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Large fluctuations of a Kardar-Parisi-Zhang interface on a half line:
The height statistics at a shifted point
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We consider a stochastic interface h(x, t ), described by the 1 + 1 Kardar-Parisi-Zhang (KPZ) equation on
the half line x � 0 with the reflecting boundary at x = 0. The interface is initially flat, h(x, t = 0) = 0. We
focus on the short-time probability distribution P (H, L, t ) of the height H of the interface at point x = L.
Using the optimal fluctuation method, we determine the (Gaussian) body of the distribution and the strongly
asymmetric non-Gaussian tails. We find that the slower-decaying tail scales as −√

t lnP � |H |3/2 f−(L/
√|H |t )

and calculate the function f− analytically. Remarkably, this tail exhibits a first-order dynamical phase transition
at a critical value of L, Lc = 0.602 23 . . .

√|H |t . The transition results from a competition between two different
fluctuation paths of the system. The faster-decaying tail scales as −√

t lnP � |H |5/2 f+(L/
√|H |t ). We evaluate

the function f+ using a specially developed numerical method which involves solving a nonlinear second-order
elliptic equation in Lagrangian coordinates. The faster-decaying tail also involves a sharp transition which occurs
at a critical value Lc � 2

√
2|H |t/π . This transition is similar to the one recently found for the KPZ equation on a

ring, and we believe that it has the same fractional order, 5/2. It is smoothed, however, by small diffusion effects.

DOI: 10.1103/PhysRevE.99.042132

I. INTRODUCTION

The Kardar-Parisi-Zhang (KPZ) equation [1] is a paradig-
matic model of nonequilibrium stochastic growth. It describes
the evolution of the height h(x, t ) of a growing surface at the
point x of a substrate at time t :

∂t h = ν∂2
x h + λ

2
(∂xh)2 +

√
D ξ (x, t ). (1)

The Gaussian noise ξ (x, t ) has zero mean and is δ-correlated
in space and in time:

〈ξ (x1, t1)ξ (x2, t2)〉 = δ(x1 − x2)δ(t1 − t2). (2)

Without loss of generality we assume that the nonlinearity
coefficient λ is negative [2]. The KPZ dynamics in 1+1
dimension have been studied in detail in numerous works.
At long times, the interface width grows as t1/3 and the
lateral correlation length grows as t2/3. The exponents 1/3
and 2/3 are the hallmark of a whole universality class of
the 1+1-dimensional nonequilibrium growth [3–9]. A sharper
characterization of the KPZ growth is achieved by studying,
in a proper moving frame [10], the full probability distribution
P (H, L, t ) of the surface height at a specified point x = L at
time t . In a translationally invariant system one can always set
L = 0 and deal with H = h(x = 0, t ). Surprisingly, the form
of the distribution, P (H, t ), at all times depends on the initial
interface shape h(x, t = 0); see Refs. [7–9] for recent reviews.

Traditionally (and justifiably), most of the interest in
the KPZ equation has been in the long-time regime,
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t � ν5/(D2λ4), and ensuing universality. More recently, the
short-time behavior, t � ν5/(D2λ4), of the one-point height
distribution P (H, t ) has started attracting interest [11–14].
This interest stemmed from a discovery of unexpected scaling
behaviors of the distribution tails, which describe atypically
large fluctuations of height. For a stationary (random) initial
condition, a second-order dynamical phase transition was
discovered [15] and a Landau theory of this short-time phase
transition was formulated [16]. As of today, exact short-time
height distributions have been found for infinite systems with
droplet [17], stationary [18], and flat [19] initial conditions.
For several other initial conditions, asymptotics of the distri-
bution tails have been calculated. Quite often the tails, found
at short times, persist (at sufficiently large H) at arbitrary
times [14,20–23].

Another recent development concerns the role of system
boundaries. Smith et al. [24] studied the short-time behavior
of P (H, t ) on a ring of length 2L and uncovered a whole phase
diagram of different scaling behaviors of the distribution in the
(L/

√
t, H ) plane. Other papers have dealt with a more basic

setting of a half line x � 0, both at long [22,25–30] and at
short [19,25,30,31] times.

As in the recent paper [31], here we study a KPZ interface
on a half line x � 0. In Ref. [31] the boundary condition at
x = 0 specified a constant nonzero slope ∂xh(x = 0, t ) and
thus introduced an additional, deterministic driving of the
initially flat interface. In this work we will assume a reflecting
boundary, ∂xh(x = 0, t ) = 0, and an initially flat interface,
h(x, t = 0) = 0, x � 0, but condition the KPZ process on
reaching a height H at time t at a shifted point of the substrate:
h(x = L, t ) = H . Similar to the ring problem [24] (see also
Ref. [16]), the shifted point introduces a nontrivial additional
parameter L into the problem. In contrast to the ring problem,
the additional parameter L keeps the system (half) infinite. A
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FIG. 1. A schematic of the problem.

remote analog of the additional parameter L is the magnetic
field in the Ising model of phase transitions. The magnetic
field breaks the symmetry between the two phases, whereas
the additional length L breaks the mirror symmetry of the
optimal interface histories around x = L and leads to new
dynamical phase transitions, as we demonstrate below. A
schematic of the problem is shown in Fig. 1. We will limit
ourselves to the short-time regime.

The particular case L = 0 is well understood by applying
symmetry arguments to the known solution for the infinite
system [19]. For L = 0 one observes, at short times, a scaling
behavior

− lnP (H, L = 0, t ) � ν5/2

D|λ|2√t
s0

( |λ|H
ν

)
(3)

with a simple relation

s0

( |λ|H
ν

)
= 1

2
sfull

( |λ|H
ν

)
(4)

between the large deviation functions of the half-line and
the full-line problems [19]. For L > 0, the large deviation
function s(H, L, t ) is unknown, and it will be in the focus of
our attention.

Our approach to this problem relies on the optimal fluc-
tuation method (OFM), also known as weak-noise theory, or
instanton method. The OFM has been used in many papers on
the KPZ equation and related systems [11–16,21,24,31–39].
The OFM derives from a path-integral formulation of the
conditioned stochastic process. For an effectively weak noise,
one can evaluate the path integral by the Laplace’s method.
This procedure leads to a variational problem. Its least-action
solution is the optimal path–the most probable history of the
conditioned stochastic process. The “classical action” along
the optimal path yields P up to a pre-exponential factor. As we
show here, the short-time probability distribution P exhibits
the following scaling:

− lnP (H, L, t ) � ν5/2

D|λ|2√t
s

( |λ|H
ν

,
L√
νt

)
. (5)

This scaling behavior is the same as in the ring problem [24],
but the large deviation function s is, of course, different. The

OFM makes it clear that, as L → ∞, the boundary condition
at x = 0 becomes irrelevant, and P (H, L, t ) should approach
the full-line distribution. As we will show here, s increases
[and, therefore, P (H, L, t ) decreases] monotonically with an
increase of L, interpolating between one half and the full
value of sfull(λH/ν). This “interpolation,” however, looks very
different in the Gaussian body of the distribution (that is, for
relatively small |H |) and in its tails.

