. An inhomogeneous temperature profile then develops, causing,
via the Soret effect, ionic rearrangements towards a state of polarized ionic charge density q and local salt
density c. For the case of equal cationic and anionic diffusivities, we derive analytical approximations to q, c,
and the thermovoltage VT for early (t � τT ) and late (t � τT ) times as compared to the relaxation time τT of
the temperature. We challenge the conventional wisdom that the typically large Lewis number, the ratio a/D
of thermal to ionic diffusivities, of most liquids implies a quickly reached steady-state temperature profile onto
which ions relax slowly. Though true for the evolution of c, it turns out that q (and VT ) can respond much faster.
Particularly when the cell is much bigger than the Debye length, a significant portion of the transient response of
the cell falls in the t � τT regime, for which our approximated q (corroborated by numerics) exhibits a density
wave that has not been discussed before in this context. For electrolytes with unequal ionic diffusivities, VT

exhibits a two-step relaxation process, in agreement with experimental data of Bonetti et al. [J. Chem. Phys. 142,
244708 (2015)].
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I. INTRODUCTION

The well-known Soret effect refers to the phenomenon that
ions dissolved in a nonisothermal fluid can show preferential
movement along or against thermal gradients, characterized
by their heats of transport [1,2]. Determining these ionic
heats of transport, both experimentally [3,4] and numerically
[5–7] is of primary importance for all applications involv-
ing nonisothermal electrolyte solutions, e.g., in colloid and
polymer science. When ionic thermodiffusion is impeded, for
instance, by blocking electrodes, local accumulations of either
ionic species can be generated. Since such accumulations
are not necessarily charge neutral, applying a temperature
difference across an electrolyte can generate a so-called ther-
movoltage VT . This thermovoltage, the ionic analog of the
Seebeck potential in semiconductors, opens the door to energy
scavenging from temperature differences [8–11]. Since an
electric current in an external circuit is only present during
the transient buildup of VT (t ) [12], it is of interest to study
how electrolytic cells respond shortly after a temperature
difference is imposed. Bonetti et al. [13] experimentally found
that, after a seemingly instantaneous rise, VT (t ) develops with
the “slow” diffusion timescale L2/D+, with 2L being the
electrode separation and D+ the cationic diffusion constant.

Theoretical models were developed by Agar and Turner
[14] and later by Stout and Khair [15], who both consid-
ered electrolytes with equal cationic and anionic diffusivities,
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D+ = D− ≡ D. Motivated by the typically large ratio a/D ≈
100, with a being the thermal diffusivity, their analyses de-
parted from the ansatz that the steady-state temperature profile
develops instantaneously [T (x, t ) = T (x), with x being the
spatial coordinate of their one-dimensional model electrolytic
cells], after which ions relax slowly. With this ansatz, an exact
expression for the transient response of the neutral salt density
c(x, t ) [14] and approximate expressions for the ionic charge
density q(x, t ) and corresponding VT (t ) [15] were found. As
we show in the present article, the corresponding exact solu-
tions to q and VT decay at late times with a common timescale
τq = L2/(D[(κL)2 + π2/4]), with κ being the inverse Debye
length. This timescale and particularly the appearance of κ

therein presents us with two major problems. The first prob-
lem is that τq ≈ 1/(Dκ2) for large systems (κL � 1), which
does not explain the experimental observations of Ref. [13]
who found that VT develops much slower. As we show in
this article, this discrepancy does not arise when one accounts
for unequal diffusivities among ions. The second, conceptual,
problem that τq hints at is that the ansatz T (x, t ) = T (x) can
be unjustified. To see this, consider the ratio of the timescales
of the pure thermal relaxation of the cell in the absence of ions
[timescale τT = 4L2/(π2a), c.f. Eq. (8)] to that of the ionic
charge relaxation:

τT

τq
= D

a

[
1 + 4(κL)2

π2

]
. (1)

Since κ depends on the salt concentration, this ratio can be
varied over many decades, and is by no means restricted
to τT /τq � 1 (requiring minute devices and very low salt
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FIG. 1. A model thermoelectric cell consisting of a 1:1 elec-
trolyte with Debye length κ−1 (solvent not shown) and two flat elec-
trodes separated over a distance 2L. At time t = 0, the temperature
of one electrode increases by a factor 1 + ε.

concentrations). Hence, an instantaneous steady-state temper-
ature profile onto which ions rearrange slowly is a special
case of a more general problem. Given the longstanding
experimental and theoretical interest in thermodiffusion of
electrolytes [3–8,13–15], it is timely to discuss its solution.

II. SETUP

We consider an electrolytic cell (see Fig. 1) with two paral-
lel flat electrodes at x = ±L. Provided that the electrodes are
much larger than their separation, we can ignore edge effects
and treat this system as being one-dimensional. The electrodes
are chemically inert and impermeable to ions and they are
not connected by an external circuit, hence, do not acquire
a surface charge. The cell is filled with an electrolyte solution
at bulk salt concentration ρs in a solvent of dielectric constant
ε. The valence zi of ionic species i = {+,−} is z+ = 1 for the
cations and z− = −1 for the anions, respectively. The elec-
trolyte is further characterized by ionic diffusion constants Di,
single-ion heats of transport Q∗

i , the mass density � (kg m−3),
the specific heat capacity cp (J K−1 kg−1), and the thermal
conductivity κθ (J s−1 m−1 K−1). For simplicity, we ignore
all (salt) density dependence of these parameters. Moreover,
we ignore convection here, which is reasonable if temperature
differences are small and if the thermal gradient is aligned
in the direction opposite to gravity [16]. Alternatively, con-
vection can be minimized in “microgravity,” e.g., onboard the
International Space Station [17].

A. Governing equations

The electrostatic potential ψ (x, t ), the local ionic num-
ber densities ρ±(x, t ), and the local temperature T (x, t ) are
modeled via the classical Poisson-Nernst-Planck and heat
equations,

ε0ε∂
2
x ψ = −eq, (2a)

∂tρi = −∂xJi, (2b)

Ji = −Di

(
∂xρi + zieρi

kBT
∂xψ + ρiQ∗

i

kBT 2
∂xT

)
, (2c)

∂t T = a∂2
x T − e

�cp
(J+ − J−)∂xψ, (2d)

with e being the proton charge and ε0 being the vacuum
permittivity. First, in the Poisson equation (2a) appears the
ionic unit charge density q = ρ+ − ρ−. Next, the Nernst-
Planck equations (2c) account for diffusion, electromigration,
and thermodiffusion. Finally, in the heat equation (2d) appears
a = κθ/(�cp), the thermal diffusivity, and a heat source term
that was discussed at length in Refs. [18,19].

Initially, the ionic density profiles and temperature are
homogeneous:

ρi(x, t < 0) = ρs, T (x, t < 0) = T0. (3)

Thereafter, at t = 0, the temperature of the electrode at x = L
is suddenly increased to T (L, t =0)=T0+�T , with �T >0.
For t � 0, the boundary conditions at the charge-neutral,
ion-impermeable electrodes read

∂xψ (±L, t ) = 0, Ji(±L, t ) = 0, (4a)

T (−L, t ) = T0, T (L, t ) = T0 + �T . (4b)

We note that Eq. (4a) only fixes ψ up to a constant. Without
loss of generality, we therefore moreover impose

ψ (L, t ) = 0 . (5)

This means that the thermovoltage, VT (t ) = ψ (−L, t ) −
ψ (L, t ), a key observable of our model system, simply reads
VT (t ) = ψ (−L, t ).