In the Gaussian regime, the L dependence of s is smooth at
all L. For the H → −∞ tail (to remind the reader, we assume
λ < 0) we find the following scaling behavior:

− lnP (H, L, t ) � |H |3/2

√
t

f−

(
L√|H |t

)
, (6)

where, for brevity, we suppressed the constants ν, D, and
λ. We were able to calculate the function f− analytically,
see Eq. (54) and Fig. 7. Remarkably, it exhibits a first-order
phase transition, a discontinuity of its first derivative, at a
critical value of L, Lc = 0.602 23 . . .

√|H |t . At L > Lc, the
large deviation function s is independent of L and equal to
its value for the full line. As we show here, the first-order
transition results from a competition between two different
OFM solutions.

For the H → ∞ tail the scaling behavior of P (H, L, t ) is
different from Eq. (6):

− lnP (H, L, t ) � H5/2

√
t

f+

(
L√
Ht

)
. (7)

In this limit one can neglect the diffusion term in Eq. (1)
[11,14]. The resulting OFM equations describe a compress-
ible flow of an effective gas with negative pressure [14]. For a
finite L these effective hydrodynamic equations are still hard
to solve analytically. Therefore, we evaluate the function f+
numerically, see Fig. 12. For this purpose we develop a special
numerical method which employs Lagrangian coordinates and
ultimately boils down to solving a nonlinear second-order
elliptic equation. Similarly to the function f−, the function f+
describes a sharp transition from an L-dependent solution to
an L-independent one. This transition occurs at a critical value
Lcr � 2

√
2|H |t/π , which can be determined analytically. By

analogy with the ring problem [24], we believe that this
transition has a fractional order 5/2. It is smoothed, how-
ever, by small diffusion effects. A schematic phase diagram,
showing different asymptotic behaviors of P (H, L, t ) in the
(L/

√
νt, |λ|H/ν) plane, is shown in Fig. 2.

The remainder of the paper is structured as follows. In
Sec. II we briefly outline the OFM formulation of the problem.
In Sec. III we address typical fluctuations of height, |H | �
ν/|λ|, and determine their dependence on L. Section IV
deals with the negative tail of the height distribution. Here
we employ some previously known exact static and moving
soliton/ramp solutions to the OFM equation to construct an
approximate solution to the half-line problem at different L.
In this way we uncover a first-order dynamical phase transi-
tion from an L-dependent “phase” to an L-independent one.
Section V focuses on the opposite, positive tail of P (H, L, t ).
Here we solve numerically an effective hydrodynamic prob-
lem. The solution yields the optimal paths of the interface,
the desired asymptotic of the large deviation function of the
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FIG. 2. A phase diagram of the system in the (L/
√

νt, |λ|H/ν )
plane. The solid lines and dashed lines denote sharp and smooth
transitions, respectively. For sufficiently large L the half-line system
behaves as the full-line system. Typical (small) height fluctuations
are Gaussian, see Sec. III. For large negative H the solution involves
a static or traveling optimal noise soliton and is described in Sec. IV.
For large positive H the solution is approximately inviscid and
describes a hydrodynamic collapse of an effective gas cloud, see
Sec. V. Both sharp transition lines are given by L/

√
t ∼ √|H |.

“Nonperturbative” denotes intermediate regions where there is no
analytical theory.

height, and a dynamical phase transition which, we believe,
is of fractional order 5/2. We briefly summarize and discuss
our results in Sec. VI. Some technical details are relegated to
three Appendices.

II. OFM FORMULATION

Let T be the measurement time of the interface height at
x = L: H = h(L, T ). It is convenient to write Eq. (1) in a
dimensionless form using the scaling transformation t/T →
t , x/

√
νT → x, and |λ|h/ν → h:

∂t h = ∂2
x h − 1

2 (∂xh)2 + √
ε ξ (x, t ), (8)

where ε = D|λ|2√T /ν
5/2 is the rescaled noise magnitude. The

rescaled measurement coordinate is

	 = L/
√

νT , (9)

and we are interested in the rescaled probability distribu-
tion P (H, 	). In the short-time limit, ε → 0, the exact path
integral, corresponding to Eq. (8), can be evaluated using
Laplace’s method. This procedure boils down to a minimiza-
tion problem for the action

s[h(x, t )] = 1

2

∫ 1

0
dt

∫ ∞

0
dx

[
∂t h − ∂2

x h + 1

2
(∂xh)2

]2

. (10)

We define the Lagrangian

L [h(x, t )] = 1

2

∫ ∞

0
dx

[
∂t h − ∂2

x h + 1

2
(∂xh)2

]2

such that s = ∫ 1
0 L dt and introduce the conjugate momentum

via the variational derivative ρ = δL /δ(∂t h). The optimal
path, in terms of h(x, t ) and ρ(x, t ), solves the equations

∂t h = ∂2
x h − 1

2 (∂xh)2 + ρ, (11)

∂tρ = −∂2
x ρ − ∂x(ρ∂xh), (12)

conditioned on H = h(	, 1). Comparing Eqs. (12) and (8), we
see that the conjugate momentum ρ(x, t ), a deterministic field,
describes the optimal realization of the noise

√
εξ (x, t ).

The condition H = h(	, 1) can be accounted for by intro-
ducing a Lagrange multiplier � to the action functional, which
leads to the following condition on ρ(x, t = 1) [11,14]:

ρ(x, t = 1) = �δ(x − 	). (13)

The flat initial condition is

h(x, t = 0) = 0, (14)

and the reflecting boundary condition at x = 0 is given by

∂xh(x = 0, t ) = ∂xρ(x = 0, t ) = 0. (15)

The zero-flux condition on ρ ensures that the boundary term
at x = 0, coming from the integration by parts of the linear
variation of the action, vanishes as it should. In terms of ρ,
the optimal realization of the noise field, the action (10) is
given by

s = 1

2

∫ 1

0
dt

∫ ∞

0
dx ρ2(x, t ), (16)

so we expect ρ(x → ∞, t ) = 0 for the action to be finite.
Similarly to the previous works [11–16,21,24,31,38], once

the OFM problem is solved and the action (16) is evaluated,
P (H, 	) is given, in the leading order, by

− lnP (H, 	) � s(H, 	)

ε
. (17)

Back in the physical (dimensional) variables, we arrive at the
scaling behavior (5).

III. TYPICAL FLUCTUATIONS

For sufficiently small |H |, that is, typical height fluctua-
tions, the OFM problem can be solved using a regular pertur-
bation theory in |H | or � [14]. The leading order of P (H, 	)
is obtained by dropping the nonlinear terms in Eqs. (11) and
(12). This leads to

∂t h = ∂2
x h + ρ, (18)

∂tρ = −∂2
x ρ. (19)

These linear equations are the (rescaled) OFM equations for
the Edwards-Wilkinson equation [40]

∂t h = ν∂2
x h +

√
Dξ (x, t ). (20)

The solution to the antidiffusion equation (19) with the initial
condition (13) and the reflecting boundary condition (15) is

ρ(x, t ) = �√
4π (1 − t )

[
e− (x−	)2

4(1−t ) + e− (x+	)2

4(1−t )
]
. (21)
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To calculate the action, we plug ρ(x, t ) in Eq. (16) and use
the fact that the integrand, when extended to the whole line
|x| < ∞, is an even function of x. This yields

s = �2

4
[I (	, 1, 	) + 2I (	, 1,−	) + I (−	, 1,−	)], (22)

where I (x, t, x0) is the double integral,

I (x, t, x0) =
∫ t

0

ds

4π
√

(t − s)(1 − s)

∫ ∞

−∞
dξe− (ξ−x)2

4(t−s) − (ξ−x0 )2

4(1−s) .

(23)

We evaluate this integral in Appendix A and find that

I (x, t, x0) = x − x0

4
√

π

[
f

(
x − x0√
4(1 + t )

)
− f

(
x − x0√
4(1 − t )

)]
,

(24)

where f (z) = e−z2
/z + √

π erf (z), and erf is the error func-
tion. As a result,

s(�, 	) = �2

2
√

2π

[
1 + e− 	2

2 −
√

π

2
	 erfc

(
	√
2

)]
. (25)

Here erfc(z) = 1 − erf (z) is the complementary error func-
tion. Finally, we use the universal relation

ds

d�
= �

dH

d�
(26)

to express � via H ,

�(H, 	) =
√

2π H

1 + e− 	2
2 − √

π
2 	 erfc

(
	√
2

) , (27)

and arrive at

s(|H | � 1, 	) =
√

π/2 H2

1 + e−	2/2 − √
π/2 	 erfc(	/

√
2)

. (28)

As to be expected, the action is quadratic in H , so for
typical height fluctuations the one-point distribution P (H, 	)
is Gaussian in H .

For the full-line system the action for typical fluctuations
is sfull = √

π/2 H2 [14], so the ratio s/sfull depends only on
	. This dependence is shown in Fig. 3. At 	 = 0 we obtain
s/sfull = 1/2, as to be expected from symmetry arguments. At
small but nonzero 	 we obtain a linear dependence

s(	)

sfull
� 1

2
+ 1

4

√
π

2
	, 	 � 1, (29)

while at 	 → ∞ s(	)/sfull approaches 1.
In order to determine the most probable height history, we

should solve Eq. (18): a diffusion equation with ρ(x, t ) acting
as a source term. Its solution for x � 0 for the initial condition
(14) and the reflecting boundary condition (15) is given by

h(x, t ) =
∫ t

0
ds

∫ ∞

0
dξ [G(x − ξ, t − s) + G(x + ξ, t − s)]

× ρ(ξ, s), (30)

where G(x, t ) = e− x2

4t /
√

4πt is the Green’s function for the
diffusion equation. Plugging in here ρ(x, t ) from Eq. (21) we

FIG. 3. The half-line action (in units of the full-line action) vs 	

for typical fluctuations.

arrive at

h(x, t ) = �(H, 	)[I (x, t, 	) + I (x, t,−	)], (31)

with �(H, 	) from Eq. (27) and I (x, t, x0) from Eq. (24).
Figure 4 shows the rescaled optimal height history h(x, t )/H
and rescaled optimal noise realization for 	 = 1.

IV. λH → ∞ TAIL

Now we consider the H → −∞ tail of P (H, 	). Here,
as well as in the opposite tail H → ∞, the optimal path
of the system is dominated by the nonlinearity of the KPZ
equation. However, in contrast to the H → ∞ tail, the optimal
realization of the noise ρ(x, t ) in this tail is localized in a small
region of space so that one cannot neglect the diffusion term
in the KPZ equation [11,14–16,21,31,38]. As we found, two
exact particular soliton solutions to Eqs. (11) and (12) serve as
“building blocks” of the approximate solution to this problem,
based on the large parameter |H |. These particular solutions
have previously appeared in other settings [11,14,15,32,35].

The first exact particular solution is the static soliton solu-
tion, which involves a localized stationary ρ profile, which we
call a soliton, and a vertically traveling h profile [11,14,32,35]:

ρ(x) = −2c sech2[
√

c/2(x − x0)], (32)

h(x, t ) = 2 ln{cosh[
√

c/2(x − x0)]} − ct, (33)

with a constant x0 and a constant c > 0. The second exact
particular solution is the traveling soliton solution, where a ρ

soliton travels along the x axis without changing its shape, and
h behaves as a traveling “ramp.” For the right-moving soliton
the profiles are given by [15,32,35]

ρ(x, t ) = −c2 sech2

[
c

2
(x0 − x + ct )

]
, (34)

h(x, t ) = 2 ln[1 + ec(x0−x+ct )] − 2c(ct − x). (35)

Here the soliton is centered at x = x0 + ct , where the constant
c > 0 is the soliton speed. A left-moving soliton can be
obtained by replacing c by −c.
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FIG. 4. The optimal path h(x, t )/H (a) and ρ(x, t )/H (b) as
described by the linear theory [Eqs. (31) and (21), respectively] for
	 = 1. The x profiles are shown at rescaled times t = 0, 0.5, 0.75,
0.85, 0.95, and t = 1 (from bottom to top) for h and at the same
times for ρ, except that t = 1 is replaced by t = 0.999. Notice the
corner singularity of h(x, t = 1) at x = 	.

As we will show now, when c � 1, the first of these two
exact solutions and a nontrivial combination of the first and
second solutions can be used alongside the trivial solution
ρ = h = 0 to approximately satisfy (up to small boundary
layers and transients) the boundary conditions (13)–(15). The
two resulting solutions, which we call static and dynamic
[because of the behavior of their ρ(x, t )], yield different
actions, leading to a first-order dynamical phase transition.

A. Static solution

The static solution is described by Eqs. (32) and (33)
with x0 = 	. This solution, see Fig. 5, is very similar to the
solution which determines the λH > 0 tail of the full-line
problem [11,14]. It immediately follows from Eq. (33) and
the condition h(0, 1) = H that we must set c = −H � 1.
As in Refs. [11,14], Eq. (32) does not satisfy the final-time
condition (13). The exact solution to the problem develops

(b)

FIG. 5. The optimal path h(x, t ) (a) and ρ(x, t ) (b), described by
the static solution for the λH > 0 tail. The parameters are H = −100
and 	 = 7. Shown are numerical results (solid lines) and analytical
predictions of Eqs. (32) and (33) (dotted lines) at indicated times.
Upper inset of (a): h(x, t = 0.99) inside the boundary layer at x =
	 + √

c/2 t . Lower inset of (a): h(x, t = 0.99) inside the boundary
layer at x = 0. Inset of (b): ρ(x = 	, t ). Clearly, ρ(x, t ) does not
change in time except during narrow transients near t = 0 and t = 1.
The numerical and analytical curves are only distinguishable in the
insets in (a) and during the short transients in (b). The numerical
solution captures the boundary layers of the h profile, unaccounted
for by Eq. (35).

a short transient close to t = 1, which takes care of this
boundary condition, similarly to Ref. [14]. Another short
transient appears close to t = 0; see the inset in Fig. 5(b).
The contributions of these transients to the action are of a
subleading order in |H | � 1 and, similarly to Refs. [11,14],
we will ignore them.