B. Dimensionless formulation

We nondimensionalize Eqs. (2)–(5) with ψ̃ = β0eψ
[with β0 = 1/(kBT0)], T̃ = T/T0, x̃ = x/L, t̃ = tD+/L2, ρ̃i =
ρi/ρs, q̃ = q/ρs, J̃i = JiL/(D+ρs), and J̃q = J̃+ − J̃− to find

2∂2
x̃ ψ̃ = −n2q̃, (6a)

∂t̃ ρ̃+ = ∂x̃

(
∂x̃ρ̃+ + ρ̃+

T̃
∂x̃ψ̃ + 2α+ρ̃+∂x̃ ln T̃

)
, (6b)

ξ∂t̃ ρ̃− = ∂x̃

(
∂x̃ρ̃− − ρ̃−

T̃
∂x̃ψ̃ + 2α−ρ̃−∂x̃ ln T̃

)
, (6c)

∂t̃ T̃ = a

D+
∂2

x̃ T̃ − f J̃q∂x̃ψ̃, (6d)

and

ρ̃i(x̃, t̃ < 0) = 1, T̃ (x̃, t̃ < 0) = 1, (7a)

∂x̃ψ̃ (±1, t̃ ) = 0, J̃i(±1, t̃ ) = 0, (7b)

T̃ (−1, t̃ � 0) = 1, T̃ (1, t̃ � 0) = 1 + ε, (7c)

ψ̃ (1, t̃ ) = 0, (7d)

where ξ = D+/D− represents the ratio of ionic diffusivi-
ties, f = kBρs/(�cp) is the ionic heat source coupling, αi =
Q∗

i /(2kBT ) are the reduced Soret coefficients, and ε = �T/T0

measures the size of the thermal quench. Moreover, n = κL
is the dimensionless Debye separation parameter, with κ−1 =
[ε0εkBT0/(2ρse2)]1/2 being the Debye length. At steady state,
n measures to which extent nonzero q values penetrate the
bulk: While n � 1 indicates that q is nonzero only in a small
region close to the electrode surfaces, if n � 1, the ionic
charge imbalance permeates the complete cell [cf. Eq. (15b)].
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For reasons explained in Sec. III B, we omitted ∂x̃Di∂x̃ρ̃i terms
in Eqs. (6b) and (6c).

We see that our system is fully specified by seven di-
mensionless parameters, six of which (n, α±, ξ , a/D+, and f )
appear in Eq. (6), and one of which (ε) appears in Eq. (7c). In
what follows, we will use the dimensionless formulation when
we present simplifications to Eq. (6) because this simplifies
calculations and because this highlights the roles played by
these seven dimensionless parameters. However, when we
present results, we prefer to restore to conventional units
because that makes physical interpretation easier.

The next two sections [III and IV] deal with the case
ξ = 1, which is a reasonable simplification for several alkali
halides. (For, e.g., KCl, RbBr, CsBr, and RbI, we find ξ =
0.97, 1.00, 1.00, and 1.01, respectively [1]). We discuss the
more general case of ξ �= 1 in Sec. V. Importantly, we will
find that the four quantities of our interest (T , ψ , q, and c) all
relax at late times with one of three fundamental timescales:
the “thermal diffusion time” L2/a, the “diffusion time” L2/D,
or the “Debye time” 1/(Dκ2).

III. ANALYTICAL APPROXIMATIONS

We aim at deriving analytical approximations to Eqs. (6)
and (7) for the case ξ = 1. To do so, we employ an essen-
tial simplification of Eq. (6), namely, that f � 1 for most
electrolytes. For small thermal quenches (cf. Sec. III B) this
means that the thermal problem [Eq. (6d)] decouples from the
ionic problem [Eqs. (6a), (6b), and (6c)]. Accordingly, we first
review the thermal relaxation of a pure solvent (Sec. III A),
which serves as input to determine q, ψ , and the local salt
density c = ρ+ + ρ− (Secs. III C and III D).

A. Pure thermal relaxation

In absence of ions, or when the source term of the heat
equation is negligible, transient thermal response to a bound-
ary value quench is governed by a simplified heat equation,
∂t T = a∂2

x T , and the same initial and boundary conditions as
in Eqs. (3) and (4b). Writing K j = jπ/2 for j = 1, 2, 3, . . . ,
the solution to this textbook problem reads [20,21]

T (x, t ) − T0

�T
=

∑
j�1

sin[K j (x/L − 1)]

K j
exp

[
−K2

j

at

L2

]

+ 1 + x/L

2
. (8)

The infinite modes of T decay at increasingly short timescales
L2/(K2

j a) with increasing j: the slowest mode ( j = 1) decays
with τT ≡ 4L2/(π2a), i.e., proportional to the thermal diffu-
sion time.

At early times (t � τT ), T (x, t ) is barely affected by the
Dirichlet boundary condition T (−L, t ) = T0. The temperature
in the finite-sized cell can then also be modeled by the same
heat equation in a semi-infinite geometry x ∈ (−∞, L]. In that
case we have [21]

T (x, t ) − T0

�T
≈ Erfc

[
L − x

2
√

at

]
. (9)

Naturally, the largest error made with this approximation
occurs at the x = −L boundary: [T (−L, t ) − T0]/�T =
Erfc[L/

√
at ] = {2.1 × 10−45, 7.8 × 10−6, 0.16} at ta/L2 =

{10−2, 10−1, 1}, respectively. Hence, Eq. (9) can be safely
used up to ta/L2 = 10−1.

B. Small-ε expansions

As we show next, for ε � 1, we can analytically solve
Eqs. (6a), (6b), and (6c) both at early times [using Eq. (9)]
and at late times [using the steady-state limit of Eq. (8)].
To do so, we expand ψ , q, and c in the small parameter
ε: ψ = ψ0 + εψ1 + O(ε2), q = q0 + εq1 + O(ε2), and c =
c0 + εc1 + O(ε2), respectively, and do the same for the re-
maining five dimensionless parameters: αi = αi,0 + εαi,1 +
O(ε2), etc. Inserting those variables and parameters into
Eqs. (6a), (6b), and (6c) results in O(1) problems that charac-
terize the initial isothermal situation (clearly, ψ0 = 0, q0 = 0,
and c0 = 2ρs), and different O(ε) problems for ψ1, q1, and
c1 for the early- and late-time response. With a slight abuse
of notation, from hereon, we drop the subscript zeros of all
dimensionless parameters, because subscript-one parameters
only appear in O(ε2) terms. Likewise, if a depends on T ,
Eqs. (8) and (9) apply only if ε � 1. (When we presented
these equations for arbitrary ε, we tacitly assumed that a(T ) =
a). We moreover note that the source term in Eq. (2d) is O(ε2).
This means that the results of Sec. III A, derived by setting
f = 0, are accurate for finite f as well. Finally, we omitted
∂x̃Di∂x̃ρ̃i in Eqs. (6b) and (6c) because these terms are O(ε2)
as well.