Equations (32) and (33) apply only on a finite interval
x1(t ) < x < x2(t ), where x2(t ) = 	 + √

c/2 t as in the full-
line problem [14], whereas

x1(t ) =
⎧⎨
⎩

	 − √
c/2 t, 0 < t < 	

√
2√
c
,

0, 	
√

2√
c

< t < 1.
(36)

At x > x2(t ), and at 0 < x < x1(t ) and 0 < t < 	
√

2/
√

c, one
can use the trivial solution ρ = h = 0 (see Fig. 5). There
are two boundary layers, at x1(t ) and x2(t ), but they give
only subleading corrections to the action. As was shown in
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Ref. [14], the moving boundary layer at x2(t ) is a shock of the
Burgers equation,

∂tV + V ∂xV = ν∂2
x V, (37)

or, if one neglects the diffusion term, of the Hopf equation,

∂tV + V ∂xV = 0, (38)

for the interface slope

V (x, t ) = ∂xh(x, t ). (39)

The characteristic soliton width is w ∼ 1/
√

c = 1/
√|H |.

At |x − 	| � w, ρ(x) decays exponentially. As a result, the
reflecting boundary condition (15) for ρ is satisfied up to
exponentially small corrections provided that 	 � 1/

√|H |,
that is, |H | � 1/	2.

We verified the static solution by solving the full OFM
problem, formulated in Sec. II, numerically. As in the pre-
vious works [14–16,24,31], we used the Chernykh-Stepanov
back-and-forth iteration algorithm [41]. Here we started the
iteration procedure sufficiently close to the expected solution.
A comparison of the analytic and numerical results for the
static solution is presented in Fig. 5.

Because of the strong localization of the ρ soliton, the
rescaled action (16) of this solution does not depend on 	 and
coincides with the corresponding expression for the full-line
system [11,14]:

ss(H → −∞, 	) � 8
√

2

3
|H |3/2, (40)

where the subscript s stands for “static.”

B. Dynamic solution

The dynamic solution involves a (quite fascinating) meta-
morphosis between the static and traveling soliton solutions.
At very short times the static soliton solution, Eqs. (32) and
(33), is formed at x = 0 and persists until some intermediate
time 0 < τ < 1. Then the static soliton solution rapidly turns
into a traveling soliton/ramp solution of the type (32) and
(33). The latter moves to the right and reaches the point
x = 	 at time very close to 1, where ρ rapidly becomes a δ

function (see Fig. 6). In the region where this solution predicts
h > 0, we should use the trivial solution h = 0. Why is such a
surprisingly complex solution possible?

To begin with, by virtue of the reflecting boundary con-
dition at x = 0, our half-line problem is equivalent to the
right half, x � 0, of a symmetric full-line problem where the
dynamics of an initially flat KPZ interface is conditioned on
reaching the height H at time 1 at two symmetric points x = 	

and x = −	. It was previously shown that the OFM equations
(11) and (12) have two families of exact multisoliton solutions
[15]. Among them there is a solution where a single ρ soliton
stays at x = 0 (and drives a vertically traveling h front) until
some time t = τ and then splits into two outgoing traveling
solitons (which drive two outgoing h ramps). For large c the
splitting process is very short. As a result, for most of the time,
this exact solution can be approximated as a time sequence of
two simpler solutions: a solution describing a static ρ soliton
at x = 0 and a solution describing two individual ρ solitons,
traveling to the right and to the left, respectively, and driving

FIG. 6. The optimal path h(x, t ) (a) and ρ(x, t ) (b), described
by the dynamic solution for the λH > 0 tail. The parameters are
H = −100 and 	 = 5, for which c2 � 10.68 and τ � 0.44, see the
main text. Shown are numerical results (solid lines) and analytical
predictions from Eqs. (45) and (44) (dotted lines) at indicated times.
Inset of (a) shows the boundary layer of h at x = c2t , captured
by the numerical solution at t = 0.6. Inset of (b) shows the short
transients at t = 0 and t = τ , captured by the numerical solution for
ρ(x = 0, t ). The ρ soliton changes its amplitude in accordance with
Eq. (42) as it changes from the static soliton to the traveling one.

two outgoing h ramps. The splitting time τ of the static soliton
can be anywhere between t = 0 and t = 1, depending on c
and on other constants [15]. The x > 0 part of this solution is
what we call the dynamic solution to our half-line problem.
We present this solution in Appendix B. In the full solution of
the problem the traveling soliton reaches x = 	 at t very close
to 1, where it rapidly becomes the δ function.

Using Eqs. (32) and (34) and the fact that the traveling
soliton must be located at x = 0 at t = τ , we can write the
ρ profile of the dynamic solution as

ρ(x, t ) �
{−2c1 sech2(

√
c1/2 x), 0 < t < τ,

−c2
2 sech2

{ c2
2 [−x + c2(t − τ )]

}
, τ < t < 1.

(41)

One relation between the soliton parameters c1 and c2 can be
found from the conservation law∫ ∞

0
ρ(x, t )dx = const, (42)
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which immediately follows from Eq. (12) and the reflecting boundary conditions (15). The conservation law yields

c1 = 2c2
2, (43)

and we will ultimately express c2 via H and 	. We use the trivial solution ρ = h = 0 at x > c2t , where the traveling h front (33)
and the traveling h ramp (35) are positive, and ignore the boundary layers which smooth the transition between the nontrivial
and trivial solutions. Altogether, the dynamic solution is given by

ρ(x, t ) �
{−4c2

2 sech2(c2x), 0 < t < τ,

−c2
2 sech2

{ c2
2 [−x + c2(t − τ )]

}
, τ < t < 1,

(44)

h(x, t ) �

⎧⎪⎨
⎪⎩

2 ln[cosh(c2x)] − 2c2
2t, 0 < x < c2t, 0 < t < τ,

2 ln{1 + ec2[−x+c2(t−τ )]} − 2c2(c2t − x), 0 < x < c2t, τ < t < 1,

0, x > c2t .