C. Early-time (t � τT ) ionic response

Inserting Eq. (9) into Eqs. (6b) and (6c) yields

∂t̃ q̃1 = ∂2
x̃ q̃1 − n2q̃1 + αd(1 − x̃)√

π (at̃/D)3/2
exp

[
−D(1 − x̃)2

4at̃

]
,

(10a)

∂t̃ c̃1 = ∂2
x̃ c̃1 + αs(1 − x̃)√

π (at̃/D)3/2
exp

[
−D(1 − x̃)2

4at̃

]
, (10b)

with αd = α+ − α− and αs = α+ + α−. The n2q̃1 term in
Eq. (10a) stems from the electromotive term 2∂2

x̃ ψ̃1 in J̃q, to-
gether with Eq. (6a). The corresponding electromotive term in
the salt flow ∂x̃[q̃1∂x̃ψ̃1] is O(ε2) thus neglected in Eq. (10b).

At time t = 0, the system is charge neutral [q(x, t ) = 0]
and the nonzero ionic charge current is caused solely by
thermodiffusion. There will be early (but finite) times at which
thermodiffusion still dominates electromigration: times, thus,
at which the electromotive term n2q̃1 in Eq. (10a) can be ne-
glected. Clearly, (1) we cannot expect to find a self-consistent
nonzero solution for q(x, t ) in this way and (2) the temporal
range of validity of this approximation will decrease with
increasing n. With the omission of the n2q̃1 term in Eq. (10a),
the equations governing the early-time response of q̃1/αd and
c̃1/αs are the same. Since the same equations have the same
solutions, our forthcoming results for q1 are trivially trans-
ferable to c1. Substituting p = D(x̃ − 1)2/(4at̃ ) in Eq. (10a)
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yields a inhomogeneous ordinary differential equation:

p
d2q̃1

d p2
+

(
1

2
+ p

a

D

)
d q̃1

d p
= −2αd√

π

√
p exp [−p], (11a)

√
p

d q̃1

d p

∣∣∣∣
p=0

= 2αd√
π

, (11b)

where Eq. (11b) follows from J̃q(1, t̃ ) = 0 [cf. Eq. (7b)].
While Eq. (11b) fixes one of the two integration constants of
the general solution of Eq. (11a), it turns out that the other
integration constant cannot be fixed by J̃q(x̃ = −1, t ) = 0; we
simply do not have the freedom to impose dq̃1/d p in two
positions. This must be because Eq. (11a) resulted from a pro-
cedure that ignores the electrode at x̃ = −1. To fix this second
integration constant nevertheless, we enforce charge neutral-
ity

∫ 1
−1 dx̃ q̃1(x̃, t̃ ) = 0 ⇒ ∫ D/(at̃ )

0 d p q̃1(p)/
√

p = 0, which
arises naturally from Eqs. (2b) and (4a). We find

q1(x, t )

2ρsαd
= 2D

D − a

{ √
at

L
√

π

(
exp

[
− L2

Dt

]
− exp

[
−L2

at

])

−
√

a

D
Erf

[
L − x

2
√

Dt

]
+ Erf

[
L − x

2
√

at

]

+
√

a

D
Erf

[
L√
Dt

]
− Erf

[
L√
at

]}
, (12)

and the same for c1/(2ρsαs).
We can now find ψ (x, t ) by integrating q1 twice and en-

forcing ψ (L, t ) = 0 and ∂xψ (L, t ) = 0. The solution, which
is too lengthy to be reproduced here, turns out to satisfy the
boundary condition ∂xψ (−L, t ) = 0 as well. This means that
the electromotive term drops out of J̃q(−1, t̃ ). We determined
the importance of the two remaining terms in J̃q(−1, t̃ ) =
−∂x̃ q̃1(−1, t̃ ) − 2αd∂x̃ ln T̃ (−1, t̃ ) with Eqs. (9) and (12)
and found for a/D = 100 that J̃q(−1, t̃ ) = {10−43, 1.8 ×
10−4} at ta/L2 = {10−1, 1}, respectively. Hence, as long as
Eq. (9) approximates T (x, t ) decently, the boundary condition
J̃q(−1, t̃ ) = 0 that we could not strictly impose is satisfied
approximately nevertheless.

D. Late-time (t � τT ) ionic response

Upon inserting the steady-state temperature profile T̃ =
1 + ε(1 + x̃)/2, at O(ε), Eqs. (6b) and (6b) give rise to

∂t̃ q̃1 = ∂2
x̃ q̃1 − n2q̃1, ∂t̃ c̃1 = ∂2

x̃ c̃1. (13)

Here, the thermodiffusion terms in the ionic fluxes amount to
constants J̃i ∼ εαi; hence, their spatial derivatives are absent
in Eq. (13). As pointed out by Refs. [3,15], αs and αd then
only appear in the boundary conditions,

q̃1(x̃, t̃ < 0) = 0, c̃1(x̃, t̃ < 0) = 0, (14a)

∂x̃ q̃1(±1, t̃ ) = −αd, ∂x̃ c̃1(±1, t̃ ) = −αs, (14b)

hence do not affect the relaxation rates. Only few of the
original seven dimensionless numbers controlling Eqs. (6) and
(7) now remain. We set ξ = 1 and, by using the steady-state
temperature profile, we have effectively set a/D → ∞. With
these choices, α± moved from the PDEs to the BCs. More-
over, as long as f � 1, the source term of the heat equation

(6d) is O(ε2) hence irrelevant. With ε only appearing in the
small-ε expansions, n is the only remaining parameter that can
influence the relaxation rates of our system. In Appendix A
we solve Eqs. (6a) and (13) subject to Eq. (14). Writing
N j = ( j − 1/2)π for j = 1, 2, 3, . . . , the solutions read

eψ1(x, t )

kBT0αd
= −n2

∑
j�1

1 + (−1) j sin[N jx/L]

N 2
j

[
n2 + N 2

j

] exp
[−t/τ j

q

]

+ 1

2n

sinh(nx/L) − sinh n

cosh n
+ 1

2
− x

2L
, (15a)

q1(x, t )

2ρsαd
= −2

∑
j�1

(−1) j sin[N jx/L]

n2 + N 2
j

exp
[−t/τ j

q

]

− 1

n

sinh(nx/L)

cosh n
, (15b)

c1(x, t )

2ρsαs
= −2

∑
j�1

(−1) j sin[N jx/L]

N 2
j

exp

[
−N 2

j Dt

L2

]
− x

L
,

(15c)

where τ
j

q = L2/[D(n2 + N 2
j )] and where Eq. (15c) appeared

previously in Ref. [14]. We see that, indeed, the relaxation
of ψ and q (in units of L2/D) depends only on n, while
the relaxation of c (in units of L2/D) has no parametric
dependence whatsoever. At late times, the relaxation of the
functions in Eq. (15) is dominated by the j = 1 terms of the
sums: While c decays with 4L2/(π2D), ψ and q relax with
τq ≡ L2/[D(n2 + π2/4)], as anticipated in the introduction.
Hence, for n � 1 we find a universal decay time 4L2/(π2D)
proportional to the diffusion time, whereas for n � 1, ψ and
q relax with the Debye time 1/(Dκ2).

IV. RESULTS

We numerically solved Eq. (6) with COMSOL MULTI-
PHYSICS 5.4 for ξ = 1, a/D = 100, α+ = 0.5, α− = 0.1, f =
2 × 10−3, ε = 10−3, and n = 1 and n = 100. This parameter
set is representative for an aqueous KCl solution (� ≈ 106

g m−3, cp ≈ 4 J g−1, a/D, and α± from Ref. [15]) subject
to a thermal quench of 0.3 K around room temperature.
Because κ−1 amounts to several tens of nanometers at most (at
1 mM, κ−1 = 9.6 nm), large n values can be easily achieved
experimentally by using L values in the micrometer regime
(or larger). Conversely, the small n = 1 value requires both
high dilution and minute devices (L in the nanometer regime).
While this latter case might be difficult to reach experimen-
tally, we discuss n = 1 because, judging from Eq. (1), if
anywhere, this is the parameter setting for which the instanta-
neous temperature ansatz [and Eq. (15)] should work best.

A. Local fields at n = 1

We show analytical (lines) and numerical (symbols) so-
lutions to Eq. (6) for n = 1 in Fig. 2, where we plot the
position dependence of T , ψ , q, and c for logarithmically
separated times between tD/L2 = 10−6 and tD/L2 = 10. In
Fig. 2(a) we show the temperature. As a sanity check, we
also compared numerical solutions for (T (x, t ) − T0)/�T at
f = 0 to the exact result Eq. (8) [in this section we truncate
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FIG. 2. Thermal and ionic relaxation at n = 1 and a/D = 100
in response to a thermal quench (ε = 10−3) at x = L. Numerical
solution (symbols) to Eq. (6) at times tD/L2 = {10−6 − 10} for T (a),
ψ (b), q (c), and c (d) where obtained at ξ = 1, α+ = 0.5, α− = 0.1,
f = 2 × 10−3. (a) Also shows Eq. (8) (lines) at the same times and
Eq. (9) (plusses) at tD/L2 = 10−3. (b)–(d) Also show Eq. (15) with
lines. The insets of (c) and (d) show Eq. (12) (dashed lines) at times
tD/L2 = {10−6 − 10−3}.

the sums in Eqs. (8) and (15) after 2000 terms]: The difference
between either predictions was at most 0.02 (at tD/L2 =
10−6), dropping to 10−12 at late times. The difference between
T calculated with either f = 2 × 10−3 or f = 0 (and other
parameters as before) was too small to detect within this
numerical error margin. In any case, with our choice f = 2ε,
the source term of the heat equation (6d) is O(ε3). Therefore,
its effects are beyond the range of validity of our theory.

As anticipated in Sec. III A, Fig. 2(a) moreover shows that
Eq. (9) accurately describes T (x, t ) at ta/L2 = 0.1 (plusses)
as well as at earlier times (not shown). For the stated param-
eter set, Fig. 2 shows that T (x, t ) relaxes almost completely
before ψ, q, and c deviate from their initial values. Conse-
quently, the ionic relaxation falls predominantly in the late-
time regime (t � τT ) discussed in Sec. III D: From ta/L2 =
10 onwards, the assumption of a thermal steady state that we
used to derive Eq. (15) is justified. Consequently, at late times,
we observe a decent correspondence between numerics and
the analytical predictions for ψ1, q1, and c1 [Eqs. (15a), (15b),
and (15c), respectively]. Conversely, at early times (t � τT ),
when Eq. (9) accurately describes T (x, t ), one expects the
predictions of Eq. (12) for q1 and c1 to be accurate. Indeed,
the inset of Fig. 2(c) (a zoom-in of the main panel to the
region x � L) shows an excellent agreement between Eq. (12)
(dashed lines) and the same numerical data until tD/L2 =
10−3, while at that same time, Eq. (15b) gives erroneous
predictions (the line does not pierce the open squares). Inter-
estingly, this inset exhibits a tiny ionic charge density wave
that moves with the front of thermal perturbation and that
breaks the antisymmetry (present at late times) of q and c
around the midplane at early times. Given the equivalence at
early times of q1/αd to c1/αs as discussed in Sec. III C, the
inset of Fig. 2(d) shows that the same analytical expression
Eq. (12) also describes the evolution of c1 at early times well.

B. Local fields at n = 100

Figure 3 shows numerical solutions to Eq. (6) and the
same analytical approximations as before, now for n = 100.
Since T and c1 are essentially n independent [cf. Eqs. (8),
(9), (12) and (15)], we only show ψ1 in Fig. 3(a) and q1 in
Fig. 3(b). We see in Fig. 3(b) that Eq. (12) is now accurate
only until tD/L2 = 10−5 [as this equation is n independent,
the dashed lines in Fig. 3(b) are the same as in the inset
of Fig. 2(c)]. This difference with the n = 1 case (accurate
until tD/L2 = 10−3) is understood in terms of the larger error
made for higher n in neglecting the term n2q̃1 in Eq. (10a).
Equation (15b) is accurate after tD/L2 = 10−2, comparable
to tD/L2 = 10−1 for the n = 1 case. The key difference with
the n = 1 case, however, is that at tD/L2 = 10−1, q1(x, t )
has already reached its steady-state profile [cf. Eq. (1): With
increasing n, the early-time (t � τT ) regime of the transient
response of q and ψ gains in importance]. Hence, Eq. (15b)
is irrelevant for the description of the transient behavior of
q(x, t ) for n = 100 and solely captures its steady state. Yet,
out of curiosity, we plot the corresponding late-time expres-
sion for ψ1 [Eq. (15a)] in Fig. 3(a); while this expression
gets the shape of ψ1 completely wrong (except at steady
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FIG. 3. Numerical (symbols) and analytical (lines) results for ψ1

(a) and q1(x, t ) (b) at n = 100. All other parameters, colors, symbols,
and line styles are as in Fig. 2.

state), it surprisingly accurately estimates the thermovoltage
VT (t ) = εψ1(−L, t ) + O(ε2) at all times considered. Appar-
ently, for the development of VT (t ), it is not necessary that the
thermal perturbation has spanned the system: The local charge
separation as observed in Fig. 3(b) leads to the same voltage
drop, but now already over the small region coincident with
the thermal perturbation. Meanwhile, it comes as somewhat of
a surprise that the analytical prediction for ψ1 calculated with
Eq. (12) provides fair approximations to our numerical results
only for very early times (tD/L2 = 10−6, 10−5), thereafter
overestimating ψ1 greatly. Since this method to approximate
ψ1 already goes awry at t � τT , discrepancies cannot be
attributed to usage of the approximate early-time temperature
[Eq. (9) instead of Eq. (8)] in the derivation of Eq. (12).
Apparently, ψ1 is very sensitive to the errors in q1 (observable
in Fig. 3(b) from tD/L2 = 10−4 onwards) resulting from the
omission of the electromotive term c̃0∂

2
x̃ ψ̃1 in Eq. (10).

C. Boundary value relaxation

In Fig. 4 we show numerics (symbols) and analytical pre-
dictions from Eq. (15) (lines) for the relaxation of ψ1(−L, t )
and the absolute boundary values of the ionic charge and
salt densities, |q1(±L, t )| and |c1 = ±L, t )|, respectively.
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=
−L

|c1(±L,t)|
2ρs αs

|q1(±L, t)|/(2ρs αd)
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√
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FIG. 4. The relaxation of ψ1(−L, t ), q1(±L, t ), and c1(±L, t )
(black, red, blue) from numerics (symbols) and Eq. (15) (lines)
( j � 10), for n = 1 (a) and n = 100 (b). Plotted as well are Dκ2t
(black dashed) and 2

√
Dt/(L2π ) (red dashed).