(45)

In terms of the interface slope V (x, t ) = ∂xh(x, t ) the solution
(45) for τ < t < 1 describes a shock-antishock pair, which
propagates to the right with a constant speed c2 [34,35]. The
two nontrivial expressions for h in Eq. (45) match at t = τ

outside of the narrow transition region between the static and
traveling solitons:

h(x � 1/c2, t → τ−) � h(x � 1/c2, t → τ+)

� 2c2x − 2c2
2τ. (46)

The flat initial condition (14) is satisfied. The reflecting
boundary condition (15) is satisfied both for t < τ and (up
to exponentially small corrections) at t > τ . There are three
short transients, unaccounted for by the dynamic solution (44)
and (45): the first close to t = 0, where the static soliton
forms, the second around t = τ , where the static soliton be-
comes the traveling one, and the third close to t = 1, where the
traveling soliton becomes a δ function. These transients do not
contribute to the action in the leading order that we are after.

In order to express c2 and τ through the parameters H
and 	, we employ the height condition 2c2

2τ = |H | and the
kinematic relation c2(1 − τ ) = 	. These yield

c2 = 1

2
(	 +

√
	2 + 2|H |), (47)

τ = |H | + 	2 − 	
√

	2 + 2|H |
|H | . (48)

We verified the dynamic solution numerically, see Fig. 6,
by starting the Chernykh-Stepanov iteration procedure [41]
sufficiently close to the expected solution.

Now we are in a position to evaluate the action (16) for the
dynamic solution. We use Eq. (44) and split the integration in
time into two regions, 0 < t < τ and τ < t < 1:

s � 8c4
2

∫ τ

0
dt

∫ ∞

0
dx sech4(c2x) + c4

2

2

∫ 1

τ

dt

×
∫ ∞

0
dx sech4

{
c2

2
[−x + c2(t − τ )]

}
. (49)

Using Eqs. (47) and (48), we finally arrive at

sd(H → −∞, 	) � 2	|H | + 2
3	3 + 2

3 (	2 + 2|H |)3/2, (50)

where the subscript d stands for “dynamic.”

C. Dynamical phase transition

When |H | � max (1, 1/	2), each of the two solutions, the
static and dynamic, exists for any 	 > 0. Their actions (40)
and (50) have a common factor H3/2. In order to find the
minimum action at specified −H � 1 and 	, we can compare
the quantities

fs = ss(H, 	)

|H |3/2
� 8

√
2

3
, (51)

fd = sd(H, 	)

|H |3/2
� 2	√|H | + 2

3

(
	√|H |

)3

+ 2

3

[(
	√|H |

)2

+ 2

]3/2

. (52)

These quantities are functions of the single variable ξ =
	/

√|H | and they are depicted in Fig. 7. As one can see, the dy-
namic solution is optimal for 	 < ξc

√|H |, whereas the static
solution is optimal for 	 > ξc

√|H |. Here ξc = 0.602 239 . . .

is the root of the algebraic equation

2ξ + 2

3
ξ 3 + 2

3
(ξ 2 + 2)3/2 = 8

√
2

3
.

Overall, the action is given by the scaling relation

s(H → −∞, 	) � |H |3/2 f−

(
	√|H |

)
, (53)

where

f−(ξ ) =
{

2ξ + 2
3ξ 3 + 2

3 (ξ 2 + 2)3/2, ξ � ξc,

8
√

2
3 , ξ � ξc.

(54)

This result leads to Eq. (6), announced in the Introduction. The
first derivative of s(H, 	) with respect to H is discontinuous,
at large −H , across the parabola H = −	2/ξ 2

c in the 	, H
plane. Such singularities of the action are classified as first-
order dynamical phase transitions. In the limit of 	 → ∞ the
action coincides with the expression sfull = 8

√
2|H |3/2/3 for

the infinite line, obtained in Refs. [11,14]. In the limit of
	 → 0 the action is given by Eq. (4). That the switch between
the two limits is observed at a finite 	, via a first-order phase
transition, is both interesting and unexpected.
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FIG. 7. The action s(H → −∞, 	) in units of the full-line action
for H → −∞, sfull = 8

√
2|H |3/2/3. The solid line indicates the

least action for any 	/
√|H |. The dashed lines are the static and

dynamic actions, respectively (see the main text), in the regions
where they are not minimal. The static action for very small 	/

√|H |
is not displayed, since the static solution is invalid for 	 ∼ 1/

√|H |.
Evident is a first-order dynamical phase transition at 	/

√|H | = ξc =
0.602 239 . . . .

V. λH → −∞ TAIL

The opposite tail, H → ∞, is very different in its nature.
Here, as in the previous works [11,13–16,24,31,38], we can
neglect the diffusion terms in Eqs. (11) and (12). Then,
differentiating Eq. (11) with respect to x, we arrive at the
equations

∂tρ + ∂x(ρV ) = 0, (55)

∂tV + V ∂xV = ∂xρ. (56)

These equations, with the initial condition

V (x, t = 0) = 0 (57)

and the final-time condition (13), describe a collapse of an
initially static cloud of an inviscid gas with density ρ(x, t ) and
velocity V (x, t ) into the point x = 	 at t = 1. The collapse is
driven by the negative pressure P(ρ) = −ρ2/2 of this effec-
tive gas [14], and the solution has compact support [13,14].
Once this hydrodynamic problem is solved, h(x, t ) can be
found from the relation

h(x, t ) =
∫ x

0
V (x′, t )dx′ +

∫ t

0
ρ(x = 0, t ′)dt ′, (58)

where we have used Eq. (11), with the diffusion term ne-
glected, at x = 0, and Eq. (15). The inviscid hydrodynamic
problem has an additional scale invariance property [14]
which reduces the number of the dimensionless parameters
to 1. Indeed, the rescaling transformation

x′ = x

�1/3
, t ′ = t, ρ ′(x′, t ′) = ρ(x, t )

�2/3
,

V ′(x′, t ′) = V (x, t )

�1/3
, h′(x′, t ′) = h(x, t )

�2/3
, (59)

keeps Eqs. (55), (56), and (58), and the homogeneous
boundary conditions invariant. The final-time condition (13)
becomes

ρ ′(x′, t ′ = 1) = δ(x′ − 	′), (60)

where 	′ = 	/�1/3 is the only parameter remaining in the
problem. Alternatively, we can choose 	/

√
H as the single

parameter. One way of showing it is the following. Performing
the rescalings (59) in Eq. (16), we obtain

s(H, 	) = �5/3s′(	′). (61)

Using this equation and the last relation in Eqs. (59), we obtain

s(H, 	)

H5/2
= s′(	′)

H ′(	′)5/2
, (62)

	√
H

= 	′
√

H ′(	′)
, (63)

where s′(	′) is the rescaled action and H ′(	′) = h′(x′ =
	′, t ′ = 1) is the rescaled height. Equations (62) and (63) yield

s(H → ∞, 	) = H5/2 f+

(
	√
H

)
, (64)

where f+ is to be found [42]. Until the end of this section we
use the rescaled variables and omit the primes.