Concerning VT (t ) = εψ1(−L, t ) + O(ε2), we see that ana-
lytical predictions agree well with numerics for n = 1 [un-
surprising, given the agreement observed in Fig. 2(b)] and
n = 100, where a minor discrepancy is observed at very early
times. Again, since the steady-state temperature ansatz is only
justifiable after tD/L2 = 0.1, the good agreement observed
Fig. 4(b) between numerics and Eq. (15a) up to tD/L2 =
10−6 [pushing that equation five orders of magnitude into
temporal terra incognita] is remarkable. The small-t scaling
of β0eVT /(αdε) = κ2Dt (black dashed lines) is derived in
Appendix B.

We see in Fig. 4 that, at early times (t < τT ), |c1(±L, t )|
and |q1(±L, t )| are perturbed at the quenched (x = L) elec-
trode (down triangles and circles), and unperturbed at the
other side (up triangles and squares). With Eq. (12) we
find that the early-time plateaus observed in Fig. 4 lie
at limt→0+ |q1(L, t )|/(2ρsαd ) = limt→0+ |c1(L, t )|/(2ρsαs) =
2/(1 + √

a/D) ≈ 0.18, independent of n. Interestingly, at n =
100 this prediction for c1 is still accurate around t ≈ τT ,
when Eq. (12) inaccurately describes q1 [Fig. 3(b)]. At n =
1 the omission of the n2q1 term in Eq. (10a) is justifiable
and the prediction limt→0+ |q1(L, t )|/(2ρsαd ) ≈ 0.18 holds
up to t ≈ τT as well. From tD/L2 = 0.01 ⇔ t ≈ τT onwards,
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we see, for n = 1, that numerics and analytical predictions
from Eq. (15) converge, in line with our observations in
Fig. 2. Once converged, they scale as |q1(±L)| = |c1(±L)| =
2
√

Dt/(L2π ) (red dashed lines) as derived in Appendix B,
finally relaxing to their steady-state values around tD/L2 =
1 ⇔ t ≈ τq.

For n = 100 and a/D = 100, Eq. (15) predicts that VT (t )
and q1(±L, t ) relax two orders of magnitude faster [at t =
L2/(D[n2 + π2/4]) ≈ 1/(Dκ2)] than T [at t = 4L2/(aπ2)].
While VT (t ) really does develop on this short timescale (as
discussed above), q1(±L, t ) becomes enslaved to the “slow”
thermal relaxation. Together with relaxation of c1(±L, t ) at
t = 4L2/(Dπ2), Fig. 4(b) shows a separation of timescales
over four orders of magnitude for the three observables
ψ1(−L, t ), |q1(±L, t )|, and |c1(±L, t )|. The separation of
timescales of boundary observables VT (t ) and q(±L, t ) seems
to contradict the intuition that ionic charge and electrostatic
potential are instantaneously related via the Poisson equation,
and should thus relax in lockstep. However, the Poisson
equation is a nonlocal relation between ψ (x, t ) and q(x, t ),
which, apparently, does not forbid ψ and q to relax differently
at specific locations. Indeed, Fig. 3(a) clearly shows that the
overall electrostatic potential ψ1(x, t ) reaches its steady state
much later (around ta/L2 = 1) than ψ1(−L, t ).

V. UNEQUAL IONIC DIFFUSIVITIES

We note that our finding VT (t ) ∼ exp[−Dκ2t] in Fig. 4(b)
is at odds with the experimental data of Ref. [13]. They
studied a 6-mm-wide cell filled with a concentrated electrolyte

(2M EMIMTFSI in acetonitrile) subject to a thermal quench
of �T = 20 K. Their measurements indicated that VT (t ) ∼
exp[−π2D+t/(4L2)], where the fitted cationic diffusion
constant D+ was a factor 3 off from literature values for the
pure EMIMTFSI ionic liquid (without solvent). In principle,
the discrepancy between our works could have arisen due
to several simplifying assumptions underlying our model, as
their setup: (1) used a concentrated electrolyte, for which
our continuum Nernst-Planck description of the ionic currents
(reasonable for dilute electrolytes) might be unsuitable and
to which it is difficult to assign a Debye length; (2) had
comparable lateral and in-plane dimensions, which further
undermines our one-dimensional model; and (3) was exposed
to a thermal quench two orders of magnitude larger than
what we imposed in Sec. IV. Accordingly, we performed
exploratory numerical simulations of Eq. (6) with ε = 0.1
(and T -independent dimensionless parameters) and found that
the third speculation does not explain the discrepancy: In
that case, the qualitative behavior [including the fast VT (t ) ∼
exp[−Dκ2t] relaxation] of our model is unaltered, with the
notable exception that the antisymmetry of the steady-state
profiles of c and q around x = 0 is broken.

Instead of the above three speculations, it turns out that the
qualitative features of the experimental data of Ref. [13] can
be reproduced by our model if one accounts for different dif-
fusivities among the ions [22]. After all, NMR measurements
of pure EMIMTFSI (without solvent) determined an apparent
cationic transference number D+/(D− + D+) ≈ 0.63, which
implies ξ = 1.7 [23].

Once more using the steady-state temperature ansatz, in
Appendix C we derive VT for n � 1 and for general ξ :

eVT (t )

kBT0ε
= αd − 2αs

1 − ξ

1 + ξ

∑
j�1

1

N 2
j

exp

[
− 2N 2

j

1 + ξ

D+t

L2

]
− 4

ξα+ − α−
1 + ξ

∑
j�1

1

N 2
j

exp

[
−1 + ξ

2ξ
D+κ2t

]
+ O(n−1) + O(ε), (16)

which reduces correctly to the n � 1 limit of ψ1(−L) [cf.
Eq. (B1)] for ξ = 1. Strikingly, in Eq. (16) now appear
relaxation times that scale like the diffusion time as ∼L2,
which is a promising sign for our attempt at explaining the
data of Ref. [13]. Moreover, we can rewrite the exponents of
Eq. (16) to exp [−Daκ

2t] and exp [−N 2
j Dht/L2], respectively,

with Da ≡ (D− + D+)/2 being the arithmetic and Dh ≡
2/[(1/D− + 1/D+)] being the harmonic mean of the ionic
diffusion constants, respectively [24,25]. Notably, precisely
these two means appear in the electrolyte conductance and
in Nernst’s expression for the ambipolar diffusivity of neutral
salt, respectively. While it is now tempting to interpret VT (t )
as being generated simultaneously by ionic charge density and
salt density relaxation, we note that VT (t ) is ultimately only
directly related to q(x, t ) (cf. Appendix C). The appearance
of parameters typical for salt diffusion (αs and L2/Dh) merely
suggests that there is a nontrivial coupling between c and q
whenever ξ �= 1. We leave an in-depth analysis of q and c at
ξ �= 1 for future work.

In Fig. 5, we plot Eq. (16) (lines) for n = 100 and
several ξ = {10, 5, 2, 1, 0.5, 0.2, 0.1}, and all other param-
eters the same as in Sec. IV. Overall, we observe a good

agreement between that equation and numerical simulations
of Eq. (6) (symbols). Noticeable deviations occur for small
ξ and t < τT , when the steady-state temperature ansatz used
to derive Eq. (16) is unjustified. Note, also, that the ξ = 1
case corresponds to the black diamonds in Fig. 4(b). For
ξ �= 1, the data plotted on double logarithmic scales [Fig. 5(a)]
exhibits two distinct relaxation processes: a quick rise of VT on
the Debye timescale, followed by a slower L2/D+ relaxation
towards the steady state. In between these two timescales, VT

exhibits a plateau, whose height V p
T can be found by setting

tD+/L2 = 0 and tD+κ2 = ∞ in Eq. (16):

eV p
T

kBT0ε
= 2

1 + ξ
[ξα+ − α−]. (17)

In fact, for tD+κ2 = 0, both sums in Eq. (16) can be per-
formed and Eq. (16) correctly predicts VT (0) = 0. For the case
of KCl as discussed in Sec. IV, Eqs. (16) and (17) indicate that
in Fig. 4(b) we missed an intermediate-time voltage plateau
2% below the steady-state thermovoltage, and the slow L2/D+
relaxation from one to the other.

When plotted along linear axes [Fig. 5(b)], VT seemingly
instantaneously jumps to the aforementioned plateau values,
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FIG. 5. Predictions for VT (t ) = εψ1(−L, t ) + O(ε2) from a nu-
merical simulation of Eq. (6) (symbols) and from the analytical
expression Eq. (16) (lines), on double logarithmic scales (a) and
linear scales (b). The dashed line represents −ψ1(−L, t ) at times
where ψ1(−L, t ) < 0. In (a), going from top to bottom, the lines
represent ξ = {10, 5, 2, 1, 0.5, 0.2, 0.1}. All other parameters are the
same as in Fig. 2.

and relaxes to the steady state thereafter. Here, the case ξ =
0.5 looks similar to the data of Figs. 2 and 3 of Ref. [13]. A
quantitative comparison between our works is not possible,
however, as there is no data for ξ and α± of EMIMTFSI in
acetonitrile at the dilution used in Ref. [13]. The fact that VT

“overshoots” its steady-state value for certain combinations
of ξ ’s and α±’s could be exploited to boost the performance
of thermally chargeable capacitors. With Eq. (17) and the
tabulated data of Ref. [1] we see that alkali hydroxides and
hydrohalic acids could be promising electrolytes for this
purpose [for example, eV p

T /(kBT0ε) = −5.75 for LiOH]. Al-
ternatively, with knowledge of the steady-state thermovoltage,
the intermediate-time thermovoltage plateau value, and ξ , α+,
or α−, one can give an indirect prediction of the other two.

VI. DISCUSSION

Recent molecular dynamics simulation of a binary mixture
subject to a thermal quench have predicted an early-time
local mole fraction (Fig. 5 in Ref. [26]) very similar to the
density profile in Fig. 3(b). For these uncharged molecules, the
absence of an electromigration term in the fluxes is obvious
[3,27,28]. Hence, it would be interesting to see to what extend

Eq. (12) describes the early-time thermodiffusion of binary
mixtures as well.

Moreover, Eq. (12) sheds new light on an age-old puz-
zle, the very fast temperature-induced concentration polar-
ization observed by Tanner in 1927 [29]. Our analytical re-
sult limt→0+ |c1(L, t )|/(2ρsαs) = 2/(1 + √

a/D) and numeri-
cal data in Fig. 4 naturally indicate that a nonzero boundary
salt density is present for all nonzero times. These results com-
plement earlier efforts [30,31] to explain Tanner’s observa-
tions with calculations that used the steady-state temperature
profile (T − T0)/�T = 1/2 + x/2L at all times.

VII. CONCLUSION

We have studied the response of a model electrolytic
cell subject to a quench in the temperature at one of its
two confining electrode surfaces. The system is modeled by
four coupled differential equations [Eq. (6)] and boundary
conditions [Eq. (7)] in which seven dimensionless numbers
appear: the size of the quench ε, the Debye separation pa-
rameter κL, the ratio of ionic diffusivities D+/D−, the ratio
of thermal to cationic diffusivities a/D+, the reduced ionic
Soret coefficients α+ and α−, and the combination kBρs/�cp

for ionic heat production, respectively.
We first studied the case D+ = D−, which is relevant to,

e.g., aqueous KCl, RbBr, RbI, and CsBr. In this case we
found analytical approximations to the ionic charge density q,
neutral salt concentration c, and electrostatic potential ψ for
early and late times compared to the thermal relaxation. These
expressions were shown to correspond well to numerical
simulations of the same quantities in their respective temporal
regimes of validity [we performed the numerical simulations
of Eq. (6) using a parameter set typical for aqueous KCl].
This leaves behind an intermediate time window for which
we only have numerical data. Notably, the size of this window
depends on κL because the early-time expression for q was
derived with the omission of the thermodiffusion term (κL)2q
in the ionic charge current. This means that the early-time
expressions approximate q over a longer time period at κL =
1 (valid until tD/L2 = 10−3) than at κL = 100 (valid until
tD/L2 = 10−5). The importance of either regimes (early and
late time) was shown to depend on κL. For κL = 1, the system
behaves mainly as explained in Ref. [15]: The quenched tem-
perature relaxes quickly, after which the electrostatic potential
and ionic charge and salt densities relax slowly. Conversely,
for κL = 100, the rearrangement of ions in thermal gradients
is sufficiently fast that the ionic charge density can track the
thermal relaxation. For all parameters considered, an ionic
charge density wave is observed that spreads as the thermal
perturbation travels through the system. While the ionic re-
laxation becomes enslaved to the slow thermal relaxation, the
thermovoltage develops on the Debye timescale, the fastest
timescale of the system.

For the case of D+ �= D−, we have shown that the relax-
ation of the thermovoltage happens via a two-step process:
a fast relaxation on the Debye timescale, followed by a
slower diffusive relaxation. In fact, for a suitably chosen elec-
trolyte, the thermovoltage overshoots its steady-state value.
This feature could be exploited for enhanced thermal energy
scavenging by thermally chargeable capacitors.
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The main conclusions of this article are twofold: De-
pending on the Debye separation parameter, (1) assuming
an instantaneous steady-state temperature profile leads to
satisfactory predictions for the transient salt density profiles,
but wrong predictions for the transient ionic charge density
and electrostatic potential profiles; (2) the thermovoltage re-
laxes both on the Debye timescale 1/(Dκ2) and the diffusion
timescale L2/D. The relative importance of these two relax-
ation processes depends on the ionic Soret coefficients and on
the ratio of ionic diffusivities.
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APPENDIX A: DERIVATION OF Eq. (15)

We apply Laplace transformations on Eqs. (6a) and (13)
to transform the PDEs for ψ̃1, q̃1, and c̃1 into ODEs for their
Laplace transformed counterparts ˆ̃ψ1, ˆ̃q1, and ˆ̃c1 [we denote
the Laplace transform of a function f (x̃, t̃ ) by f̂ (x̃, s) =∫ ∞

0 dt̃ exp (−st̃ ) f (x̃, t̃ )]. Stout and Khair [15] already found
solutions to these ODEs [see their Eq. (20)], which in our
notation read

ˆ̃c1(x̃, s)

αs
= − 1

rs

sinh(rx̃)

cosh r
, (A1a)

ˆ̃q1(x̃, s)

αd
= − 1

ms

sinh(mx̃)

cosh m
, (A1b)

ˆ̃ψ1(x̃, s)

αd
= n2

2m2s

[
sinh(mx̃) − sinh m

m cosh m
+ 1 − x̃

]
, (A1c)

with r2 = s and m2 = n2 + s. To determine ψ̃1, q̃1, and c̃1, we
need to perform inverse Laplace transformations on Eq. (A1).
For instance, determining ψ̃ (x̃, t̃ ) comes down to

ˆ̃ψ1(x̃, t̃ ) =
∑
s∈s�

Res( ˆ̃ψ1 exp(st̃ ), s�), (A2)

where the poles s� = {s0, sn, s�
j} of ˆ̃ψ1(x̃, s) are located at

s0 = 0, sn = −n2, and s�
j = (m�

j )
2 − n2 where m�

j = ±i( j −
1/2)π ≡ ±iN j with j ∈ N.