The solution to the rescaled full-line problem involves a
gas cloud with an initial size of 4

√
2H/π which collapses

symmetrically into its center as t → 1 [14]. Let us consider
the main properties of the optimal path, as described by the
inviscid Eqs. (55) and (56). If, in the half-line problem, 	 is
larger than half this initial size, 2

√
2H/π , the same gas cloud,

centered at x = 	, fits into the interval [0, 2	], and the solution
is just a full-line solution shifted in space. For 	 smaller than
2
√

2H/π , the character of the solution changes and we should
expect a dynamical phase transition at

	cr(H ) = 2
√

2

π

√
H . (65)

Furthermore, for 	 < 	cr, the gas cloud must detach from
the reflecting boundary at x = 0 at a finite time 0 < t
 < 1
before collapsing into the point x = 	 at t = 1. The detach-
ment time t
 is uniquely determined by 	: the larger 	 is at
fixed H , the closer t
 will be to zero.

As in the full-line problem, the gas cloud here has compact
support at all times: xl(t ) < x < xr(t ), where xl and xr are the
edges of support. For 	 > 	cr(H ), xl(t ) > 0 at all times, while
for 	 < 	cr(H )xl(t ) > 0 at t > t
, and xl(t ) = 0 for 0 < t < t
.

The gas density ρ(x, t ) and velocity V (x, t ) vanish for
x > xr(t = 0) = x0

r and x < xl(t = 0) = x0
l at all times. The

density vanishes identically on the intervals xr(t ) < x < x0
r

and x0
l < x < xl(t ), and the dynamics of the velocity there is

described by the Hopf equation (38). We call these regions the
Hopf regions and the region xl(t ) < x < xr(t ) the pressure-
driven flow region, or simply the pressure flow region.
Figure 10 below shows the boundaries of these regions in the
(x, t ) plane.

Here is a plan for the remainder of this section. By trans-
forming from the Eulerian coordinate x to the Lagrangian
mass coordinate, we will reduce the set of equations (55) and
(56) to a single nonlinear elliptic equation of the second order
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and solve it numerically. We will indeed find the two different
regimes of the most probable paths and the large deviation
function, depending on the parameter 	/

√
H , and the ensuing

phase transition.

A. Lagrangian coordinates and numerical method

To our knowledge, at 	 < 	cr(H ), the inviscid hydrody-
namic problem cannot be solved analytically and we resort to
numerical calculations. A numerical scheme which uses the
Eulerian x coordinate cannot be efficient, as an increasingly
finer resolution near the location of the collapse x = 	 would
be needed in order to resolve the dynamics with sufficient
precision. Using a Lagrangian coordinate is more suitable,
as small features, which develop along the x coordinate, are
spread more evenly along a Lagrangian coordinate.

Since the total mass is conserved, see Eq. (42), it is conve-
nient to use the Lagrangian mass coordinate [43], defined by

m(x, t ) =
∫ x

0
ρ(x′, t )dx′. (66)

The inverse relation is

x(m, t ) =
∫ m

0

dm′

ρ(m′, t )
+

∫ t

0
V (m = 0, t ′)dt ′, (67)

where we used the fact that the Lagrangian time derivative
relates the velocity and position of a gas parcel by

V (m, t ) = ∂t x(m, t ) (68)

and the initial condition (57).
In the Lagrangian representation, Eqs. (55) and (56) in the

pressure region take the form

∂mV = ∂t

(
1

ρ

)
, (69)

∂tV = 1
2∂m(ρ2). (70)

By differentiating Eq. (69) with respect to t and Eq. (70) with
respect to m, we eliminate V and arrive at a single nonlinear
partial differential equation for ρ(m, t ):

∂2
t

(
1

ρ

)
= 1

2
∂2

m(ρ2). (71)

As the total mass of the gas is conserved and equal to 1 [see
Eq. (60)], Eq. (71) should be solved inside the square (0, 1) ×
(0, 1) of the (m, t ) plane, see Fig. 9.

What are the boundary conditions for the elliptic equation
(71)? Using Eq. (69), we transform the initial condition (57)
to

∂tρ(m, t = 0) = 0. (72)

The boundary condition at m = 1 is

ρ(m = 1, t ) = 0. (73)

The boundary condition at m = 0 is a bit more involved.
The parameter 	 affects the problem only via the detachment
time t
 [see the paragraph after Eq. (80) below]. Therefore,
it is convenient to reparameterize the problem in terms of
t
 instead of 	. For t � t
 the gas density at x = m = 0 is

nonzero. Then, using the relation dm = ρ(x, t )dx, we can
transform the reflecting condition (15) to ∂mρ(m = 0) = 0.
For t > t
 the gas density is zero at m = 0. Overall, the
boundary condition at m = 0 is{

∂mρ(m = 0, t ) = 0, t � t
,

ρ(m = 0, t ) = 0, t > t
.
(74)

The last boundary condition follows from the final-time
condition (13). As the latter involves a δ function, the La-
grangian mass coordinate is degenerate at t = 1. We overcame
this difficulty by exploiting the fact that, very close to t = 1,
the hydrodynamic solution (1) behaves as the full-line solu-
tion centered at x = 	 and (2) exhibits self-similarity. Using
the results of Ref. [14], this self-similar asymptotic can be
written as

ρss(x, t )

r(t )
=

{
1 − 16

9 r2(t )(x − 	)2, |x − 	| � 3
4r(t ) ,

0, |x − 	| � 3
4r(t ) ,

(75)

where

r(t ) = [4(1 − t )]−2/3. (76)

Therefore, we can solve the problem numerically only until
a time t̃ sufficiently close to 1 and use the similarity solution
for t̃ � t � 1. In the numerical solution we enforce a final-
time condition at t = t̃ by setting the gas density ρss(x, t̃ ) from
Eqs. (75) and (76). What is left is to transform ρss(x, t̃ ) to
the Lagrangian mass coordinate. Let us denote for brevity r̃ =
r(t̃ ). According to Eq. (66), the mass coordinate at t = t̃ is

m(x, t̃ ) = 1

2
+ r̃(x − 	) − 16r̃3

27
(x − 	)3. (77)

Inverting this relation requires solving a cubic equation, which
is conveniently done in a parametric form:

x(m, t̃ ) = 	 + 3

4r̃

[
cos

θ (m)

3
−

√
3 sin

θ (m)

3

]
(78)

where

θ (m) = arctan(2m − 1, 2
√

m − m2), (79)

and the function arctan(x, y) gives the arc tangent of y/x,
taking into account which quadrant the point (x, y) is in [44].
Plugging Eq. (78) back in Eq. (75), we arrive at the final-time
condition in the Lagrangian representation:

ρ(m, t̃ ) = r̃

[√
3 sin

2θ (m)

3
− 2 sin2 θ (m)

3

]
. (80)

The function ρ(m, t̃ ) is shown in Fig. 8. As one can see, a
very narrow density profile in the Eulerian coordinate (which
would be a δ function at t̃ = 1) gives way to a broad function
in the Lagrangian coordinate. This is clearly advantageous for
numerical calculations. Importantly, Eq. (80) does not depend
on 	. It is precisely this fact that enables us to reparameterize
the problem in terms of the detachment time t
. Using the
reparametrization, we compute the Eulerian collapse location
x = 	 at t = t̃ for each specified value of t
. The geometry
and boundary conditions for the pressure-driven flow in the
Lagrangian representation are shown in Fig. 9.