The pole s0 = 0 gives the steady-state solution,

Res( ˆ̃ψ1 exp(st̃ ), 0) = sinh(nx̃) − sinh n

2n cosh n
+ 1 − x̃

2
. (A3)

To find the residue of the pole at sn = −n2, we expand ˆ̃ψ1

around s = −n2,

ˆ̃ψ1
s→−n2= 1

2m2

[
�
�
��x

L
− x

L
+ O(m3)

]
= O(m). (A4)

This implies

Res( ˆ̃ψ1 exp(st̃ ), s = −n2) = 0, (A5)

because m = 0 at s = −n2. For the poles at s�
j we expand

cosh(m)
s→s�

j= sinh m

2m

∣∣∣∣
s=s�

j

(s − s�
j )

⇒ 1

cosh(m)

s→s�
j= 2i(−1) jm�

s − s�
j

, (A6)

where, going to the second line we used m(s�
j ) = ±m�

j , and
sinh m�

j = i(−1) j+1. We find∑
j�1

Res( ˆ̃ψ1 exp(st̃ ), s�
j )

=
∑
j�1

Res

(
i(−1) j[sinh(m�x̃) − sinh m�]

(m�/n)2s�

exp(st̃ )

s − s�
, s�

j

)

= −
∑
j�1

1 + (−1) j sin(N j x̃)

N 2
j

[
1 + N 2

j /n2
] exp

[−(
n2 + N 2

j

)
t̃
]
. (A7)

Combining Eqs. (A3), (A4), and (A7) yields Eq. (15a).
We now easily find q̃1 [Eq. (15b)] by inserting Eq. (15a)

into the Poisson equation (2a). Likewise, noting that the
equations governing q̃1/αd and c̃1/αs are the same for n → 0
[cf. Eq. (13)], c̃1 [Eq. (15c)] is found from Eq. (15b) by
taking n → 0 therein. We have checked Eq. (15) against
numerical Laplace inversions of Eq. (A1), using the van’t
Hoog algorithm [32]. The results coincided perfectly for all
times and parameters considered.

Before performing the inverse Laplace transforms on
Eq. (A1), Ref. [15] first applied Padé approximations to those
expressions. Approximations to ψ̃1, q̃1, and c̃1 are then easily
read off. Notably, the timescales τ

app
q and τ

app
ψ with which the

approximated q̃1 and ψ̃1 relaxed were unequal, τ
app
q �= τ

app
ψ .

However, since ˆ̃q1(x̃, s) and ˆ̃ψ1(x̃, s) have the same pole
structure, any difference between τ

app
q and τ

app
ψ must stem

from the Padé approximation scheme employed. Other than
fixing this glitch, the merits of Eq. (15) over the approximate
expressions of Ref. [15] are limited: As discussed in Ref. [33],
Padé approximations around s0 = 0 lead to decent predictions
for the late-time response of the respective functions. Indeed,
we have seen that Eq. (15) (that also captures all fast-decaying
s�

j modes) deviates strongly from the Padé approximations
only at early times (t̃ < 0.1). But as discussed in the main text,
at those early times, Eq. (15) does not describe the physics
of interest, because the steady-state temperature ansatz is
erroneous there.

APPENDIX B: EARLY-TIME BOUNDARY VALUE
SCALING OF Eq. (15)

From Eq. (15a) follows a prediction for VT (t ):

β0eVT (t̃ )

αdε
= 1 − tanh n

n
− 2

∑
j�1

exp
[−(

n2 + N 2
j

)
t̃
]

N 2
j

[
1 + N 2

j /n2
]

+ O(ε). (B1)

Expanding this expression around t̃ = 0, for the first two
terms of the expansion, the infinite sum can be performed.
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Thence, at short times, VT increases as

lim
t̃→0

β0eVT (t̃ )

αdε
= n2t̃ . (B2)

To determine limt̃→0 c(−L, t̃ ), we rewrite Eq. (15c) to

c̃1(−1, t̃ )

αs
= 2

√
t̃
∑
j�1

√
t̃

1 − exp [−p2]

p2
. (B3)

with p = N j

√
t̃ . Now consider the following integral:∫ N j+1

√
t̃

N j

√
t̃

d p
1 − exp [−p2]

p2

= −
∫ N j+1

√
t̃

N j

√
t̃

d p (p − N j+1

√
t̃ )

d

d p

1 − exp [−p2]

p2

− (N j − N j+1)
√

t̃
1 − exp

[−N 2
j t̃

]
N 2

j t̃
, (B4)

where we used integration by parts and (d/d p)(p − jπ
√

t̃ ) =
1. With N j − N j+1 = −π we conclude that

1 − exp
[−N 2

j t̃
]

N 2
j

√
t̃

=
∫ N j+1

√
t̃

N j

√
t̃

d p
1 − exp [−p2]

π p2
+ O(t̃ ),

(B5)

because the integral on the right-hand side of Eq. (B4) is O(t̃ ).
Inserting the above result into Eq. (B3) gives

c̃1(−1, t̃ )

αs
= 2

π

√
t̃
∑
j�1

∫ N j+1

√
t̃

N j

√
t̃

d p
1 − exp [−p2]

p2
+ O(t̃ 3/2)

= 2

π

√
t̃
∫ ∞

π
√

t̃/2
d p

1 − exp [−p2]

p2
+ O(t̃ 3/2)

= 2

π

√
t̃
∫ ∞

0
d p

1 − exp [−p2]

p2
+ O(t̃ )

= 2

√
t̃

π
+ O(t̃ ). (B6)

With a similar calculation one finds limt̃→0 q̃1(−1, t̃ )/αd =
2
√

t̃/π + O(t̃ ).