We use Newton’s method [45] to solve Eq. (71) for
ρ(m, t ), typically with r̃ = 750, which corresponds to
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FIG. 8. The final-time condition (80) for the pressure flow in the
Lagrangian coordinate.

1 − t̃ � 1.2 × 10−5. The rapid growth of ρ(m, t ) as t ap-
proaches t̃ , see Eq. (76), causes a numerical difficulty. We
overcame it by using a nonuniform mesh, see Appendix
C. Then, using the numerical solution of Eq. (70), we find
V (m, t ). With ρ(m, t ) and V (m, t ) at hand, we transform the
pressure flow solution back to the Eulerian coordinate using
Eq. (67).

To compute V (x, t ) in the regions of Hopf flow, see
Eq. (38), we implemented numerically the matching proce-
dure of Ref. [14]. Using numerical characteristics, we match
the implicit general solution to the Hopf equation [46],

V = F (x − V t ), (81)

with V at the edges of the pressure flow region xl(t ) and xr(t ),
see Fig. 10. Lastly, we numerically evaluate the integrals over
x and t in Eq. (58) to find h(x, t ). The choice of mesh in m
and t in the pressure flow region, and a brief description of the
method of numerical characteristics in the Hopf regions, are
presented in Appendix C.

FIG. 9. The geometry and boundary conditions for the pressure-
driven flow in the Lagrangian mass coordinate.

FIG. 10. The flow regions of the effective hydrodynamic prob-
lem in the Eulerian coordinate for 	 � 0.876 (or t
 = 0.4). The solid
lines to the left and right of x = 	 are the edges of the compact
support of the pressure flow region, xl (t ) and xr(t ), respectively. xr(t )
decreases as a function of time for any t > 0, while xl (t ) increases
only for t > t
, after the gas cloud detaches from x = 0. The pressure
flow region shrinks to zero at t = 1 as the gas collapses to x = 	. The
dashed lines are characteristics of the Hopf equation (38), emanating
from the edges of the pressure flow region and carrying with them
constant values of the velocity V (x, t ) into the Hopf regions. Some
of these constant values are indicated.

The final step is to compute s and H = h(	, 1) using
Eqs. (16) and (58) at x = 	, respectively. We split the integrals
over time into two regions, t ∈ [0, t̃] and t ∈ [t̃, 1], and use the
numerical solution in the former region and the self-similar
asymptotic (75) in the latter one.

B. Numerical results

We tested our numerical method by comparing its results
at the critical point t
 = 0, when the boundary at x = 0 still
has no effect, with analytical full-line results [14]:

H = 1

2

(
3π

2

)2/3

, s = 1

5

(
3π

2

)2/3

, 	 =
(

2
√

3

π

)2/3

(82)

(in the rescaled units where � = 1). In this case 	 is half the
initial width of the gas cloud. We found that the numerical
and analytical results for s, H , and 	 agree within less than
0.5%. Decreasing the mesh spacing by a factor of 1.5 and 2
for the m and t mesh, respectively, changed these results only
by about 0.1%.

For t
 � 1, the effect of the boundary condition at x =
0 is small, and the numerical density and velocity profiles
are close to the full-line profiles (a parabolic profile for the
density, and a straight-line profile for the velocity in the
pressure flow region [14]).

Larger values of t
 (that is, smaller values of 	) lead to more
complicated dynamics, see Fig. 11. Still, well after the gas
detaches from x = 0, the numerical solution approaches the
t → 1 asymptotic of the full-line solution, in agreement with
our initial expectations.
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FIG. 11. The numerically found optimal path of the system,
corresponding to the H � 1 tail for t
 = 0.4 (or 	 = 0.876). Shown
are the spatial profiles of ρ (a), V (b), and h (c) at times t =
0, 0.25, 0.5, 0.65, and 0.8. At t = t
 the gas detaches from x = 0.
The regions of pressure flow and Hopf flow are clearly seen in panel
(b). As t approaches t̃ , the pressure flow solution converges to the
(self-similar asymptotic of) full-line solution of Ref. [14]. To remind
the reader, x, t, ρ,V , and h scale with �, as stated in Eq. (59).

FIG. 12. Numerical results for s/sfull in the H � 1 tail as a
function of 	/

√
H . Up to the factor 8

√
2/15π , s/sfull is the function

f+(	/
√

H ), see Eqs. (64) and (83). Evident is a gradual crossover
from s = sfull/2 at 	 = 0 to s = sfull at 	 = 	cr(H ), and a sharp
transition at 	 = 	cr(H ). For 	 > 	cr(H ) the action is independent of
	. The numerical value of 	cr(H )/

√
H agrees with 2

√
2/π up to less

than 0.1%.

Figure 12 shows our numerical results for the action, in
units of the full-line action [13,14],

sfull(H � 1) � 8
√

2

15π
H5/2, (83)

as a function of 	/
√

H . The horizontal line at 	/
√

H >

2
√

2/π [see Eq. (65)] is the numerical value for t
 = 0. The
numerical results satisfy the expected asymptotics

s(H � 1, 	 = 0) = 1
2 sfull(H � 1), (84)

s(H � 1, 	 � 	cr(H )) = sfull(H � 1), (85)

up to less than 0.5% [47]. Also evident in Fig. 12 is a phase
transition at the same critical value 	/

√
H = 2

√
2/π as in the

ring problem [24]. Although the details of the hydrodynamic
solution at 	/

√
H < 2

√
2/π in these two problems are in

general different, they are quite similar close to the transition.
We believe, therefore, that the order of the phase transition
in these two problems is the same: 5/2. Unfortunately, the
precision of our numerical solution in the vicinity of the phase
transition is insufficient for a conclusive verification of this
hypothesis because of the high-order numerical derivatives of
s required in this calculation.

VI. SUMMARY AND DISCUSSION

The presence of an additional parameter 	 = L/
√

νt leads
to a rich phase diagram (see Fig. 2) of scaling behaviors
of the height probability P (H, L, t ) of the KPZ interface on
the half line. At small |H |, P (H, L, t ) is a Gaussian with a
variance which is 	-dependent, see Fig. 3. At large negative
H , the distribution obeys the scaling behavior described by
Eq. (6). The function f−, which we calculated analytically,
is shown in Fig. 7. It describes a first-order dynamical phase
transition, which results from a competition between two
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different histories of the system, conditioned on reaching a
height H at the point x = L.