APPENDIX C: DERIVATION OF Eq. (16)

Similar to Eq. (13), but now for ξ �= 1, we find

∂t̃ ρ̃+,1 = ∂2
x̃ ρ̃+,1 − n2

2
(ρ̃+,1 − ρ̃−,1), (C1a)

ξ∂t̃ ρ̃−,1 = ∂2
x̃ ρ̃−,1 + n2

2
(ρ̃+,1 − ρ̃−,1). (C1b)

We apply Laplace transformation of both sides of Eq. (C1)
and group the result in a matrix equation,(

∂2
x̃

ˆ̃ρ+,1

∂2
x̃

ˆ̃ρ−,1

)
=

(
s + n2

2 − n2

2

− n2

2 ξs + n2

2

)(
ˆ̃ρ+,1

ˆ̃ρ−,1

)
(C2a)

⇒ X ′′ = MX, (C2b)

where we adopted the notation of Ref. [24]: Double
primes indicate second partial derivatives on the vector
X = ( ˆ̃ρ+,1, ˆ̃ρ−,1)T . We rewrite M to M = PDP−1 where

P =
(

ν1 ν2

1 1

)
, D =

(
μ2 0
0 η2

)
, (C3)

with components given by

ν1 = s(ξ − 1) + ζ

n2
, μ2 = 1

2
[n2 + s(1 + ξ ) − ζ ], (C4a)

ν2 = s(ξ − 1) − ζ

n2
, η2 = 1

2
[n2 + s(1 + ξ ) + ζ ], (C4b)

with

ζ =
√

n4 + s2(1 − ξ )2. (C5)

With U = (u1, u2)T ≡ P−1X we rewrite Eq. (C2b) to U ′′ =
DU , which is solved by u1 = a1 sinh μx̃ and u2 = a2 sinh ηx̃,
with a1, a2 to be fixed by the boundary conditions. We return
to our familiar densities via X = PU ,

ˆ̃ρ+,1 = ν1a1 sinh μx̃ + ν2a2 sinh ηx̃, (C6a)

ˆ̃ρ−,1 = a1 sinh μx̃ + a2 sinh ηx̃. (C6b)

Enforcing the Laplace-transformed b.c.’s [cf. Eq. (14)],

∂x̃ ˆ̃ρ±,1(±1, t̃ ) = −α±
s

, (C7)

yields

ν1a1μ cosh μ + ν2a2η cosh η = −α+
s

, (C8a)

a1μ cosh μ + a2η cosh η = −α−
s

, (C8b)

for both boundaries (since cosh −x = cosh x). We solve for a1

and a2,

a1 = α−ν2 − α+
(ν1 − ν2)s μ cosh μ

, a2 = α− − α+ν1

(ν1 − ν2)s η cosh η
,

(C9)

and insert these results into Eq. (C6) to find

ˆ̃q1(x̃, s) = n2

2ζ s

[
(ν1 − 1)(α−ν2 − α+)

sinh μx̃

μ cosh μ

+ (ν2 − 1)(α+ − α−ν1)
sinh ηx̃

η cosh η

]
. (C10)

In the special case ξ = 1, Eqs. (C4) and (C5) reduce to ν1 = 1,
ν2 = −1, μ2 = s, η2 = n2 + s, and ζ = n2, and ˆ̃q1 reduces to
Eq. (A1b).

Now, the following local electrostatic potential,

ˆ̃ψ1(x̃, s) = n4

4ζ

[
(α−ν2 − α+)

ν1 − 1

s μ2

(
x − sinh μx̃

μ cosh μ

)

+ (α+ − α−ν1)
ν2 − 1

s η2

(
x − sinh ηx̃

η cosh η

)]
, (C11)

satisfies both the Poisson equation (6a) and one of its
boundary conditions Eq. (7b). We do need to not enforce
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Eq. (7d), as it trivially drops out of the thermovoltage, V̂T (s) =
ψ̂ (−1, s) − ψ̂ (1, s), the quantity of interest here. We find

ˆ̃VT (s) ≡ ˆ̃V a
T (s) + ˆ̃V b

T (s) + O(ε2), (C12a)

ˆ̃V a
T (s) = n4ε

2ζ
(α−ν2 − α+)

1 − ν1

s μ2

(
1 − tanh μ

μ

)
, (C12b)

ˆ̃V b
T (s) = n4ε

2ζ
(α+ − α−ν1)

1 − ν2

s η2

(
1 − tanh η

η

)
. (C12c)

Besides the pole at s = 0, which determines the steady state
of VT , the poles of ˆ̃VT (s) with nonzero residues appear in the
tanh μ and tanh η terms of Eq. (C12), and lie at μ = ±iN j

and η = ±iN j . With Eq. (C4a) we write

n2 + s(1 + ξ ) −
√

n4 + s2(1 − ξ )2 = −2N 2
j , (C13)

which has two solutions for each j:

s j
± = ∓ 1

4ξ

√
n4(1 + ξ )2 + 4n2N 2

j (1 − ξ )2 + 4N 4
j (1 − ξ )2

− 1

4ξ

(
n2 + 2N 2

j

)
(1 + ξ ). (C14)

As we are interested in n � 1, we report

s j
±

n�1= ∓ 1

4ξ
n2(1 + ξ )

(
1 + 2

N 2
j

n2

(1 − ξ )2

(1 + ξ )2

)

− 1

4ξ

(
n2 + 2N 2

j

)
(1 + ξ ) + O(n−2). (C15)

This amounts to

s j
+ = −n2(1 + ξ )

2ξ
− N 2

j

1 + ξ 2

ξ (1 + ξ )
+ O(n−2),

s j
− = − 2N 2

j

1 + ξ
+ O(n−2). (C16)

Interestingly, cosh η = 0 has the same s j
± solutions. To deter-

mine which s j
± solutions are physically relevant, we take ξ =

1 in Eq. (C14) and find s j
± = −n2(1 ± 1)/2 − N 2

j . Hence, we

retrieve the ξ = 1 timescales if we take s j
− for the cosh μ = 0

poles, and s j
+ for the cosh η = 0 poles.

The n � 1 behavior of Eqs. (C4) and (C5) evaluated at s j
−

reads

ζ (s j
−) = n2 + O(n−2), (C17a)

ν1 = 1 − s j
−(1 − ξ )

n2
+ O(n−4), (C17b)

ν2 = −1 − s j
−(1 − ξ )

n2
+ O(n−4), (C17c)

μ2 = s j
−(1 + ξ )

2
+ O(n−2), (C17d)

while at s j
+ we find

ζ (s j
+) = n2(1 + ξ 2)

2ξ
+ N 2

j (1 − ξ )2

ξ
+ O(n−0), (C18a)

ν1 = 1

ξ
+ O(n−2), (C18b)

ν2 = −ξ + O(n−2), (C18c)

η2 = −N 2
j + O(n−2). (C18d)

Similar to Eq. (A6) we find

tanh μ

μ

s→s j
−= 4

1 + ξ

1

s − s j
−

, (C19a)

tanh η

η

s→s j
+= 4

1 + ξ

1

s − s j
+

. (C19b)

Inserting Eqs. (C17) and (C19a) into V̂ a
T (s) gives

ˆ̃V a
T (s)

s→s j
−∼ −2εαs

1 − ξ

1 + ξ

1

N 2
j (s − s j

−)
+ O(n−2), (C20)

while inserting Eqs. (C18) and (C19b) into V̂ b
T (s) gives

ˆ̃V b
T (s)

s→s j
+∼ −4ε

ξα+ − α−
1 + ξ

1

N 2
j (s − s j

+)
+ O(n−2). (C21)

We used proportionality signs in Eqs. (C20) and (C21)
because we disregarded the 1’s in the bracketed terms of
Eq. (C12), as their residues are zero at s j

− and s j
+, respec-

tively. Calculating VT (t ) = ∑
sξ

Res(V̂T (s) exp (st ), sξ ), with

sξ = {0, s j
−, s j

+}, now gives Eq. (16).
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