At large positive H , the scaling behavior of P (H, L, t ) is
described by Eq. (7). The function f+ is shown in Fig. 12.
In order to compute it, we developed a numerical method
which employs the Lagrangian mass coordinates and trans-
forms the two coupled OFM equations into a single nonlinear
second-order elliptic equation. The function f+ also describes
a dynamical phase transition. Its mechanism, however, is
different from that of the negative tail of the distribution.
First, this transition is smoothed by small diffusion effects.
Second, it appears when the effective “gas cloud,” describing
the optimal history of the KPZ noise field conditioned on
H , starts “feeling” the presence of the reflecting boundary at
x = 0. As this mechanism is very similar to the one in the
ring problem [24], the order of the transition is apparently the
same: 5/2, but more analytical or numerical work is needed to
test this hypothesis.

For sufficiently large 	 = L/
√

νT (that is, in the right part
of the phase diagram in Fig. 2), each of the distribution tails
has a double structure. The moderately far H > 0 tail, 1 �
|λ|H/ν � 	2, coincides with the H > 0 tail for the full line,
whereas the very far H > 0 tail, |λ|H/ν � 	2, coincides with
that for the half line with L = 0. Similarly, the moderately far
H < 0 tail, 1 � |λH |/ν � 	2, coincides with the H < 0 tail
for the full line, whereas the very far H < 0 tail, |λH |/ν � 	2,
coincides with that for the half line.

As in the previous works [11–16,21,24,31,38,39], we made
two approximations. The main approximation is the saddle-
point evaluation of the KPZ path integral, leading to the OFM
formulation. An additional approximation (different for each
of the regimes of small, large positive, or large negative H)
enabled us to separately consider the typical fluctuations and
the two tails. It would be very interesting to find out whether
the short-time distribution tails that we have found in this
work persist (at sufficiently large |H |) at arbitrary times.
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APPENDIX A: EVALUATING THE INTEGRAL
I(x, t, x0) IN EQ. (23)

Let us denote a = 4(t − s) and b = 4(1 − s). The integral
becomes

I (x, t, x0) = 1

π

∫ t

0

ds√
ab

∫ ∞

−∞
dξe−

[
(ξ−x)2

a + (ξ−x0 )2

b

]
. (A1)

The integral over ξ is a Gaussian integral,∫ ∞

−∞
dξe−

[
(ξ−x)2

a + (ξ−x0 )2

b

]
=

√
πab

a + b
exp

[
− (x − x0)2

a + b

]
.

(A2)

Plugging back the definitions of a and b, we have

I (x, t, x0) =
∫ t

0
ds

exp
[ − (x−x0 )2

4(1+t−2s)

]
√

4π (1 + t − 2s)
. (A3)

Introducing

η = x − x0√
4(1 + t − 2s)

, (A4)

we bring the remaining integral to

I (x, t, x0) = x − x0

4
√

π

∫ ηt

η0

dη
e−η2

η2
, (A5)

with η0 = (x − x0)/
√

4(1 + t ) and ηt = (x − x0)/
√

4(1 − t ).
Using the known integral

∫
dz

e−z2

z2
= −e−z2

z
− √

π erf (z) ≡ − f (z),

we arrive at Eq. (24) of the main text.

FIG. 13. An example of the two-soliton/two-ramp solution (B2)
(a) and (B1) (b) with N = 3, c1 = X1 = 0, c3 = −c2, and X2 =
−X3 = c2τ , where 0 < τ < 1. The dashed lines in (a) indicate the
nonphysical parts of the solution that are replaced by the trivial
solution h = 0. The boundary layers, where the two solutions match,
do not contribute, at leading order, to the action at large |H |.
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APPENDIX B: DYNAMIC SOLUTION FROM EXACT
MULTISOLITON SOLUTIONS

In Ref. [15] two families of multisoliton and multiramp
solutions (for ρ and h, respectively) were found. The family
relevant to this work is given by

ρ(x, t ) = − 2
∑N

i, j=1(ci − c j )2e−ci (cit+x−Xi )−c j (c jt+x−Xj )[ ∑N
i=1 e−ci (cit+x−Xi )

]2 ,

(B1)

h(x, t ) = − 2 ln

[
4C∑N

i=1 e−ci (cit+x−Xi )

]
. (B2)

It holds for any integer N > 0 and has 2N + 1 arbitrary
constants: {ci, Xi}N

i=1 and C. The dynamic solution, described
in Sec. IV B, corresponds to N = 3, c1 = X1 = 0, c3 = −c2,
and X2 = −X3 = c2τ . This solution is shown, for some choice
of the parameters, in Fig. 13.

In the limit of −H � 1 one has c1 � 1 and c2 � 1, and
this multisoliton solution has two distinct asymptotics: the
static soliton solution and two symmetric outgoing travel-
ing soliton solutions, as shown in Fig. 13 and described in
Sec. IV B.

Going back to the two families of multisoliton and multi-
ramp solutions discovered in Ref. [15], we note that each of
these families can be represented as a time-reversed version
of the other. This remarkable fact, previously unnoticed, is
a consequence of a nontrivial time-reversal symmetry of the
OFM equations (11) and (12) [19,48].

APPENDIX C: NUMERICAL SCHEME FOR THE H → ∞
TAIL: MORE DETAILS

As t approaches t̃ , ρ grows progressively fast, like r(t ),
see Eq. (76). Therefore we chose an r-mesh with the number

of points growing in a geometric progression between r0

and r̃ in 100 steps. The t mesh is then found by setting a
uniform mesh spacing of δt = 0.01 for t < 0.7, while for
t > 0.7 we compute t (r) for every point on the r mesh using
Eq. (76). The resulting t-mesh spacing decreases considerably
as t grows. We restricted the maximum time step δt to be
no more than 0.01 and used a finer resolution of δt = 0.002
around t
.

As for the m mesh, we see from Eq. (75) that μ = 4r(x −
	)/3 is a natural spatial coordinate for the density. Therefore,
we used a mesh uniform in μ with 601 divisions between
μ = −1 and μ = 1. The m mesh is computed from it by using
Eq. (77):

m(μ) = 1
2 + 3

4μ − 1
4μ3. (C1)

The resulting m mesh spacing, δm, is small close to the
edges of the pressure flow region m = 0 and m = 1. As a
function of m, δm behaves as ρ(m, t̃ ), shown in Fig. 8, up
to a scale factor of 0.025. Our finite-difference approxima-
tion of the derivatives, used for the numerical solution of
Eq. (71), properly takes into account the nonuniformity of the
mesh.

In the Hopf regions we use the fact that the solution
is constant along the characteristics x = V t + const, which
are straight lines. Hence, once the velocity at the right
edge of the pressure flow region, V (x = xr(t ), t ), is known,
we can draw straight lines, with a slope dx/dt = Vj =
V (xr(t j ), t j ), from each point (xr(t j ), t j ) and set the veloc-
ity along that line to be Vj = const. The same is done for
the left edge xl(t ). As a result, we have a set of points
in the (x, t ) plane with known velocity and determine the
velocity at any other point in the Hopf region by linear
interpolation.
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